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GRÖBNER BASES OF MODULES OVER σ − PBW
EXTENSIONS

HAYDEE JIMÉNEZ AND OSWALDO LEZAMA

Abstract. For σ−PWB extensions, we extend to modules the theory of
Gröbner bases of left ideals presented in [5]. As an application, if A is a
bijective quasi-commutative σ − PWB extension, we compute the module
of syzygies of a submodule of the free module Am.

1. Introduction

In this paper we present the theory of Gröbner bases for submodules of Am,
m ≥ 1, where A = σ(R)〈x1, . . . , xn〉 is a σ − PBW extension of R, with R
a LGS ring (see Definition 12) and Mon(A) endowed with some monomial
order (see Definition 9). Am is the left free A-module of column vectors of
length m ≥ 1; if A is bijective, A is a left Noetherian ring (see [8]), then A
is an IBN ring (Invariant Basis Number), and hence, all bases of the free
module Am have m elements. Note moreover that Am is a left Noetherian,
and hence, any submodule of Am is finitely generated. The main purpose is to
define and calculate Gröbner bases for submodules of Am, thus, we will define
the monomials in Am, orders on the monomials, the concept of reduction,
we will construct a Division Algorithm, we will give equivalent conditions in
order to define Gröbner bases, and finally, we will compute Gröbner bases
using a procedure similar to Buchberger’s Algorithm in the particular case
of quasi-commutative bijective σ − PBW extensions. The results presented
here generalize those of [5] where σ − PBW extensions were defined and the
theory of Gröbner bases for the left ideals was constructed. Most of proofs
are easily adapted from [5] and hence we will omit them. As an application,
the final section of the paper concerns with the computation of the module of
syzygies of a given submodule of Am for the particular case when A is bijective
quasi-commutative.
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Definition 1. Let R and A be rings, we say that A is a σ − PBW extension
of R or skew PBW extension, if the following conditions hold:

(i) R ⊆ A.
(ii) There exist finite elements x1, . . . , xn ∈ A − R such A is a left R-free

module with basis

Mon(A) := {xα = xα1
1 · · ·xαn

n |α = (α1, . . . , αn) ∈ Nn}.
In this case we say also that A is a left polynomial ring over R with
respect to {x1, . . . , xn} and Mon(A) is the set of standard monomials
of A. Moreover, x0

1 · · ·x0
n := 1 ∈ Mon(A).

(iii) For every 1 ≤ i ≤ n and r ∈ R − {0} there exists ci,r ∈ R − {0} such
that

(1.1) xir − ci,rxi ∈ R.

(iv) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

(1.2) xjxi − ci,jxixj ∈ R +Rx1 + · · ·+Rxn.

Under these conditions we will write A = σ(R)〈x1, . . . , xn〉.

The following proposition justifies the notation that we have introduced for
the skew PBW extensions.

Proposition 2. Let A be a σ−PBW extension of R. Then, for every 1 ≤ i ≤
n, there exist an injective ring endomorphism σi : R → R and a σi-derivation
δi : R → R such that

xir = σi(r)xi + δi(r),

for each r ∈ R.

Proof. See [5]. �
A particular case of σ− PBW extension is when all derivations δi are zero.

Another interesting case is when all σi are bijective. We have the following
definition.

Definition 3. Let A be a σ − PBW extension.

(a) A is quasi-commutative if the conditions (iii) and (iv) in the Definition 1
are replaced by
(iii′) For every 1 ≤ i ≤ n and r ∈ R − {0} there exists ci,r ∈ R − {0}

such that

(1.3) xir = ci,rxi.

(iv′) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

(1.4) xjxi = ci,jxixj.

(b) A is bijective if σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible
for any 1 ≤ i < j ≤ n.
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Some interesting examples of σ − PBW extensions were given in [5]. We
repeat next some of them without details.

Example 4. (i) Any PBW extension (see [2]) is a bijective σ−PBW extension.
(ii) Any skew polynomial ring R[x;σ, δ], with σ injective, is a σ − PBW

extension; in this case we have R[x; σ, δ] = σ(R)〈x〉. If additionally δ = 0,
then R[x;σ] is quasi-commutative.

(iii) Any iterated skew polynomial ring R[x1;σ1, δ1] · · · [xn; σn, δn] is a σ −
PBW extension if it satisfies the following conditions:

For 1 ≤ i ≤ n, σi is injective.
For every r ∈ R and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R.
For i < j, σj(xi) = cxi + d, with c, d ∈ R, and c has a left inverse.
For i < j, δj(xi) ∈ R +Rx1 + · · ·+Rxi.
Under these conditions we have

R[x1; σ1, δ1] · · · [xn;σn, δn] = σ(R)〈x1, . . . , xn〉.
In particular, any Ore algebra K[t1, . . . , tm][x1;σ1, δ1] · · · [xn;σn, δn] (K a field)
is a σ − PBW extension if it satisfies the following condition:

For 1 ≤ i ≤ n, σi is injective.
Some concrete examples of Ore algebras of injective type are the following.
The algebra of shift operators: let h ∈ K, then the algebra of shift operators

is defined by Sh := K[t][xh; σh, δh], where σh(p(t)) := p(t − h), and δh := 0
(observe that Sh can be considered also as a skew polynomial ring of injective
type). Thus, Sh is a quasi-commutative bijective σ − PBW extension.

The mixed algebra Dh: let again h ∈ K, then the mixed algebra Dh is
defined by Dh := K[t][x; iK[t],

d
dt
][xh; σh, δh], where σh(x) := x. Then, Dh is a

quasi-commutative bijective σ − PBW extension.
The algebra for multidimensional discrete linear systems is defined by D :=

K[t1, . . . , tn][x1, σ1, 0] · · · [xn; σn, 0], where

σi(p(t1, . . . , tn)) := p(t1, . . . , ti−1, ti+1, ti+1, . . . , tn), σi(xi) = xi, 1 ≤ i ≤ n.

D is a quasi-commutative bijective σ − PBW extension.
(iv) Additive analogue of the Weyl algebra: let K be a field, the K-algebra

An(q1, . . . , qn) is generated by x1, . . . , xn, y1, . . . , yn and subject to the relations:

xjxi = xixj, yjyi = yiyj, 1 ≤ i, j ≤ n,

yixj = xjyi, i 6= j,

yixi = qixiyi + 1, 1 ≤ i ≤ n,

where qi ∈ K − {0}. An(q1, . . . , qn) satisfies the conditions of (iii) and is
bijective; we have

An(q1, . . . , qn) = σ(K[x1, . . . , xn])〈y1, . . . , yn〉.
(v) Multiplicative analogue of the Weyl algebra: let K be a field, the K-

algebra On(λji) is generated by x1, . . . , xn and subject to the relations:

xjxi = λjixixj, 1 ≤ i < j ≤ n,
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where λji ∈ K − {0}. On(λji) satisfies the conditions of (iii), and hence

On(λji) = σ(K[x1])〈x2, . . . , xn〉.

Note that On(λji) is quasi-commutative and bijective.
(vi) q-Heisenberg algebra: let K be a field , the K-algebra hn(q) is generated

by x1, . . . , xn, y1, . . . , yn, z1, . . . , zn and subject to the relations:

xjxi = xixj, zjzi = zizj, yjyi = yiyj, 1 ≤ i, j ≤ n,

zjyi = yizj, zjxi = xizj, yjxi = xiyj, i 6= j,

ziyi = qyizi, zixi = q−1xizi + yi, yixi = qxiyi, 1 ≤ i ≤ n,

with q ∈ K − {0}. hn(q) is a bijective σ − PBW extension of K:

hn(q) = σ(K)〈x1, . . . , xn; y1, . . . , yn; z1, . . . , zn〉.

(vi) Many other examples are presented in [8].

Definition 5. Let A be a σ − PBW extension of R with endomorphisms σi,
1 ≤ i ≤ n, as in Proposition 2.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1
1 · · ·σαn

n , |α| := α1 + · · · + αn. If
β = (β1, . . . , βn) ∈ Nn, then α+ β := (α1 + β1, . . . , αn + βn).

(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|.
(iii) Let 0 6= f ∈ A, t(f) is the finite set of terms that conform f , i.e., if

f = c1X1 + · · · + ctXt, with Xi ∈ Mon(A) and ci ∈ R − {0}, then
t(f) := {c1X1, . . . , ctXt}.

(iv) Let f be as in (iii), then deg(f) := max{deg(Xi)}ti=1.

The σ−PBW extensions can be characterized in a similar way as was done
in [4] for PBW rings.

Theorem 6. Let A be a left polynomial ring over R w.r.t {x1, . . . , xn}. A is
a σ − PBW extension of R if and only if the following conditions hold:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exists unique
elements rα := σα(r) ∈ R− {0} and pα,r ∈ A such that

(1.5) xαr = rαx
α + pα,r,

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. Moreover, if r is left
invertible, then rα is left invertible.

(b) For every xα, xβ ∈ Mon(A) there exist unique elements cα,β ∈ R and
pα,β ∈ A such that

(1.6) xαxβ = cα,βx
α+β + pα,β,

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α+ β| if pα,β 6= 0.

Proof. See [5]. �
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Remark 7. (i) A left inverse of cα,β will be denoted by c′α,β. We observe that
if α = 0 or β = 0, then cα,β = 1 and hence c′α,β = 1.

(ii) Let θ, γ, β ∈ Nn and c ∈ R, then we it is easy to check the following
identities:

σθ(cγ,β)cθ,γ+β = cθ,γcθ+γ,β,

σθ(σγ(c))cθ,γ = cθ,γσ
θ+γ(c).

(iii) We observe if A is a σ−PBW extension quasi-commutative, then from
the proof of Theorem 6 (see [5]) we conclude that pα,r = 0 and pα,β = 0, for
every 0 6= r ∈ R and every α, β ∈ Nn.

(iv) We have also that if A is a bijective σ − PBW extension, then cα,β is
invertible for any α, β ∈ Nn.

A key property of σ − PBW extensions is the content of the following
theorem.

Theorem 8. Let A be a bijective skew PBW extension of R. If R is a left
Noetherian ring then A is also a left Noetherian ring.

Proof. See [8]. �

Let A = σ(R)〈x1, . . . , xn〉 be a σ − PBW extension of R and let � be a
total order defined on Mon(A). If xα � xβ but xα 6= xβ we will write xα � xβ.
Let f 6= 0 be a polynomial of A, if

f = c1X1 + · · ·+ ctXt,

with ci ∈ R−{0} and X1 � · · · � Xt are the monomials of f , then lm(f) := X1

is the leading monomial of f , lc(f) := c1 is the leading coefficient of f and
lt(f) := c1X1 is the leading term of f . If f = 0, we define lm(0) := 0, lc(0) :=
0, lt(0) := 0, and we set X � 0 for any X ∈ Mon(A). Thus, we extend � to
Mon(A) ∪ {0}.

Definition 9. Let � be a total order on Mon(A), we say that � is a monomial
order on Mon(A) if the following conditions hold:

(i) For every xβ, xα, xγ, xλ ∈ Mon(A)

xβ � xα ⇒ lm(xγxβxλ) � lm(xγxαxλ).

(ii) xα � 1, for every xα ∈ Mon(A).
(iii) � is degree compatible, i.e., |β| ≥ |α| ⇒ xβ � xα.

Monomial orders are also called admissible orders. From now on we will
assume that Mon(A) is endowed with some monomial order.

Definition 10. Let xα, xβ ∈ Mon(A), we say that xα divides xβ, denoted by
xα|xβ, if there exists xγ, xλ ∈ Mon(A) such that xβ = lm(xγxαxλ).

Proposition 11. Let xα, xβ ∈ Mon(A) and f, g ∈ A− {0}. Then,
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(a) lm(xαg) = lm(xα lm(g)) = xα+exp(lm(g)). In particular,

lm(lm(f) lm(g)) = xexp(lm(f))+exp(lm(g))

and

(1.7) lm(xαxβ) = xα+β.

(b) The following conditions are equivalent:
(i) xα|xβ.
(ii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xθxα) =

xθ+α and hence β = θ + α.
(iii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xαxθ) =

xα+θ and hence β = α+ θ.
(iv) βi ≥ αi for 1 ≤ i ≤ n, with β := (β1, . . . , βn) and α := (α1, . . . , αn).

Proof. See [5]. �
We note that a least common multiple of monomials of Mon(A) there exists:

in fact, let xα, xβ ∈ Mon(A), then lcm(xα, xβ) = xγ ∈ Mon(A), where γ =
(γ1, . . . , γn) with γi := max{αi, βi} for each 1 ≤ i ≤ n.

Some natural computational conditions on R will be assumed in the rest of
this paper (compare with [7]).

Definition 12. A ringR is left Gröbner soluble LGS if the following conditions
hold:

(i) R is left Noetherian.
(ii) Given a, r1, . . . , rm ∈ R there exists an algorithm which decides whether

a is in the left ideal Rr1+ · · ·+Rrm, and if so, find b1, . . . , bm ∈ R such
that a = b1r1 + · · ·+ bmrm.

(iii) Given r1, . . . , rm ∈ R there exists an algorithm which finds a finite set
of generators of the left R-module

SyzR[r1 · · · rm] := {(b1, . . . , bm) ∈ Rm|b1r1 + · · ·+ bmrm = 0}.

The three above conditions imposed to R are needed in order to guarantee
a Gröbner theory in the rings of coefficients, in particular, to have an effective
solution of the membership problem in R (see (ii) in Definition 20 below). From
now on we will assume that A = σ(R)〈x1, . . . , xn〉 is a σ − PBW extension of
R, where R is a LGS ring and Mon(A) is endowed with some monomial order.

We conclude this chapter with a remark about some other classes of non-
commutative rings of polynomial type close related with σ−PBW extensions.

Remark 13. (i) Viktor Levandovskyy has defined in [6] the G-algebras and has
constructed the theory of Gröbner bases for them. Let K be a field, a K-
algebra A is called a G-algebra if K ⊂ Z(A) (center of A) and A is generated
by a finite set {x1, . . . , xn} of elements that satisfy the following conditions:
(a) the collection of standard monomials of A, Mon(A) = Mon({x1, . . . , xn}),
is a K-basis of A. (b) xjxi = cijxixj + dij, for 1 ≤ i < j ≤ n, with cij ∈ K∗
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and dij ∈ A. (c) There exists a total order <A on Mon(A) such that for i < j,
lm(dij) <A xixj. (d) For 1 ≤ i < j < k ≤ n, cikcjkdijxk − xkdij + cjkxjdik −
cijdikxj+djkxi−cijcikxidjk = 0. According to this definition, the coefficients of
a polynomial in a G-algebra are in a field and they commute with the variables
x1, . . . , xn. From this, and also from (c) and (d), we conclude that the class of
G-algebras does not coincide with the class of σ−PBW extensions. However,
the intersection of these two classes of rings is not empty. In fact, the universal
enveloping algebra of a finite dimensional Lie algebra, Weyl algebras and the
additive or multiplicative analogue of a Weyl algebra, are G-algebras and also
σ − PBW extensions.

(ii) A similar remark can be done with respect to PBW rings and algebras
defined by Bueso, Gómez-Torrecillas and Verschoren in [3].

2. Monomial orders on Mon(Am)

We will often write the elements of Am also as row vectors if this not repre-
sent confusion. We recall that the canonical basis of Am is

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1).

Definition 14. A monomial in Am is a vector X = Xei, where X = xα ∈
Mon(A) and 1 ≤ i ≤ m, i.e.,

X = Xei = (0, . . . , X, . . . , 0),

where X is in the ith position, named the index of X, ind(X) := i. A term
is a vector cX, where c ∈ R. The set of monomials of Am will be denoted by
Mon(Am). Let Y = Y ej ∈ Mon(Am), we say that X divides Y if i = j and
X divides Y . We will say that any monomial X ∈ Mon(Am) divides the null
vector 0 . The least common multiple of X and Y, denoted by lcm(X,Y),
is 0 if i 6= j, and Uei, where U = lcm(X, Y ), if i = j. Finally, we define
exp(X) := exp(X) = α and deg(X) := deg(X) = |α|.

We now define monomials orders on Mon(Am).

Definition 15. A monomial order on Mon(Am) is a total order � satisfying
the following three conditions:

(i) lm(xβxα)ei � xαei, for every monomial X = xαei ∈ Mon(Am) and any
monomial xβ in Mon(A).

(ii) If Y = xβej � X = xαei, then lm(xγxβ)ej � lm(xγxα)ei for all X,Y ∈
Mon(Am) and every xγ ∈ Mon(A).

(iii) � is degree compatible, i.e., deg(X) ≥ deg(Y) ⇒ X � Y.

If X � Y but X 6= Y we will write X � Y. Y � X means that X � Y.

Proposition 16. Every monomial order on Mon(Am) is a well order.

Proof. We can easy adapt the proof for left ideals presented in [5]. �
Given a monomial order � on Mon(A), we can define two natural orders on

Mon(Am).
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Definition 17. Let X = Xei and Y = Y ej ∈ Mon(Am).

(i) The TOP term over position order is defined by

X � Y ⇐⇒


X � Y

or

X = Y and i > j.

(ii) The TOPREV order is defined by

X � Y ⇐⇒


X � Y

or

X = Y and i < j.

Remark 18. (i) Note that with TOP we have

em � em−1 � · · · � e1

and
e1 � e2 � · · · � em

for TOPREV.
(ii) The POT (position over term) and POTREV orders defined in [1] and

[7] for modules over classical polynomial commutative rings are not degree
compatible.

(iii) Other examples of monomial orders in Mon(Am) are considered in [3].

We fix monomial orders on Mon(A) and Mon(Am); let f 6= 0 be a vector of
Am, then we may write f as a sum of terms in the following way

f = c1X 1 + · · ·+ ctX t,

where c1, . . . , ct ∈ R − {0} and X 1 � X 2 � · · · � X t are monomials of
Mon(Am).

Definition 19. With the above notation, we say that

(i) lt(f) := c1X1 is the leading term of f.
(ii) lc(f) := c1 is the leading coefficient of f.
(iii) lm(f) := X1 is the leading monomial of f.

For f = 0 we define lm(0) = 0, lc(0) = 0, lt(0) = 0, and if � is a monomial
order on Mon(Am), then we define X � 0 for any X ∈ Mon(Am). So, we
extend � to Mon(Am) ∪ {0}.

3. Reduction in Am

The reduction process in Am is defined as follows.

Definition 20. Let F be a finite set of non-zero vectors of Am, and let f,h ∈
Am, we say that f reduces to h by F in one step, denoted f

F−−→ h, if there
exist elements f1, . . . , ft ∈ F and r1, . . . , rt ∈ R such that
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(i) lm(fi)| lm(f), 1 ≤ i ≤ t, i.e., ind(lm(fi)) = ind(lm(f)) and there exists
xαi ∈ Mon(A) such that αi + exp(lm(fi)) = exp(lm(f)).

(ii) lc(f) = r1σ
α1(lc(f1))cα1,f1 + · · · + rtσ

αt(lc(ft))cαt,ft , with cαi,fi :=
cαi,exp(lm(fi)).

(iii) h = f−
∑t

i=1 rix
αifi.

We say that f reduces to h by F , denoted f
F−−→+ h, if and only if there exist

vectors h1, . . . ,ht−1 ∈ Am such that

f
F−−−→ h1

F−−−→ h2
F−−−→ · · · F−−−→ ht−1

F−−−→ h .

f is reduced also called minimal w.r.t. F if f = 0 or there is no one step
reduction of f by F , i.e., one of the first two conditions of Definition 20 fails.

Otherwise, we will say that f is reducible w.r.t. F . If f
F−−→+ h and h is reduced

w.r.t. F , then we say that h is a remainder for f w.r.t. F .

Remark 21. Related to the previous definition we have the following remarks:
(i) By Theorem 6, the coefficients cαi,f i

are unique and satisfy

xαixexp(lm(f i)) = cαi,f i
xαi+exp(lm(f i)) + pαi,f i

,

where pαi,f i
= 0 or deg(lm(pαi,f i

)) < |αi + exp(lm(f i))|, 1 ≤ i ≤ t.
(ii) lm(f ) � lm(h) and f − h ∈ 〈F 〉, where 〈F 〉 is the submodule of Am

generated by F .
(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0
F−→ 0.

(v)

lt(f ) =
t∑

i=1

ri lt(x
αi lt(f i)),

The proofs of the next technical proposition and theorem can be also adapted
from [5].

Proposition 22. Let A be a σ − PBW extension such that cα,β is invertible
for each α, β ∈ Nn. Let f,h ∈ Am, θ ∈ Nn and F = {f1, . . . , ft} be a finite set
of non-zero vectors of Am. Then,

(i) If f
F−−→ h, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p)

such that xθf + p
F−−→ xθh. In particular, if A is quasi-commutative,

then p = 0.

(ii) If f
F−−→+ h and p ∈ Am is such that p = 0 or lm(h) � lm(p), then

f+ p
F−−→+ h+ p.

(iii) If f
F−−→+ h, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p)

such that xθf+ p
F−−→+ xθh. If A is quasi-commutative, then p = 0.

(iv) If f
F−−→+ 0, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p)

such that xθf+ p
F−−→+ 0. If A is quasi-commutative, then p = 0.
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Theorem 23. Let F = {f1, . . . , ft} be a set of non-zero vectors of Am and
f ∈ Am, then the Division Algorithm below produces polynomials q1, . . . , qt ∈ A

and a reduced vector h ∈ Am w.r.t. F such that f
F−−→+ h and

f = q1f1 + · · ·+ qtft + h

with

lm(f) = max{lm(lm(q1) lm(f1)), . . . , lm(lm(qt) lm(ft)), lm(h)}.

Division Algorithm in Am

INPUT: f, f1, . . . , ft ∈ Am with fj 6= 0 (1 ≤ j ≤ t)
OUTPUT: q1, . . . , qt ∈ A, h ∈ Am with f = q1f1 + · · · + qtft + h,
h reduced w.r.t. {f1, . . . , ft} and

lm(f) = max{lm(lm(q1) lm(f1)), . . . , lm(lm(qt) lm(ft)), lm(h)}
INITIALIZATION: q1 := 0, q2 := 0, . . . , qt := 0,h := f
WHILE h 6= 0 and there exists j such that lm(fj) divides lm(h)
DO

Calculate J := {j | lm(fj) divides lm(h)}
FOR j ∈ J DO

Calculate αj ∈ Nn such that αj +
exp(lm(fj)) = exp(lm(h))

IF the equation lc(h) =
∑

j∈J rjσ
αj(lc(fj))cαj ,fj is solu-

ble, where cαj ,fj are defined as in Definition 20
THEN

Calculate one solution (rj)j∈J
h := h−

∑
j∈J rjx

αjfj
FOR j ∈ J DO

qj := qj + rjx
αj

ELSE
Stop

Example 24. We consider the Heisenberg algebra, A := h1(2) = σ(Q)〈x, y, z〉,
with deglex order and x > y > z in Mon(A) and the TOPREV order in
Mon(A3) with e1 � e2 � e3. Let f := x2yze1 + y2ze2 + xze1 + z2e3, f 1 :=
xze1+xe3+ye2 and f 2 := xye1+ze2+ze3. Following the Division Algorithm
we will compute q1, q2 ∈ A and h ∈ A3 such that f = q1f 1 + q2f 2 + h, with
lm(f) = max{lm(lm(q1) lm(f 1)), lm(lm(q2) lm(f 2)), lm(h)}. We will represent
the elements of Mon(A) by tα instead of xα. For j = 1, 2, we will note αj :=
(αj1, αj2, αj3) ∈ N3.

Step 1: we start with h := f , q1 := 0 and q2 := 0; since lm(f 1) | lm(h) and
lm(f 2) | lm(h), we compute αj such that αj + exp(lm(fj)) = exp(lm(h)).

• lm(tα1 lm(f 1)) = lm(h), so lm(xα11yα12zα13xz) = x2yz, and hence
α11 = 1; α12 = 1; α13 = 0. Thus, tα1 = xy.
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• lm(tα2 lm(f 2)) = lm(h), so lm(xα21yα22zα23xy) = x2yz, and hence
α21 = 1; α22 = 0; α23 = 1. Thus, tα2 = xz.
Next, for j = 1, 2 we compute cαj ,fj

:

• tα1texp(lm(f1)) = (xy)(xz) = x(2xy)z = 2x2yz. Thus, cα1,f1
= 2.

• tα2texp(lm(f2)) = (xz)(xy) = x(1
2
xz + y)y = 1

2
x2zy + xy2 = x2yz + xy2.

So, cα2,f2
= 1.

We must solve the equation

1 = lc(h) = r1σ
α1(lc(f 1))cα1,f1

+ r2σ
α2(lc(f 2))cα2,f2

= r1σ
α1(1)2 + r2σ

α2(1)1

= 2r1 + r2,

then r1 = 0 and r2 = 1.
We make h := h− (r1t

α1f 1 + r2t
α2f 2), i.e.,

h := h− (xz(xye1 + ze2 + ze3))

= h− (xzxye1 + xz2e2 + xz2e3)

= h− ((x2yz + xy2)e1 + xz2e2 + xz2e3)

= x2yze1 + xze1 + y2ze2 + z2e3 − x2yze1 − xy2e1 − xz2e2 − xz2e3

= −xy2e1 − xz2e2 − xz2e3 + y2ze2 + xze1 + z2e3.

In addition, we have q1 := q1 + r1t
α1 = 0 and q2 := q2 + r2t

α2 = xz.
Step 2: h := −xy2e1−xz2e2−xz2e3+y2ze2+xze1+z2e3, so lm(h) = xy2e1

and lc(h) = −1; moreover, q1 = 0 and q2 = xz. Since lm(f 2) | lm(h), we
compute α2 such that α2 + exp(lm(f 2)) = exp(lm(h)):

• lm(tα2 lm(f 2)) = lm(h), then lm(xα21yα22zα23xy) = xy2, so α21 = 0;
α22 = 1; α23 = 0. Thus, tα2 = y.

We compute cα2,f2
: tα2texp(lm(f2)) = y(xy) = 2xy2. Then, cα2,f2

= 2.
We solve the equation

−1 = lc(h) = r2σ
α2(lc(f 2))cα2,f2

= r2σ
α2(1)2 = 2r2,

thus, r2 = −1
2
.

We make h := h− r2t
α2f 2, i.e.,

h := h+
1

2
y(xye1 + ze2 + ze3)

= h+
1

2
yxye1 +

1

2
yze2 +

1

2
yze3

= −xz2e2 − xz2e3 + y2ze2 + xze1 +
1

2
yze2 +

1

2
yze3 + z2e3.

We have also that q1 := 0 and q2 := q2 + r2t
α2 = xz − 1

2
y.

Step 3: h = −xz2e2 − xz2e3 + y2ze2 + xze1 +
1
2
yze2 +

1
2
yze3 + z2e3, so

lm(h) = xz2e2 and lc(h) = −1; moreover, q1 = 0 and q2 = xz − 1
2
y. Since
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lm(f 1) - lm(h) and lm(f 2) - lm(h), then h is reduced with respect to {f 1,f 2},
so the algorithm stops.

Thus, we get q1, q2 ∈ A and h ∈ A3 reduced such that f = q1f 1 + q2f 2 +h.
In fact,

q1f 1 + q2f 2 + h = 0f 1 +

(
xz − 1

2
y

)
f 2 + h

=(xz − 1

2
y)(xye1 + ze2 + ze3)− xz2e2 − xz2e3 + y2ze2 + xze1

+
1

2
yze2 +

1

2
yze3 + z2e3

=x2yze1 + xy2e1 − xy2e1 + xz2e2 −
1

2
yze2 + xz2e3 −

1

2
yze3

− xz2e2 − xz2e3 + y2ze2 + xze1 +
1

2
yze2 +

1

2
yze3 + z2e3

=x2yze1 + y2ze2 + xze1 + z2e3 = f ,

and max{lm(lm(qi) lm(f i)), lm(h)}i=1,2 = max{0, x2yze1, xz
2e2} = x2yze1 =

lm(f).

4. Gröbner bases

Our next purpose is to define Gröbner bases for submodules of Am.

Definition 25. Let M 6= 0 be a submodule of Am and let G be a non empty
finite subset of non-zero vectors of M , we say that G is a Gröbner basis for M
if each element 0 6= f ∈ M is reducible w.r.t. G.

We will say that {0} is a Gröbner basis for M = 0.

Theorem 26. Let M 6= 0 be a submodule of Am and let G be a finite subset
of non-zero vectors of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis for M .
(ii) For any vector f ∈ Am,

f ∈ M if and only if f
G−−→+ 0.

(iii) For any 0 6= f ∈ M there exist g1, . . . , gt ∈ G such that lm(gj)| lm(f),
1 ≤ j ≤ t, i.e., ind(lm(gj)) = ind(lm(f)) and there exist αj ∈ Nn such
that αj + exp(lm(gj)) = exp(lm(f)) and

lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ
αt(lc(gt))cαt,gt〉.

(iv) For α ∈ Nn and 1 ≤ u ≤ m, let 〈α,M〉u be the left ideal of R defined
by

〈α,M〉u := 〈lc(f)|f ∈ M, ind(lm(f)) = u, exp(lm(f)) = α〉.
Then, 〈α,M〉u = Ju, with

Ju := 〈σβ(lc(g))cβ,g|g ∈ G, ind(lm(g)) = u and β + exp(lm(g)) = α〉.
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Proof. (i) ⇒ (ii): let f ∈ M , if f = 0, then by definition f
G−−→+ 0. If f 6= 0,

then there exists h1 ∈ Am such that f
G−−→ h1, with lm(f ) � lm(h1) and

f − h1 ∈ 〈G〉 ⊆ M , hence h1 ∈ M ; if h1 = 0, so we end. If h1 6= 0, then we
can repeat this reasoning for h1, and since Mon(Am) is well ordered, we get

that f
G−−→+ 0.

Conversely, if f
G−−→+ 0, then by Theorem 23, there exist g1, . . . , g t ∈ G

and q1, . . . , qt ∈ A such that f = q1g1 + · · ·+ qtg t, i.e., f ∈ M .
(ii) ⇒ (i): evident.
(i) ⇔ (iii): this is a direct consequence of Definition 20.
(iii)⇒ (iv) Since R is left Noetherian, there exist r1, . . . , rs ∈ R, f 1, . . . , f l ∈

M such that 〈α,M〉u = 〈r1, . . . , rs〉, ind(lm(f i)) = u and exp(lm(f i)) = α for
each 1 ≤ i ≤ l, with 〈r1, . . . , rs〉 ⊆ 〈lc(f 1), . . . , lc(f l)〉. Then, 〈lc(f 1), . . . , lc(f l)〉
= 〈α,M〉u. Let r ∈ 〈α,M〉u, there exist a1, . . . , al ∈ R such that r = a1 lc(f 1)+
· · · + al lc(f l); by (iii), for each i, 1 ≤ i ≤ l, there exist g1i, . . . , g tii

∈ G and
bji ∈ R such that lc(f i) = b1iσ

α1i(lc(g1i))cα1i,g1i
+ · · ·+btiiσ

αtii(lc(g tii
))cαtii

,gtii
,

with u = ind(lm(f i)) = ind(lm(g ji)) and exp(lm(f i)) = αji + exp(lm(g ji)),

thus 〈α,M〉u ⊆ Ju. Conversely, if r ∈ Ju, then r = b1σ
β1(lc(g1))cβ1,g1

+ · · · +
btσ

βt(lc(g t))cβt,gt
, with bi ∈ R, βi ∈ Nn, g i ∈ G such that ind(lm(g i)) = u

and βi + exp(lm(g i)) = α for any 1 ≤ i ≤ t. Note that xβig i ∈ M ,
ind(lm(xβig i)) = u, exp(lm(xβig i)) = α, lc(xβig i) = σβi(lc(g i))cβi,g i

, for
1 ≤ i ≤ t, and r = b1 lc(x

β1g1) + · · ·+ bt lc(x
βtg t), i.e., r ∈ 〈α,M〉u.

(iv) ⇒ (iii): let 0 6= f ∈ M and let u = ind(lm(f )), α = exp(lm(f )), then
lc(f ) ∈ 〈α,M〉u; by (iv) lc(f ) = b1σ

β1(lc(g1))cβ1,g1
+ · · · + btσ

βt(lc(g t))cβt,gt
,

with bi ∈ R, βi ∈ Nn, g i ∈ G such that u = ind(lm(g i)) and βi+exp(lm(g i)) =
α for any 1 ≤ i ≤ t. From this we conclude that lm(g j)| lm(f ), 1 ≤ j ≤ t. �

From this theorem we get the following consequences.

Corollary 27. Let M 6= 0 be a submodule of Am. Then,

(i) If G is a Gröbner basis for M , then M = 〈G〉.
(ii) Let G be a Gröbner basis for M , if f ∈ M and f

G−−→+ h, with h reduced
w.r.t. G, then h = 0.

(iii) Let G = {g1, . . . , gt} be a set of non-zero vectors of M with lc(gi) = 1,
for each 1 ≤ i ≤ t, such that given r ∈ M there exists i such that
lm(gi) divides lm(r). Then, G is a Gröbner basis of M .

5. Computing Gröbner bases

The following two theorems are the support for the Buchberger’s algorithm
for computing Gröbner bases when A is a quasi-commutative bijective σ −
PBW extension The proofs of these results are as in [5].

Definition 28. Let F := {g1, . . . ,gs} ⊆ Am such that the least common
multiple of {lm(g1), . . . , lm(gs)}, denoted by XF , is non-zero. Let θ ∈ Nn,
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βi := exp(lm(gi)) and γi ∈ Nn such that γi + βi = exp(XF ), 1 ≤ i ≤ s. BF,θ

will denote a finite set of generators of

SF,θ := SyzR[σ
γ1+θ(lc(g1))cγ1+θ,β1 · · · σγs+θ(lc(gs))cγs+θ,βs)].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .

Theorem 29. Let M 6= 0 be a submodule of Am and let G be a finite subset
of non-zero generators of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis of M .
(ii) For all F := {g1, . . . , gs} ⊆ G, with XF 6= 0, and for all θ ∈ Nn and

any (b1, . . . , bs) ∈ BF,θ,

s∑
i=1

bix
γi+θgi

G−−→+ 0.

In particular, if G is a Gröbner basis of M then for all F := {g1, . . . , gs} ⊆ G,
with XF 6= 0, and any (b1, . . . , bs) ∈ BF ,

s∑
i=1

bix
γigi

G−−→+ 0.

Theorem 30. Let A be a quasi-commutative bijective σ − PBW extension.
Let M 6= 0 be a submodule of Am and let G be a finite subset of non-zero
generators of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis of M .
(ii) For all F := {g1, . . . , gs} ⊆ G, with XF 6= 0, and any (b1, . . . , bs) ∈ BF ,

s∑
i=1

bix
γigi

G−−→+ 0.

Corollary 31. Let A be a quasi-commutative bijective σ − PBW extension.
Let F = {f1, . . . , fs} be a set of non-zero vectors of Am. The algorithm below
produces a Gröbner basis for the submodule 〈f1, . . . , fs〉 P (X) denotes the set
of subsets of the set X:
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Gröbner Basis Algorithm for Modules over
Quasi-Commutative Bijective σ − PBW Extensions

INPUT: F := {f1, . . . , fs} ⊆ Am, fi 6= 0, 1 ≤ i ≤ s
OUTPUT: G = {g1, . . . , gt} a Gröbner basis for 〈F 〉
INITIALIZATION: G := ∅, G′ := F
WHILE G′ 6= G DO

D := P (G′)− P (G)
G := G′

FOR each S := {gi1 , . . . , gik} ∈ D, with XS 6= 0, DO
Compute BS

FOR each b = (b1, . . . , bk) ∈ BS DO

Reduce
∑k

j=1 bjx
γjgij

G′
−−→+ r,

with r reduced with respect to G′

and γj defined as in Definition 28
IF r 6= 0 THEN
G′ := G′ ∪ {r}

From Theorem 8 and the previous corollary we get the following direct
conclusion.

Corollary 32. Let A be a quasi-commutative bijective σ − PBW extension.
Then each submodule of Am has a Gröbner basis.

Now, we illustrate with an example the algorithm presented in Corollary 31.

Example 33. We will consider the multiplicative analogue of the Weyl algebra

A := O3(λ21, λ31, λ32) = O3

(
2,

1

2
, 3

)
= σ(Q[x1])〈x2, x3〉,

hence we have the relations

x2x1 = λ21x1x2 = 2x1x2, so σ2(x1) = 2x1 and δ2(x1) = 0,

x3x1 = λ31x1x3 =
1

2
x1x3, so σ3(x1) =

1

2
x1 and δ3(x1) = 0,

x3x2 = λ32x2x3 = 3x2x3, so c2,3 = 3,

and for r ∈ Q, σ2(r) = r = σ3(r). We choose in Mon(A) the deglex order with
x2 > x3 and in Mon(A2) the TOPREV order with e1 � e2.

Let f 1 = x2
1x

2
2e1 + x2x3e2, lm(f 1) = x2

2e1 and f 2 = 2x1x2x3e1 + x2e2,
lm(f 2) = x2x3e1. We will construct a Gröbner basis for the module M :=
〈f 1,f 2〉.

Step 1: we start with G := ∅, G′ := {f 1,f 2}. Since G′ 6= G, we make
D := P(G′) − P(G) = {S1, S2, S1,2}, with S1 := {f 1}, S2 := {f 2}, S1,2 :=

{f 1,f 2}. We also make G := G′, and for every S ∈ D such that XS 6= 0 we
compute BS:
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• For S1 we have

SyzQ[x1][σ
γ1(lc(f 1))cγ1,β1 ],

where β1 = exp(lm(f 1)) = (2, 0); XS1 = l.c.m.{lm(f 1)} = lm(f 1) = x2
2e1;

exp(XS1) = (2, 0); γ1 = exp(XS1) − β1 = (0, 0); xγ1xβ1 = x2
2, so cγ1,β1 = 1.

Then,

σγ1(lc(f 1))cγ1,β1 = σγ1(x2
1)1 = σ0

2σ
0
3(x

2
1) = x2

1.

Thus, SyzQ[x1][x
2
1] = {0} and BS1 = {0}, i.e., we do not add any vector to G′.

• For S2 we have an identical situation.
• For S1,2 we compute

SyzQ[x1][σ
γ1(lc(f 1))cγ1,β1 σγ2(lc(f 2))cγ2,β2 ],

where β1 = exp(lm(f 1)) = (2, 0) and β2 = exp(lm(f 2)) = (1, 1);
XS1,2 = lcm{lm(f 1), lm(f 2)} = lcm(x2

2e1, x2x3e1) = x2
2x3e1;

exp(XS1,2) = (2, 1); γ1 = exp(XS1,2)−β1 = (0, 1) and γ2 = exp(XS1,2)−β2

= (1, 0); xγ1xβ1 = x3x
2
2 = 3x2x3x2 = 9x2

2x3, so cγ1,β1 = 9; in a similar way
xγ2xβ2 = x2

2x3, i.e., cγ2,β2 = 1. Then,

σγ1(lc(f 1))cγ1,β1 = σγ1(x2
1)9 = σ0

2σ3(x
2
1)9 = (σ3(x1)σ3(x1))9 =

9

4
x2
1

and
σγ2(lc(f 2))cγ2,β2 = σγ2(2x1)1 = σ2σ

0
3(2x1) = σ2(2x1) = 4x1.

Hence SyzQ[x1][
9
4
x2
1 4x1] = {(b1, b2) ∈ Q[x1]

2 | b1(
9
4
x2
1) + b2(4x1) = 0} and

BS1,2 = {(4,−9
4
x1)}. From this we get

4xγ1f 1 −
9

4
x1x

γ2f 2 = 4x3(x
2
1x

2
2e1 + x2x3e2)−

9

4
x1x2(2x1x2x3e1 + x2e2)

= 4x3x
2
1x

2
2e1 + 4x3x2x3e2 −

9

4
x1x22x1x2x3e1 −

9

4
x1x

2
2e2

= 9x2
1x

2
2x3e1 + 12x2x

2
3e2 − 9x2

1x
2
2x3e1 −

9

4
x1x

2
2e2

= 12x2x
2
3e2 −

9

4
x1x

2
2e2 := f 3,

so lm(f 3) = x2x
2
3e2. We observe that f 3 is reduced with respect to G′. We

make G′ := G′ ∪ {f 3}, i.e., G′ = {f 1,f 2,f 3}.
Step 2: since G = {f 1,f 2} 6= G′ = {f 1,f 2,f 3}, we make D := P(G′) −

P(G), i.e.,D := {S3, S1,3, S2,3, S1,2,3}, where S1 := {f 1}, S1,3 := {f 1,f 3}, S2,3 :=
{f 2,f 3}, S1,2,3 := {f 1,f 2,f 3}. We make G := G′, and for every S ∈ D such
that XS 6= 0 we must compute BS. Since XS1,3 = XS2,3 = XS1,2,3 = 0, we
only need to consider S3.

• We have to compute

SyzQ[x1][σ
γ3(lc(f 3))cγ3,β3 ],
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where β3 = exp(lm(f 3)) = (1, 2); XS3 = lcm{lm(f 3)} = lm(f 3) = x2x
2
3e2;

exp(XS3) = (1, 2); γ3 = exp(XS3)− β3 = (0, 0); xγ3xβ3 = x2x
2
3, so cγ3,β3 = 1.

Hence

σγ3(lc(f 3))cγ3,β3 = σγ3(12)1 = σ0
2σ

0
3(12) = 12,

and SyzQ[x1][12] = {0}, i.e., BS3 = {0}. This means that we not add any vector
to G′ and hence G = {f 1,f 2,f 3} is a Gröbner basis for M .

6. Syzygy of a module

We present in this section a method for computing the syzygy module of a
submodule M = 〈f 1, . . . , f s〉 of Am using Gröbner bases. This implies that
we have a method for computing such bases. Thus, we will assume that A is
a bijective quasi-commutative σ − PBW extension.

Let f be the canonical homomorphism defined by

As f−→ Am

ej 7→ f j

where {e1, . . . , es} is the canonical basis of As. Observe that f can be repre-
sented by a matrix, i.e., if f j := (f1j, . . . , fmj)

T , then the matrix of f in the
canonical bases of As and Am is

F :=
[
f 1 · · · f s

]
=

f11 · · · f1s
...

...
fm1 · · · fms

 ∈ Mm×s(A).

Note that Im(f) is the column module of F , i.e., the left A-module generated
by the columns of F :

Im(f) = 〈f(e1), . . . , f(es)〉 = 〈f 1, . . . , f s〉 = 〈F 〉.

Moreover, observe that if a := (a1, . . . , as)
T ∈ As, then

(6.1) f(a) = (aTF T )T .
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In fact,

f(a) = a1f(e1) + · · ·+ asf(es) = a1f 1 + · · ·+ asf s

= a1

f11...
fm1

+ · · ·+ as

f1s...
fms


=

 a1f11 + · · ·+ asf1s
...

a1fm1 + · · ·+ asfms


= (
[
a1 · · · as

] f11 · · · fm1
...

...
f1s · · · fms

)T
= (aTF T )T .

We recall that

Syz({f 1, . . . , f s}) := {a := (a1, . . . , as)
T ∈ As|a1f 1 + · · ·+ asf s = 0}.

Note that

(6.2) Syz({f 1, . . . , f s}) = ker(f),

but Syz({f 1, . . . , f s}) 6= ker(F ) since we have

(6.3) a ∈ Syz({f 1, . . . , f s}) ⇔ aTF T = 0.

The modules of syzygies of M and F are defined by

(6.4) Syz(M) := Syz(F ) := Syz({f 1, . . . , f s}).

The generators of Syz(F ) can be disposed into a matrix, so sometimes we
will refer to Syz(F ) as a matrix. Thus, if Syz(F ) is generated by r vectors,
z 1, . . . , z r, then

Syz(F ) = 〈z 1, . . . , z r〉,
and we will use the following matrix notation

Syz(F ) := Z(F ) :=
[
z 1 · · · z r

]
=

z11 · · · z1r...
...

zs1 · · · zsr

 ∈ Ms×r(A),

thus we have

(6.5) Z(F )TF T = 0.

Let G := {g1, . . . , g t} be a Gröbner basis of M , then from Division Algorithm
and Corollary 27, there exist polynomials qij ∈ A, 1 ≤ i ≤ t, 1 ≤ j ≤ s such
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that

f 1 =q11g1 + · · ·+ qt1g t

...

f s =q1sg1 + · · ·+ qtsg t,

i.e.,

(6.6) F T = QTGT ,

with

Q := [qij] =

q11 · · · q1s...
...

qt1 · · · qts

 , G :=
[
g1 · · · g t

]
:=

g11 · · · g1t
...

...
gm1 · · · gmt

 .

From (6.6) we get

(6.7) Z(F )TQTGT = 0.

From the algorithm of Corollary 31 we observe that each element of G can
be expressed as an A-linear combination of columns of F , i.e., there exists
polynomials hji ∈ A such that

g1 = h11f 1 + · · ·+ hs1f s

...

g t = h1tf 1 + · · ·+ hstf s,

so we have

(6.8) GT = HTF T ,

with

H := [hji] =

h11 · · · h1t
...

...
hs1 · · · hst

 .

The next theorem will prove that Syz(F ) can be calculated using Syz(G), and
in turn, Lemma 39 below will establish that for quasi-commutative bijective
σ − PBW extensions, Syz(G) can be computed using Syz(LG), where

LG :=
[
lt(g1) · · · lt(g t)

]
.

Suppose that Syz(LG) is generated by l elements,

(6.9) Syz(LG) := Z(LG) :=
[
z ′′
1 · · · z ′′

l

]
=

z′′11 · · · z′′1l...
...

z′′t1 · · · z′′tl

 .
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The proof of Lemma 39 will show that Syz(G) can be generated also by l
elements, say, z ′

1, . . . , z
′
l, i.e., Syz(G) = 〈z ′

1, . . . , z
′
l〉; we write

Syz(G) := Z(G) :=
[
z ′
1 · · · z ′

l

]
=

z′11 · · · z′1l...
...

z′t1 · · · z′tl

 ∈ Mt×l(A),

and hence

(6.10) Z(G)TGT = 0.

Theorem 34. With the above notation, Syz(F ) coincides with the column
module of the extended matrix

[
(Z(G)THT )T Is − (QTHT )T

]
, i.e., in a matrix

notation

(6.11) Syz(F ) =
[
(Z(G)THT )T Is − (QTHT )T

]
.

Proof. Let z := (z1, . . . , zs)
T be one of generators of Syz(F ), i.e., one of

columns of Z(F ), then by (6.3) z TF T = 0, and by (6.6) we have z TQTGT = 0.
Let u := (z TQT )T , then u ∈ Syz(G) and there exists polynomials w1, . . . , wl ∈
A such that u = w1z

′
1 + · · · + wlz

′
l, i.e., u = (wTZ(G)T )T , with w :=

(w1, . . . , wl)
T . Then, uTHT = (wTZ(G)T )HT , i.e., z TQTHT = (wTZ(G)T )HT

and from this we have

z T = z TQTHT + z T − z TQTHT

= z TQTHT + z T (Is −QTHT )

= (wTZ(G)T )HT + z T (Is −QTHT ).

From this can be checked that z ∈ 〈
[
(Z(G)THT )T Is − (QTHT )T

]
〉.

Conversely, from (6.8) and (6.10) we have (Z(G)THT )F T = Z(G)T (HTF T ) =
Z(G)TGT = 0, but this means that each column of (Z(G)THT )T is in Syz(F ).
In a similar way, from (6.8) and (6.6) we get (Is−QTHT )F T = F T−QTHTF T =
F T−QTGT = F T−F T = 0, i.e., each column of (Is−QTHT )T is also in Syz(F ).
This complete the proof. �

Our next task is to compute Syz(LG). Let L = [c1X 1 · · · ctX t] be a matrix
of size m × t, where X 1 = X1e i1 , . . . ,X t = Xte it are monomials of Am,
c1, . . . , ct ∈ A − {0} and 1 ≤ i1, . . . , it ≤ m. We note that some indexes
i1, . . . , it could be equals.

Definition 35. We say that a syzygy h = (h1, . . . , ht)
T ∈ Syz(L) is homoge-

neous of degree X = Xei, where X ∈ Mon(A) and 1 ≤ i ≤ m, if

(i) hj is a term, for each 1 ≤ j ≤ t.
(ii) For each 1 ≤ j ≤ t, either hj = 0 or if hj 6= 0 then lm(lm(hj)Xj) = X.

Proposition 36. Let L be as above. For quasi-commutative σ−PBW exten-
sions, Syz(L) has a finite generating set of homogeneous syzygies.
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Proof. Since At is a Noetherian module, Syz(L) is a finitely generated submod-
ule of At. So, it is enough to prove that each generator h = (h1, . . . , ht)

T of
Syz(L) is a finite sum of homogeneous syzygies of Syz(L). We have h1c1X1e i1+
· · ·+ htctXte it = 0, and we can group together summands according to equal
canonical vectors such that h can be expressed as a finite sum of syzygies of
Syz(L). We observe that each of such syzygies have null entries for those places
j where e ij does not coincide with the canonical vector of its group. The idea
is to prove that each of such syzygies is a sum of homogeneous syzygies of
Syz(L). But this means that we have reduced the problem to Lemma 4.2.2 of
[1], where the canonical vector is the same for all entries. We include the proof
for completeness.

So, let f = (f1, . . . , ft)
T ∈ Syz(c1X1, . . . , ctXt), then f1c1X1+ · · ·+ ftctXt =

0; we expand each polynomial fj as a sum of u terms (adding zero summands,
if it is necessary):

fj = a1jY1 + · · ·+ aujYu,

where alj ∈ R and Y1 � Y2 � · · · � Yu ∈ Mon(A) are the different monomials
we found in f1, . . . , ft, 1 ≤ j ≤ t. Then,

(a11Y1 + · · ·+ au1Yu)c1X1 + · · ·+ (a1tY1 + · · ·+ autYu)ctXt = 0.

Since A is quasi-commutative, the product of two terms is a term, so in the
previous relation we can assume that there are d ≤ tu different monomials,
Z1, . . . , Zd. Hence, completing with zero entries (if it is necessary), we can
write

f = (b11Y11, . . . , b1tY1t)
T + · · ·+ (bd1Yd1, . . . , bdtYdt)

T ,

where (bk1Yk1, . . . , bktYkt)
T ∈ Syz(c1X1, . . . , ctXt) is homogeneous of degree Zk,

1 ≤ k ≤ d. �

Definition 37. Let X1, . . . ,Xt ∈ Mon(Am) and let J ⊆ {1, . . . , t}. Let

XJ = lcm{Xj|j ∈ J}.

We say that J is saturated with respect to {X1, . . . ,Xt}, if

Xj|XJ ⇒ j ∈ J,

for any j ∈ {1, . . . , t}. The saturation J ′ of J consists of all j ∈ {1, . . . , t} such
that Xj|XJ .

Lemma 38. Let L be as above. For quasi-commutative bijective σ − PBW
extensions, a homogeneous generating set for Syz(L) is

{sJv |J ⊆ {1, . . . , t} is saturated with respect to {X1, . . . ,Xt} , 1 ≤ v ≤ rJ},

where

sJv =
∑
j∈J

bJvjx
γjej,
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with γj ∈ Nn such that γj + βj = exp(XJ), βj = exp(Xj), j ∈ J , and bJv :=
(bJvj)j∈J , with BJ := {bJ1 , . . . , bJrJ} is a set of generators for SyzR[σ

γj(cj)cγj ,βj
|

j ∈ J ].

Proof. First note that sJ
v is a homogeneous syzygy of Syz(L) of degreeX J since

each entry of sJ
v is a term, for each non-zero entry we have lm(xγjX j) = X J ,

and moreover, if iJ := ind(X J), then

((sJ
v )

TLT )T =
∑
j∈J

bJvjx
γjcjX j =

∑
j∈J

bJvjσ
γj(cj)x

γjX j

= (
∑
j∈J

(bJvjσ
γj(cj)cγj ,βj

)xγj+βj)e iJ = 0.

On the other hand, let h ∈ Syz(L), then by Proposition 36, Syz(L) is generated
by homogeneous syzygies, so we can assume that h is a homogeneous syzygy of
some degree Y = Y e i, Y := xα. We will represent h as a linear combination
of syzygies of type sJ

v . Let h = (d1Y1, . . . , dtYt)
T , with dk ∈ R and Yk := xαk ,

1 ≤ k ≤ t, let J = {j ∈ {1, . . . , t}|dj 6= 0}, then lm(YjX j) = Y for j ∈ J , and

0 =
∑
j∈J

djYjcjX j =
∑
j∈J

djσ
αj(cj)YjX j =

∑
j∈J

djσ
αj(cj)cαj ,βj

Y .

In addition, since lm(YjX j) = Y then X j | Y for any j ∈ J , and hence
X J | Y , i.e., there exists θ such that θ + exp(X J) = α = θ + γj + βj; but,
αj + βj = α since lm(YjX j) = Y , so αj = θ + γj.

Thus,

0 =
∑
j∈J

djσ
αj(cj)cαj ,βj

Y =
∑
j∈J

djσ
θ+γj(cj)cθ+γj ,βj

Y ,

and from Remark 7 we get that

0 =
∑
j∈J

djσ
θ+γj(cj)cθ+γj ,βj

=
∑
j∈J

djc
−1
θ,γj

cθ,γjσ
θ+γj(cj)cθ+γj ,βj

=
∑
j∈J

djc
−1
θ,γj

σθ(σγj(cj))cθ,γjcθ+γj ,βj

=
∑
j∈J

djc
−1
θ,γj

σθ(σγj(cj))σ
θ(cγj ,βj

)cθ,γj+βj
.

We multiply the last equality by c−1
θ,exp(X J )

, but c−1
θ,exp(X J )

= c−1
θ,γj+βj

for any
j ∈ J , so

0 =
∑
j∈J

djc
−1
θ,γj

σθ(σγj(cj)cγj ,βj
).

Since A is bijective, there exists d′j such that σθ(d′j) = djc
−1
θ,γj

, so

0 =
∑
j∈J

σθ(d′j)σ
θ(σγj(cj)cγj ,βj

),
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and from this we get

0 =
∑
j∈J

d′jσ
γj(cj)cγj ,βj

.

Let J ′ be the saturation of J with respect to {X 1, . . . ,X t}, since dj = 0 if
j ∈ J ′ − J , then d′j = 0, and hence, (d′j | j ∈ J ′) ∈ SyzR[σ

γj(cj)cγj ,βj
| j ∈ J ′].

From this we have

(d′j | j ∈ J ′) =

rJ′∑
v=1

avb
J ′

vj.

Since X J ′ = X J , then X J ′ also divides Y , and hence

h =
t∑

j=1

djYjej =
∑
j∈J ′

djc
−1
θ,γj

xθxγjej =
∑
j∈J ′

σθ(d′j)x
θxγjej

=
∑
j∈J ′

xθd′jx
γjej =

∑
j∈J ′

xθ

(
rJ′∑
v=1

avb
J ′

vj

)
xγjej =

∑
j∈J ′

rJ′∑
v=1

xθavb
J ′

vjx
γjej

=

rJ′∑
v=1

xθav
∑
j∈J ′

bJ
′

vjx
γjej

=

rJ′∑
v=1

σθ(av)x
θsJ

′

v .

�

Finally, we will calculate Syz(G) using Syz(LG). Applying Division Algo-
rithm and Corollary 27 to the columns of Syz(LG) (see (6.9)), for each 1 ≤ v ≤ l
there exists polynomials p1v, . . . , ptv ∈ A such that

z′′1vg1 + · · ·+ z′′tvg t = p1vg1 + · · ·+ ptvg t,

i.e.,

(6.12) Z(LG)
TGT = P TGT ,

with

P :=

p11 · · · p1l...
...

pt1 · · · ptl

 .

With this notation, we have the following result.

Lemma 39. For quasi-commutative bijective σ−PBW extensions, the column
module of Z(G) coincides with the column module of Z(LG) − P , i.e., in a
matrix notation

(6.13) Z(G) = Z(LG)− P.
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Proof. From (6.12), (Z(LG)− P )TGT = 0, so each column of Z(LG)− P is in
Syz(G), i.e., each column of Z(LG)−P is an A-linear combination of columns
of Z(G). Thus, 〈Z(LG)− P 〉 ⊆ 〈Z(G)〉.

Now, we have to prove that 〈Z(G)〉 ⊆ 〈Z(LG)−P 〉. Suppose that 〈Z(G)〉 *
〈Z(LG) − P 〉, so there exists z ′ = (z′1, . . . , z

′
t)

T ∈ 〈Z(G)〉 such that z ′ /∈
〈Z(LG)− P 〉; from all such vectors we choose one such that

(6.14) X := max
1≤j≤t

{lm(lm(z′j) lm(g j))}

be the least. Let X = Xe i and

J := {j ∈ {1, . . . , t}| lm(lm(z′j) lm(g j)) = X }.
Since A is quasi-commutative and z ′ ∈ Syz(G) then∑

j∈J

lt(z′j) lt(g j) = 0.

Let h :=
∑

j∈J lt(z
′
j)ẽj, where ẽ1, . . . , ẽ t is the canonical basis of At. Then,

h ∈ Syz(lt(g1), . . . , lt(g t)) is a homogeneous syzygy of degree X . Let B :=
{z ′′

1, . . . , z
′′
l } be a homogeneous generating set for the syzygy module Syz(LG)),

where z ′′
v has degree Z v = Zve iv (see (6.9)). Then, h =

∑l
v=1 avz

′′
v, where

av ∈ A, and hence

h = (a1z
′′
11 + · · ·+ alz

′′
1l, . . . , a1z

′′
t1 + · · ·+ alz

′′
tl)

T .

We can assume that for each 1 ≤ v ≤ l, av is a term. In fact, consider the first
entry of h : completing with null terms, each av is an ordered sum of s terms

(c11X11 + · · ·+ c1sX1s)z
′′
11 + · · ·+ (cl1Xl1 + · · ·+ clsXls)z

′′
1l,

with Xv1 � Xv2 � · · · � Xvs for each 1 ≤ v ≤ l, so

(6.15)


lm(X11 lm(z′′11)) � lm(X12 lm(z′′11)) � · · · � lm(X1s lm(z′′11))

...

lm(Xl1 lm(z′′1l)) � lm(Xl2 lm(z′′1l)) � · · · � lm(Xls lm(z′′1l))

Since each z ′′
v is a homogeneous syzygy, each entry z′′jv of z

′′
v is a term, but the

first entry of h is also a term, then from (6.15) we can assume that av is a
term.

We note that for j ∈ J

lt(z′j) = a1z
′′
j1 + · · ·+ alz

′′
jl,

and for j /∈ J
a1z

′′
j1 + · · ·+ alz

′′
jl = 0.

Moreover, let j ∈ J , so lm(lm(a1z
′′
j1+· · ·+alz

′′
jl) lm(g j)) = lm(lm(z′j) lm(g j)) =

X , and we can choose those v such that lm(avz
′′
jv) = lm(z′j), for the others v

we can take av = 0. Thus, for j and such v we have

lm(lm(av) lm(lm(z′′jv) lm(g j))) = X = Xe i.
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On the other hand, for j, j′ ∈ J with j′ 6= j, we know that z ′′
v is homogeneous

of degree Z v = Zve iv , hence, if z
′′
j′v 6= 0, then lm(lm(z′′j′v) lm(g j′)) = Z v =

lm(lm(z′′jv) lm(g j)). Thus, we must conclude that iv = i and

(6.16) lm(lm(av) lm(lm(z′′jv) lm(g j))) = X ,

for any v and any j such that av 6= 0 and z′′jv 6= 0.

We define q ′ := (q′1, . . . , q
′
t)

T , where q′j := z′j if j /∈ J and q′j := z′j − lt(z′j)

if j ∈ J . We observe that z ′ = h + q ′, and hence z ′ =
∑l

v=1 avz
′′
v + q ′ =∑l

v=1 av(sv+pv)+q ′, with sv := z ′′
v −pv, where pv is the column v of matrix

P defined in (6.12). Then, we define

r := (
l∑

v=1

avpv) + q ′,

and we note that r = z ′ −
∑l

v=1 avsv ∈ Syz(G) − 〈Z(LG) − P 〉. We will
get a contradiction proving that max1≤j≤t{lm(lm(rj) lm(g j))} ≺ X . For each
1 ≤ j ≤ t we have

rj = a1pj1 + · · ·+ alpjl + q′j

and hence

lm(lm(rj) lm(g j)) = lm(lm(a1pj1 + · · ·+ alpjl + q′j) lm(g j))

� lm(max{lm(a1pj1 + · · ·+ alpjl), lm(q′j)} lm(g j))

� lm(max{max
1≤v≤l

{lm(lm(av) lm(pjv))}, lm(q′j)} lm(g j)).

By the definition of q ′ we have that for each 1 ≤ j ≤ t, lm(lm(q′j) lm(g j)) ≺ X .
In fact, if j /∈ J , lm(lm(q′j) lm(g j)) = lm(lm(z′j) lm(g j)) ≺ X , and for j ∈ J ,
lm(lm(q′j) lm(g j)) = lm(lm(z′j − lt(z′j)) lm(g j)) ≺ X . On the other hand,

t∑
j=1

z′′jvg j =
t∑

j=1

pjvg j,

with

lm(
t∑

j=1

z′′jvg j) = max
1≤j≤t

{lm(lm(pjv) lm(g j))}.

But,
∑t

j=1 z
′′
jv lt(g j) = 0 for each v, then

lm(
t∑

j=1

z′′jvg j) ≺ max
1≤j≤t

{lm(lm(z′′jv) lm(g j))}.

Hence,

max
1≤j≤t

{lm(lm(pjv) lm(g j))} ≺ max
1≤j≤t

{lm(lm(z′′jv) lm(g j))}
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for each 1 ≤ v ≤ l. From (6.16), max1≤j≤t
1≤v≤l

{lm(lm(av) lm(lm(pjv) lm(g j)))} ≺

max1≤j≤t
1≤v≤l

{lm(lm(av) lm(lm(z′′jv) lm(g j)))} = X , and hence, we can conclude

that max1≤j≤t{lm(lm(rj) lm(g j))} ≺ X . �

Example 40. Let M := 〈f 1,f 2〉, where f 1 = x2
1x

2
2e1 + x2x3e2 and f 2 =

2x1x2x3e1 + x2e2 ∈ A2, with A := σ(Q[x1])〈x2, x3〉. In Example 33 we com-
puted a Gröbner basis G = {f 1,f 2,f 3} of M , where f 3 = 12x2x

2
3e2− 9

4
x1x

2
2e2.

Now we will calculate Syz(F ) with F = {f 1,f 2}:
(i) Firstly, we compute Syz(LG) using Lemma 38:

LG :=
[
lt(f 1) lt(f 2) lt(f 3)

]
=
[
x2
1x

2
2e1 2x1x2x3e1 12x2x

2
3e2

]
.

For this we choose the saturated subsets J of {1, 2, 3} with respect to
{x2

2e1, x2x3e1, x2x
2
3e2} and such that XJ 6= 0:

• For J1 = {1} we compute a system BJ1 of generators of

SyzQ[x1][σ
γ1(lc(f 1))cγ1,β1 ],

where β1 := exp(lm(f 1)) and γ1 = exp(XJ1) − β1. Then, BJ1 = {0},
and hence we have only one generator bJ11 = (bJ111) = 0 and sJ11 =
bJ111x

γ1ẽ1 = 0ẽ1, with ẽ1 = (1, 0, 0)T .
• For J2 = {2} and J3 = {3} the situation is similar.
• For J1,2 = {1, 2}, a system of generators of

SyzQ[x1][σ
γ1(lc(f 1))cγ1,β1 σγ2(lc(f 2))cγ2,β2 ],

where β1 = exp(lm(f 1)), β2 = exp(lm(f 2)), γ1 = exp(XJ1,2)− β1 and
γ2 = exp(XJ1,2) − β2, is BJ1,2 = {(4,−9

4
x1)}, thus we have only one

generator b
J1,2
1 = (b

J1,2
11 , b

J1,2
12 ) = (4,−9

4
x1) and

s
J1,2
1 = b

J1,2
11 xγ1 ẽ1 + b

J1,2
12 xγ2 ẽ2

= 4x3ẽ1 −
9

4
x1x2ẽ2

=

 4x3

−9
4
x1x2

0

 .

Then,

Syz(LG) =

〈 4x3

−9
4
x1x2

0

〉 ,

or in a matrix notation

Syz(LG) = Z(LG) =

 4x3

−9
4
x1x2

0

 .
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(ii) Next we compute Syz(G): By Division Algorithm we have

4x3f 1 −
9

4
x1x2f 2 + 0f 3 = p11f 1 + p21f 2 + p31f 3,

so by the Example 33, p11 = 0 = p21 and p31 = 1, i.e., P = ẽ3. Thus,

Z(G) = Z(LG)− P =

 4x3

−9
4
x1x2

−1


and

Syz(G) =

〈 4x3

−9
4
x1x2

−1

〉 .

(iii) Finally we compute Syz(F ): since

f 1 = 1f 1 + 0f 2 + 0f 3, f 2 = 0f 1 + 1f 2 + 0f 3

then

Q =

1 0
0 1
0 0

 .

Moreover,

f 1 = 1f 1 + 0f 2, f 2 = 0f 1 + 1f 2, f 3 = 4x3f 1 −
9

4
x1x2f 2,

hence

H =

[
1 0 4x3

0 1 −9
4
x1x2

]
.

By Theorem 34,

Syz(F ) =
[
(Z(G)THT )T I2 − (QTHT )T

]
,

with

(Z(G)THT )T =

[4x3 −9
4
x1x2 −1

]  1 0
0 1
4x3 −9

4
x1x2

T

=
([
0 0
])T

=

[
0
0

]
and

I2 − (QTHT )T =

[
0 0
0 0

]
.

From this we conclude that Syz(F ) = 0. Observe that this means that
M is free.
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