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31 (2015), 171–185
www.emis.de/journals

ISSN 1786-0091
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Dedicated to Professor Lajos Tamássy on the occasion of his 90th birthday

Abstract. Averaging processes are widely used in mathematics. It is a
relatively new trend in Finsler geometry. I would like to present the theo-
retical and historical background together with some typical applications.

1. Introduction

Finsler geometry is a non-Riemannian geometry in a finite number of di-
mensions. The differentiable structure is the same as the Riemannian one but
distance is not uniform in all directions. Instead of the Euclidean spheres in
the tangent spaces, the unit vectors form the boundary of general convex sets
containing the origin in their interiors. (M. Berger). The metric feature of a
Finsler manifold is based on a smoothly varying family of compact convex bod-
ies in the tangent spaces. They are working as unit balls under some regularity
conditions. Having unit balls we can measure the length of tangent vectors
with the help of the induced Minkowski functionals. Manifolds equipped with
a smoothly varying family of Minkowski functionals are called Finsler man-
ifolds [5], see also [13]. Let M be a connected differentiable manifold with
local coordinates u1, . . . , un on U ⊂ M . The induced coordinate system on the
tangent manifold consists of the functions

x1 := u1 ◦ π, . . . , xn = un ◦ π and y1 := du1, . . . , yn = dun,
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where π : TM → M is the canonical projection. The Finsler structure is given
by a fundamental function F : TM → R satisfying the following conditions:

• each non-zero element v ∈ TM has an open neighbourhood such that
the restricted function is of class at least C4 in all of its variables
x1, . . . , xn and y1, . . . , yn,

• F is positively homogeneous of degree one: F (rv) = rF (v) for any
positive real number r and F (v) = 0 if and only if v is the zero element
of the tangent space,

• (regularity condition) the Hessian matrix

gij :=
∂2E

∂yj∂yi

of the energy function E := (1/2)F 2 with respect to the variables
y1, . . . , yn is positive definite.

The components gij of the so-called Riemann-Finsler metric is defined only on
the punctured tangent spaces because the second order partial differentiability
of the energy function at the origin does not follow automatically. Further
canonical objects are

dµ =
√

det gij dy
1 ∧ . . . ∧ dyn,

the Liouville vector field

C := y1∂/∂y1 + . . . yn∂/∂yn

and the induced volume form

µ =
1

F
ιCdµ =

√
det gij

n∑
i=1

(−1)i−1y
i

F
dy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 . . . ∧ dyn

on the indicatrix hypersurfaces ∂Kp := F−1(1) ∩ TpM (p ∈ M).

2. Averaged Riemannian metrics

The primary aim of averaging in Finsler geometry is to construct associ-
ated Riemannian structures on the base manifold. A typical example is the
Riemannian metric given by integration of the Riemann-Finsler metric on the
indicatrix hypersurfaces: let f : TM → R be a zero homogeneous function and
let us define the average-valued function [10]

Af (p) :=

∫
∂Kp

f µ;

especially the averaged Riemannian metric is defined by

(1) γp(v, w) :=

∫
∂Kp

g(v, w)µ.

It is probably hard to detect the first appearance of the construction (1). It
can be found (among others) in Z. Shen [18], L. Tamássy [21], Cs. Vincze
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[26] and R. G. Torromé [22]. In general these averaging processes kill some
important geometric data of a Minkowski functional (Z. Shen). On the other
hand lots of quadrics can be associated with a convex body which means that
lots of Riemannian metrics can be introduced on a Finsler manifold [17], see
also [12] and [10]. Instead of a kind of general theory our aim is to present
successful and consequent applications of averaging processes based on the
metric (1) and its relatives. It is a relatively new and popular trend in Finsler
geometry together with a rapidly increasing numbers of the papers. Without
completeness the most important reference works related to the achievements
of this new trend are due to Cs. Vincze [26], [27], [31] and [23], M. Crampin [10]
and [9], R. G. Torromé [22], V. S. Matveev et al. [15], [16] and [17], T. Aikou
[2].

3. Generalized Berwald manifolds

Canonical differential geometric objects of a Finsler manifold are living on
the tangent manifold in general. The averaged metric (1) provides a Riemann-
ian environment for the investigations. The connection between the Riemann-
ian and Finslerian levels can be provided by an additional structure on the
base manifold.

Definition 1. A linear connection on the base manifold is compatible with the
Finslerian structure if the parallel transports preserve the Finslerian norm of
tangent vectors. Finsler manifolds admitting compatible linear connections are
called generalized Berwald manifolds. If the compatible connection is torsion-
free then we have the classical Berwald manifolds.

The basic result related to the theory of the generalized Berwald manifolds
is an observation on the Riemann metrizability of the compatible connections
which is a direct generalization of Szabó’s well-known result [20] for classical
Berwald manifolds.

Theorem 1 ([26]). If a linear connection on the base manifold is compati-
ble with the Finslerian structure then it must be metrical with respect to the
averaged Riemannian metric (1).

As mentioned above lots of Riemannian metrics can be introduced on a
Finsler manifold in general. They correspond to the varieties of quadrics re-
lated to the indicatrix bodies. The following theorem shows that the averaged
metric (1) is a reasonable choice in case of generalized Berwald manifolds.

Theorem 2. Let ∇ be a a linear connection which is compatible with the Fins-
lerian structure and suppose that ∇ is metrical with respect to the Riemannian
metric γ̃. If ∇ is locally irreducible then γ̃ = cγ, where c is a positive real
constant.

Proof. Let a point p ∈ M be given. Since the unit component of the holonomy
group of the compatible linear connection ∇ at p belongs to the orthogonal
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groups with respect to both γ̃ and γ, the irreducibility implies that they are
proportional to each other. The proportional term depends on the position in
general. Using the metric property of ∇ it follows that

0 = (∇X γ̃)(Y, Z) = (Xc)γ(Y, Z) + c(∇Xγ)(Y, Z)
Thm. 1
= (Xc)γ(Y, Z)

for any vector fields X, Y and Z. Therefore c must be independent of the
position. �

It is well-known that metrical linear connections are uniquely determined
by the torsion tensor. Consider the decomposition

T (X, Y ) := T1(X, Y ) + T2(X, Y ),

where

T1(X,Y ) := T (X,Y )− 1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
,

T2(X,Y ) :=
1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
and T̃ is the trace tensor of the torsion [1]. The trace-less part T1 is automat-
ically zero in case of n = 2. In case of n ≥ 3 the trace-less part can be divided
into two further components A1 and S1 by separating the axial (or totally
anti-symmetric) part A1. This means that its lowered tensor with respect to
the Riemannian metric is totally anti-symmetric:

T (X, Y ) = A1(X,Y ) + S1(X, Y ) + T2(X, Y ).

Then we have eight classes of metrical linear connections depending on the
surviving terms among A1, S1 and T2. At the same time we have eight classes
of generalized Berwald manifolds. They correspond to the elements of (Z2)

3

in such a way that we use the term 1 if the corresponding component is not
identically zero. Generalized Berwald manifolds of type

• (0, 0, 0) are the classical Berwald manifolds admitting torsion-free com-
patible linear connections on the base manifold [20].

• (0, 0, 1) are Finsler manifolds admitting compatible linear connections
with vanishing trace-less part in the torsion (the only surviving term
is T2). In an equivalent terminology, such a metrical linear connection
is called semi-symmetric [31].

• (1, 0, 0) are Finsler manifolds admitting compatible linear connections
with totally anti-symmetric torsion tensor (the only surviving term is
A1). It is a well-known [1] that metric connections with totally anti-
symmetric torsion have the same geodesics as the Lévi-Civita connec-
tion, i.e. all of these connections have an associated spray in common
(the spray of the Lévi-Civita connection of the averaged Riemannian
metric); for some preliminary results see [32].

etc.
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3.1. Generalized Berwald manifolds admitting semi-symmetric com-
patible linear connections. Suppose that we have a Finsler manifold admit-
ting a linear connection on the base manifold such that the parallel transports
preserve the Finslerian length of tangent vectors. The basic questions are the
unicity of such a compatible linear connection and its expression in terms of
the canonical data of the Finsler manifold (intrinsic characterization). The
first essential results were formulated for compatible connections with torsion
of the form

(2) T =
1

2
(1⊗ dα− dα⊗ 1) ,

where α : M → R is a smooth function. The so-called Hashiguchi-Ichijyō’s
theorem [11] states that a Finsler manifold admits a compatible linear connec-
tion with torsion (2) if and only if it is conformal to a Berwald manifold: the
conformal change Eα = eα◦πE results in a Berwald manifold, i.e. the propor-
tional term is just the exponent of the vertically lifted function αv = α ◦ π.
Conformally Berwald Finsler manifolds and Finsler manifolds admitting com-
patible semi-symmetric linear connections with exact 1-forms in the torsion
mean the same type of spaces. They are called exact Wagner manifolds. The
unicity-problem of the compatible linear connection with torsion (2) is equiv-
alent to the so-called Matsumoto problem in [14]: are there non-homothetic
conformally equivalent Berwald manifolds?

Theorem 3 ([27]). The scale function between conformally equivalent Berwald
manifolds must be constant unless they are Riemannian.

For the solution of the unicity problem see also [25], [29] and [17]. The
solution of the unicity problem allows us to take some steps forward. Linear
connections with torsion (2) belong to the more general class of semi-symmetric
linear connections.

Definition 2. A linear connection is said to be semi-symmetric if the torsion
tensor is of the form

(3) T (X, Y ) =
1

2
(β(Y )X − β(X)Y )

where β is a 1-form on the manifold.

An intermediate level is to consider closed 1-forms in the torsion1: dβ = 0,
i.e. for any point p ∈ M there exists an open neighbourhood around p and a
smooth function αp : Up → R such that

(4) dαp = β and T =
1

2
(1⊗ β − β ⊗ 1) .

1Metric linear connections with closed 1-forms in formula (3) for the torsion are very
important in differential geometry: if β is closed then all the classical curvature properties
are satisfied which is crucial for the classification of the holonomy groups and Simon’s theory
of holonomy systems [19].
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Let us introduce the notion of closed Wagner manifolds for Finsler spaces ad-
mitting compatible semi-symmetric linear connections with closed 1-forms in
the torsion. The main question is how to generalize Hashiguchi-Ichijyō’s theo-
rem. It is clear from the earlier version of the theorem that for any point of a
closed Wagner manifold has a neighbourhood over which it is conformal equiv-
alent to a Berwald manifold. This means that closed Wagner manifolds are
locally conformal to Berwald manifolds. What about the converse? The ex-
terior derivatives of the local scale functions constitute a globally well-defined
1-form if and only if they coincide on the intersection of overlapping neigh-
bourhoods. This gives the question that how many essentially different ways
there are for a Finsler manifold to be conformal to a Berwald manifold. Al-
ternatively: are there non-homothetic conformally equivalent Berwald spaces?
This is just the Matsumoto’s problem again.

Definition 3. Two Finsler structures over the same base manifold are con-
formally related if the corresponding Riemann-Finsler metrics are conformally
related.

Using that

E = g(C,C)

conformally related Riemann-Finsler metrics g̃ = eϕg results in conformally
related energy functions Ẽ = eϕE. If we rebuilt the Riemann-Finsler metrics
as the second order partial derivatives of the energy functions with respect
to the variables y1, . . . , yn we have the so-called Knebelman’s theorem: the
scale function eϕ depends only on the position, i.e. the conformal equivalence
of Finsler manifolds can be written into the form g̃ = eα◦πg for some smooth
function α : M → R on the common base manifold.

Definition 4. A Finsler manifold is called locally conformally Berwald mani-
fold if for any point has a neighbourhood over which it is conformally Berwald
by a locally given scale function.

The following figure shows the neighbourhoods Up and Uq of the points p
and q of a locally conformally Berwald manifold such that the restricted Fins-
lerian structures are conformally equivalent to the Berwald manifolds M1 and
M2, respectively. Therefore the Finsler manifold Up∩Uq is simultaneously con-
formally equivalent to M1 and M2 which are conformally equivalent Berwald
manifolds.

As Theorem 3 says dα1 = dα2 and we have the following generalization of
the classical Hashiguchi-Ichyjiō’s theorem2.

2Aikou’s paper [2] also deals with the problem of locally conformally Berwald manifolds
but the starting point is essentially different. The definition of locally conformal Berwald
manifolds involves a strange condition of the existence of a globally defined torsion-free linear
connection, see Definition 6.1 : “A Finsler manifold (M,L) is said to be a locally conformal
Berwald manifold, if there exists an open covering (Uα)α∈A of M , a family (σα)α∈A of
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Figure 1

Theorem 4 ([27]). A non-Riemannian Finsler manifold is a closed Wagner
manifold if and only if it is a locally conformally Berwald manifold.

The advantage of the paper [27] is that the unicity problem is solved by the
solution of the intrinsic characterization of the compatible linear connection
which is possibly the first place where a consequent and successful application
of averaging was realized. The intrinsic characterization of the compatible
linear connection with torsion (4) is given in terms of averaged objects. In
order to avoid unnecessary repetitions we formulate the main result without
any requirements of the exactness or closedness of the 1-form in the torsion.
The intrinsic characterization of compatible semi-symmetric linear connections
in general is a recent result [31], see also Theorem 2, Remark 3 (iii) and (iv)
in [27].

Theorem 5 ([31]). A non-Riemannian Finsler manifold is a generalized Ber-
wald manifold admitting a semi-symmetric compatible linear connection if and
only if σ(p) > 0 for any p ∈ M and the linear connection

(5) ∇XY = ∇∗
XY +

1

2σ

(
η∗(Y )X − γ(X, Y )η∗]

)
is compatible with the Finslerian structure, where ∇∗ is the Lévi-Civita con-
nection of the averaged Riemannian metric,

ρ∗ :=
dh∗E

E
− 1

2

S∗E

E

dJE
∗

E∗ and f := log
E∗

E
,

smooth functions σα : Uα → R and a torsion-free covariant derivative ∇ on M such that

dh∇((eσα)vL) = 0 for all α ∈ A,

where h∇ denotes the horizontal endomorphism induced by ∇.” Therefore the Matsumoto’s
problem is simplified because the condition says that for any locally given Finsler (especially
Berwald) manifold (Uα, (e

σα)vL) has the same canonical connection ∇. The conformal
invariance of the canonical connections obviously implies that we have homothetic changes
between the members of the family with overlapping neighbourhoods.
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where J is the canonical vertical endomorphism/almost tangent structure on
the tangent manifold, h∗ is the induced horizontal endomorphism with associ-
ated spray S∗ and E∗ denotes the Riemannian energy. Furthermore

(6) η∗(Xp) :=

∫
∂K∗

p

dJρ
∗(Θ, Xh) +

1

2

S∗E

E
Xv

i f µ∗

and

(7) σ(p) :=

∫
∂K∗

p

1

2E∗‖JΘ‖2 µ∗, where Θ = E∗ ∂f

∂yi
γij ◦ π ∂

∂xj

is a gradient-type vector field and the norm is taken with respect to the vertical
lift of the averaged metric.

Note that one can use any horizontal lifting process X 7→ Xh in (6) because
the integrand is semibasic. From equation (5)

T (X,Y ) =
1

2

(
η∗(Y )

σ
X − η∗(X)

σ
Y

)
.

The theorem says that the compatible semi-symmetric linear connection can be
explicitly expressed in terms of the averaged Riemannian metric and associated
objects. Such an intrinsic characterization implies immediately the solution of
the Matsumoto’s problem for conformally equivalent Berwald manifolds. The
problem of special conformal relationships forms a kind of starting point of the
theory of averaging. To complete the panoramic view we note that both the
exterior derivative

(8) θ :=
1

σ

(
dη∗ − 1

σ
dσ ∧ η∗

)
of η∗/σ and

(9) dh logE

are conformally invariant, where h is the horizontal endomorphism induced
by ∇ (see formula (5)). Therefore the theory can be presented in terms of
conformal invariants too, for the details see [31]. This means a partial con-
tribution to Shen’s open problem: find all conformal invariants of a Finsler
metric (Problem 30 in www.math.iupui.edu/˜zshen.)

4. Randers manifolds

Conformal (and lots of other kind of) Finsler geometry has extremely com-
plicated formulas in general. Explicit computations are possible only in case
of special Finsler manifolds. An important computable case is the class of
Randers manifolds. The family of the unit balls of a Randers manifold is
given by translations of Riemannian unit balls. Analytically the Minkowski
functionals are coming from a Riemannian metric tensor by using one-form
perturbation in the tangent spaces. This important type of Finsler manifolds
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was introduced by G. Randers in 1941. Randers manifolds occur naturally in
physical applications related to electron optics, navigation problems [6] or the
Lagrangian of relativistic electrons [3]. According to the importance of these
applications Randers manifolds are a prosperous subject of the investigations
up to this day. They form an excellent and well-motivated intermediate level
between Riemannian and Finsler geometry - see e.g. [8]. Randers manifolds
will also come to the front as associated objects with Finsler manifolds in the
series of differential geometric structures given by averaging (see section 4.1).

Let (M,α) be a connected Riemannian manifold and suppose that the one-
form β in ∧1(M) satisfies the condition

(10) sup
α(v,v)=1

β(v) < 1

for any point p in M and v ∈ TpM . The Randers functional on the manifold
M is defined as

(11) F (v) =
√
α(v, v) + β(v)

and the pair (M,F ) is called a Randers manifold with perturbating term β.
The general treatment of the generalized Berwald manifolds admitting semi-
symmetric compatible linear connections is based on the averaged Riemannian
metric (1). In case of a Randers manifold the Riemannian environment is
directly given by the Riemannian part α of the initial data. The following
theorem shows that it is a natural choice instead of the averaged metric.

Theorem 6. A Randers manifold is a generalized Berwald manifold if and
only if there exists a linear connection ∇ on the manifold M such that ∇α = 0
and ∇β = 0.

As the next step we are going to formulate a necessary and sufficient condi-
tion for a Randers manifold to be a generalized Berwald manifold in terms of
the dual vector field

(12) α(β], X) = β(X)

of the perturbating term.

Theorem 7 ([24]). A Randers manifold is a generalized Berwald manifold if
and only if β] is of constant Riemannian length.

Proof. Suppose that the functional F is invariant under the parallel transport
with respect to the linear connection ∇. By Theorem 6 we can easily conclude
that the sharp operator (12) gives a vector field of constant Riemannian length:

(13) α(β], β]) = constant.

Conversely suppose that β] is of constant length K and let ∇∗ be the Lvi-
Civita connection of α. In what follows we are going to construct a linear
connection ∇ such that ∇α = 0 and ∇β = 0. If

(14) ∇XY = ∇∗
XY + A(X, Y ),
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where

(15) A(X,Y ) =
α(∇∗

Xβ
], Y )β] − α(Y, β])∇Xβ

]

K2

then

α(A(X, Y ), Z) = −α(A(X,Z), Y )

which means that ∇ is metrical with respect to α, i.e. ∇α = 0. On the other
hand

∇β(X,Y ) =

Xβ(Y )− β(∇∗
XY )− 1

K2

(
α(∇∗

Xβ
], Y )β(β])− α(Y, β])β(∇Xβ

])
)
.

Here

β(β]) = K2 and β(∇Xβ
]) = α(β],∇Xβ

]) =
1

2
X‖β]‖2 = 0.

Therefore

∇β(X, Y ) = Xβ(Y )− β(∇∗
XY )− α(∇∗

Xβ
], Y ) = 0

because of the metrical property of the Lvi-Civita connection. �

Remark 1. The discussion of Randers manifolds admitting semi-symmetric
compatible linear connections can be found in [24]. They are characterized up
to local isometries. Special questions including the so-called existence theorem
of Wagner manifolds [4] were clarified in [27] and [28], see also [30].

The question is natural: what can be the analogue of the one-form β in case
of a generic Finsler manifolds?

4.1. Randers metrics given by averaging. The motivation of using av-
eraging processes in Finsler geometry is that we can simplify the solution of
general problems by restricting the investigations to more transparent associ-
ated structures. The first step was the introduction of the averaged metric (1)
to provide a Riemannian environment for the investigations. Unfortunately
the most of different theories of Finsler spaces have extremely complicated
formulas. Explicit computations are possible only in case of special Finsler
manifolds. But how can special Finsler manifolds (Riemannian or Randers
manifolds etc.) play a significant role in the study of Finsler manifolds in gen-
eral. To give a kind of answer to the question we can use “averaging” again.
Our way is to develop the theory of averaging by creating a ”Randers mani-
fold environment” for Finsler manifolds [23]. The perturbating term is given
by the integration of the contracted-normalized Riemann-Finsler metric on the
indicatrix hypersurfaces:

(16) βp(v) :=

∫
∂Kp

V F µ, where V = v1
∂

∂y1
+ · · ·+ vn

∂

∂yn
.
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Figure 2

It is just the integral of the contracted-normalized Riemann-Finsler metric be-
cause of V F = g(C, V )/F . Using Cauchy-Buniakowsky-Schwarz’s inequality

β2
p(v) =

(∫
∂Kp

V F µ

)2

≤
∫
∂Kp

µ

∫
∂Kp

(V F )2 µ =

Area (∂Kp)

∫
∂Kp

(V F )2 µ.

On the other hand

(V F )2 =
1

F 2
g2(C, V ) ≤ 1

F 2
g(C,C) g(V, V ) = g(V, V ).

Using integration

β2
p(v) ≤ Area (∂Kp) γp(v, v),

where the inequality is strict because C and V are linearly independent away
from the points v and −v as Figure 2 shows.
Introducing the weighted inner product

Γp(v, w) =
1

Area (∂Kp)
γp(v, w)

we can write that (
βp

Area (∂Kp)

)2

(v) < Γp(v, v) ⇔

the sup. norm of the weighted linear functional
βp

Area (∂Kp)
< 1.

Definition 5. [23] The associated Randers functional of the Finsler manifold
is defined by the formula

F ∗∗
p (v) :=

√
Γp(v, v) +

βp(v)

Area (∂Kp)
.

We are going to motivate the construction by some applications.
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Figure 3

5. Funk manifolds

Let K ⊂ Rn be a convex body containing the origin in its interior. Changing
the origin in the interior of K we have a smoothly varying family of Finsler-
Minkowski functionals parametrized by the interior points of K:

(17) p+
v

Fp(v)
∈ ∂K.

The manifold U := the interior of K equipped with the fundamental function
F : TU → R is called a Funk manifold. Figure 3 shows how the origin is
changing in the interior of K to constitute a smoothly varying family of convex
bodies as indicatrices in different tangent spaces.

Figure 4

Theorem 8 ([23]). The projection

ρ(vp) := p+
v

Fp(v)
∈ ∂K0

is a conform mapping between the indicatrices ∂Kp and ∂K0 = ∂K. Especially

gρ(vp)(w, z) =

(
1− pk

∂L

∂uk ρ(vp)

)
gvp(w, z),

where w and z are tangential to ∂Kp at vp, i.e. they are tangential to ∂K at
ρ(vp). (See Figure 4.)
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The conformality between the indicatrices (as Riemannian submanifolds in
the tangent spaces) motivates us to use the so-called angular metric tensor to
be averaged. The angular metric tensor is given by the action of the Riemann-
Finsler metric on the tangential components of vector fields to the indicatrices.
The construction appears in Crampin’s list [10] among some other candidates
of metrics for averaging. The case of Funk manifolds gives its geometric inspi-
ration. Taking the area function

(18) r : U → R, p 7→ r(p) := A1(p) =

∫
∂Kp

µp

the following expressions can be given for the first and second order partial
derivatives [23]:

(19)
∂r

∂ui
p

=
n− 1

2

∫
∂Kp

∂F

∂yi
µp

and

(20)
∂2r

∂uj∂ui
p

=
n2 − 1

2

∫
∂Kp

∂F

∂yi
∂F

∂yj
µp.

The positive definiteness of the Hessian matrix by (20) means that the area
function is strictly convex. Moreover it is another candidate of Riemannian
metrics given by averaging - see [23]. Equation (19) implies that

dr =
n− 1

2
β.

Corollary 1. In case of a Funk manifold the associated Randers functional can
be written into the form

F ∗∗
p (v) :=

√
Γp(v, v) +

2

n− 1
d log r.

Corollary 2. The associated Randers functional is projectively equivalent to
the weighted Riemannian metric tensor Γ.

6. An application: Brickell’s theorem and its generalization

Now we are in the position to prove Brickell’s conjecture for Finsler manifolds
with balanced indicatrices [23]. Brickell proved the result under the condition
of absolute homogenity. In an equivalent way, the indicatrices were assumed
to be symmetric with respect to the origin in the tangent spaces [7].

Definition 6. The indicatrix body at p is called balanced if βp = 0.

Corollary 3. If the Finslerian indicatrices are balanced then the associated
Randers functional and the associated (weighted) Riemannian fundamental
function coincide.

Corollary 4. The domain of the Funk metric, i.e. the indicatrix at 0 is balanced
if and only if the function r has a global minimum at the origin.



184 CSABA VINCZE

Remark 2. Note that the vanishing of the first order partial derivatives is
enough to conclude that the function has a global minimizer because of the
convexity.

Theorem 9 ([23]). Let M be a Finsler manifold with balanced indicatrices in
the tangent spaces. If dim M ≥ 3 and the Cartan connection has a vanishing
vv-curvature tensor then the manifold is Riemannian.

The steps of the proof are

1. Let a point of the base manifold be given and consider the interior of the
indicatrix body as a Funk manifold.

2. The indicatrix is balanced ⇒ the area function has a global minimum at
the origin.

3. The minimum is just the area of the Euclidean sphere of the same dimension
because of the vanishing of the curvature.

4. The area function attains a greater (or the same) value at the centroid of the
indicatrix body - recall that the indicatrix is considered as a Funk manifold
and the origin is moving in its interior. If the origin is positioned at the
centroid of then the generalized Santaló’s inequality (for bodies with center
at the origin) says that the indicatrix must be the translate of an ellipsoid.

5. It is true at each point of the manifold.
6. We have a Randers manifold with vanishing vv-curvature tensor.
7. The manifold is Riemannian.
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