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GROBNER BASES OF MODULES OVER o — PBW
EXTENSIONS

HAYDEE JIMENEZ AND OSWALDO LEZAMA

ABSTRACT. For 0 — PW B extensions, we extend to modules the theory of
Grobner bases of left ideals presented in [5]. As an application, if A is a
bijective quasi-commutative 0 — PW B extension, we compute the module
of syzygies of a submodule of the free module A™.

1. INTRODUCTION

In this paper we present the theory of Grobner bases for submodules of A™,
m > 1, where A = o(R)(x1,...,x,) is a 0 — PBW extension of R, with R
a LGS ring (see Definition 12) and Mon(A) endowed with some monomial
order (see Definition 9). A™ is the left free A-module of column vectors of
length m > 1; if A is bijective, A is a left Noetherian ring (see [8]), then A
is an IBN ring (Invariant Basis Number), and hence, all bases of the free
module A™ have m elements. Note moreover that A™ is a left Noetherian,
and hence, any submodule of A™ is finitely generated. The main purpose is to
define and calculate Grobner bases for submodules of A™, thus, we will define
the monomials in A™, orders on the monomials, the concept of reduction,
we will construct a Division Algorithm, we will give equivalent conditions in
order to define Grobner bases, and finally, we will compute Grobner bases
using a procedure similar to Buchberger’s Algorithm in the particular case
of quasi-commutative bijective 0 — PBW extensions. The results presented
here generalize those of [5] where 0 — PBW extensions were defined and the
theory of Grobner bases for the left ideals was constructed. Most of proofs
are easily adapted from [5] and hence we will omit them. As an application,
the final section of the paper concerns with the computation of the module of
syzygies of a given submodule of A™ for the particular case when A is bijective
quasi-commutative.
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Definition 1. Let R and A be rings, we say that A is a 0 — PBW extension
of R or skew PBW extension, if the following conditions hold:
(i) R C A.
(ii) There exist finite elements z1,...,z, € A — R such A is a left R-free
module with basis

Mon(A) :={z% =2 - 28" |a = (ay, ..., ) € N}

In this case we say also that A is a left polynomial ring over R with
respect to {z1,...,x,} and Mon(A) is the set of standard monomials
of A. Moreover, 29+ 22 := 1 € Mon(A).

(iii) For every 1 <i < mn and r € R — {0} there exists ¢;,, € R — {0} such

that
(1.1) ;T — ¢ v € R.
(iv) For every 1 <14, j < n there exists ¢;; € R — {0} such that
(1.2) v — ¢ ;xxy € R+ Rry + - -+ + R,
Under these conditions we will write A = o(R)(z1,...,Z,).

The following proposition justifies the notation that we have introduced for
the skew PBW extensions.

Proposition 2. Let A be a 0 — PBW extension of R. Then, for every 1 <i <
n, there exist an injective ring endomorphism o;: R — R and a o;-derivation
0;: R — R such that

xir = oy(r)z; + 6;(r),
for each r € R.
Proof. See [5]. O

A particular case of 0 — PBW extension is when all derivations d; are zero.
Another interesting case is when all ¢; are bijective. We have the following
definition.

Definition 3. Let A be a ¢ — PBW extension.

(a) Ais quasi-commutative if the conditions (iii) and (iv) in the Definition 1
are replaced by
(i73") For every 1 < i < mn and r € R — {0} there exists ¢;,, € R — {0}
such that

(1.3) T = C T
(1v") For every 1 <14, j <n there exists ¢;; € R — {0} such that
(14) Tjl; = CjjT;Xy.

(b) A is bijective if o; is bijective for every 1 <1i < n and ¢, ; is invertible
forany 1 <i<j<n.
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Some interesting examples of o — PBW extensions were given in [5]. We
repeat next some of them without details.

Ezample 4. (1) Any PBW extension (see [2]) is a bijective o — PBW extension.

(ii) Any skew polynomial ring R[x;c,d], with o injective, is a 0 — PBW
extension; in this case we have R[x;0,0] = o(R)(x). If additionally 6 = 0,
then R[z;0] is quasi-commutative.

(iii) Any iterated skew polynomial ring R[z1;01,01] - [Tn; 00, 0,] is & 0 —
PBW extension if it satisfies the following conditions:

For 1 <1 <n, o; is injective.

For everyr € R and 1 <1 <n, o,(r),0;(r) € R.

Fori < j, 0j(x;) = cx; + d, with c,d € R, and ¢ has a left inverse.

Fori <j, d;(x;) € R+ Rxq1 + --- + Ru,.

Under these conditions we have

Rlzy;01,01] - [wp; 00, 0] = 0 (R)(x1, ..., 2p).

In particular, any Ore algebra K[tq,. .., tp][z1;01,01] - - [Xn; 0, 0,) (K a field)
is a 0 — PBW extension if it satisfies the following condition:

For 1 <1 <n, g; 1s injective.

Some concrete examples of Ore algebras of injective type are the following.

The algebra of shift operators: let h € K, then the algebra of shift operators
is defined by Sy = Kl[t|[zn; on, 0n), where o,(p(t)) := p(t — h), and &, := 0
(observe that Sy, can be considered also as a skew polynomial ring of injective
type). Thus, S}, is a quasi-commutative bijective o — PBW extension.

The mixed algebra Dj: let again h € K, then the mixed algebra D) is
defined by Dy, := K[t][z; ik, &][xn; on, 6], where o4 (z) := z. Then, D, is a
quasi-commutative bijective 0 — PBW extension.

The algebra for multidimensional discrete linear systems is defined by D :=
Klty, ... ty]lx1,01,0] -« - [xn; 00, 0], where

O',(p(tl,,tn)) :p(tl,,tz_17tz+17t1+1,7tn), Uz(xz) = Iy, 1 SZ Sn
D is a quasi-commutative bijective o — PBW extension.

(iv) Additive analogue of the Weyl algebra: let K be a field, the K-algebra
An(q, - .., qn)is generated by x1, ..., Tn, Y1, . - ., Yn and subject to the relations:

Yit; = Ty, 1 F 7,
Yizi = ¢y +1, 1<i<mn,
where ¢; € K — {0}. A,(q,...,q,) satisfies the conditions of (iii) and is
bijective; we have
An(qry -y qn) = o(Klzy, .o xn)) Yty oo oy Yn)-

(v) Multiplicative analogue of the Weyl algebra: let K be a field, the K-
algebra O,,()\;;) is generated by x1,. .., x, and subject to the relations:

T;T; = )\jiillil'j, 1<y <j <n,
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where \;; € K — {0}. O,(\;;) satisfies the conditions of (iii), and hence
On(Aji) = o(K[z1]) (@2, .. @)

Note that O,,()j;) is quasi-commutative and bijective.
(vi) g-Heisenberg algebra: let K be a field , the K-algebra h,,(q) is generated
by Z1,..., %0, Y15, Yn, 21, - - ., 2n and subject to the relations:

Tjr; = X%, 252 = 225, Y = Yy, 1 <4,7 <mn,

2jYi = Yizj, ZjTi = Tz, YiTi = TiYj, 1 F
ZiYi = qQYiZi, ZiTi = qilajizi + Ui, vit; = quiy;, 1 <1< n,
with ¢ € K — {0}. h,(q) is a bijective 0 — PBW extension of K:

hn(q) = o (KT, o X Yty ooy Uni 21y - - v Zn)-

(vi) Many other examples are presented in [8].

Definition 5. Let A be a ¢ — PBW extension of R with endomorphisms o;,
1 <12 < n, as in Proposition 2.
(i) For a = (ay,...,ap) € N", 0% := 0" -+ 00, |a| == a1 + -+ + . If
B=B1,...,0n) € N" then a+ 8 := (a1 + B1,. .., + Bn).
(ii) For X = 2% € Mon(A), exp(X) := a and deg(X) := |a|.
(iii) Let 0 # f € A, t(f) is the finite set of terms that conform f, i.e., if
f=aXi+ - +aX, with X; € Mon(A) and ¢; € R — {0}, then
t(f) ={aXi,...,aXi}
(iv) Let f be as in (iii), then deg(f) := max{deg(X;)}._;.

The 0 — PBW extensions can be characterized in a similar way as was done
in [4] for PBW rings.

Theorem 6. Let A be a left polynomial ring over R w.r.t {zy,...,x,}. A is
a 0 — PBW extension of R if and only if the following conditions hold:

(a) For every z® € Mon(A) and every 0 # r € R there exists unique
elements ro := 0®(r) € R — {0} and p,, € A such that

(1.5) r = rox® + por,

where po, = 0 or deg(pa,) < || if par # 0. Moreover, if r is left
wnvertible, then r, is left invertible.

(b) For every x*,2° € Mon(A) there exist unique elements co 5 € R and
Pap € A such that

(16) l‘axﬁ = Caﬁxa—’_ﬁ + Pa,s5
where cq 5 15 left invertible, pog = 0 or deg(pas) < |a+ B| if pap # 0.
Proof. See [5]. O
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Remark 7. (i) A left inverse of ¢, 3 will be denoted by ¢, ;. We observe that
if a =0or =0, then c, s =1 and hence ¢, 5 = 1.
(ii) Let 6,~,5 € N™ and ¢ € R, then we it is easy to check the following
identities:
0%(€1,8)Con+6 = CoCotr,55
0" (07(c))con = cor0" " (0).
(iii) We observe if A is a 0 — PBW extension quasi-commutative, then from
the proof of Theorem 6 (see [5]) we conclude that p,, = 0 and p, g = 0, for
every 0 #r € R and every «, f € N

(iv) We have also that if A is a bijective 0 — PBW extension, then ¢, s is
invertible for any «, § € N".

A key property of 0 — PBW extensions is the content of the following
theorem.

Theorem 8. Let A be a bijective skew PBW extension of R. If R is a left
Noetherian ring then A is also a left Noetherian ring.

Proof. See [8]. O

Let A = o(R)(x1,...,z,) be a 0 — PBW extension of R and let > be a
total order defined on Mon(A). If 2% = 2 but 2% # 2° we will write 2 = 2°.
Let f # 0 be a polynomial of A, if

f=aXi+ - +aX,

with ¢; € R—{0} and X; > -+ > X, are the monomials of f, then Im(f) := X}
is the leading monomial of f, le(f) := ¢ is the leading coefficient of f and
I6(f) := 1 X7 is the leading term of f. If f =0, we define Im(0) := 0, lc(0) :=
0, 1t(0) := 0, and we set X > 0 for any X € Mon(A). Thus, we extend *= to
Mon(A) U {0}.

Definition 9. Let = be a total order on Mon(A), we say that > is a monomial
order on Mon(A) if the following conditions hold:

(i) For every a2 % 27, 2* € Mon(A)
27 = 2 = Im(272°2?) = Im(272%2?).

(ii) z® = 1, for every x® € Mon(A).
(iii) = is degree compatible, i.e., |3| > |a] = 27 = z°.

Monomial orders are also called admaissible orders. From now on we will
assume that Mon(A) is endowed with some monomial order.

Definition 10. Let 2%, 2% € Mon(A), we say that 2 divides 2°, denoted by
z|2P, if there exists 27, 2* € Mon(A) such that 2% = Im(z7z%2?).

Proposition 11. Let 2%, 2° € Mon(A) and f,g € A — {0}. Then,
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(a) Im(z%g) = lm(2*Im(g)) = xot=PW@)  In particular,

Im(lm(f)1lm(g)) = exp(m(f))+exp(lm(g))

and
(1.7) Im(z%2?) = 2277,
(b) The following conditions are equivalent:
(i) x@|2”.

(ii) There exists a unique x° € Mon(A) such that 2° = Im(2%2%) =
297 and hence B =6 + a.

(iii) There exists a unique x° € Mon(A) such that z° = Im(z%2?) =
229 and hence B = o + 6.

(iv) B; > a; for1 <i <mn, with:= (B1,...,0,) and o := (aq, ..., ap).

Proof. See [5]. O

We note that a least common multiple of monomials of Mon(A) there exists:
in fact, let 2%, 2% € Mon(A), then lem(z%, 2%) = 27 € Mon(A), where v =
(V1y -y Yn) with ; := max{a;, 5;} for each 1 <7 < n.

Some natural computational conditions on R will be assumed in the rest of
this paper (compare with [7]).

Definition 12. A ring R is left Grobner soluble LGS if the following conditions
hold:

(i) R is left Noetherian.

(i) Givena,r,...,r, € R there exists an algorithm which decides whether
a is in the left ideal Rry+- - -+ Rry,, and if so, find by, ...,b,, € R such
that a = byry + -+ - + by

(iii) Given rq,...,r, € R there exists an algorithm which finds a finite set
of generators of the left R-module

SyZR[Tl T Tm] = {(bl, .. ,bm) & Rm|b1r1 + .o+ bmrm — O}

The three above conditions imposed to R are needed in order to guarantee
a Grobner theory in the rings of coefficients, in particular, to have an effective
solution of the membership problem in R (see (ii) in Definition 20 below). From
now on we will assume that A = o(R)(x1,...,2,) is a 0 — PBW extension of
R, where R is a LGS ring and Mon(A) is endowed with some monomial order.

We conclude this chapter with a remark about some other classes of non-
commutative rings of polynomial type close related with o — PBW extensions.

Remark 13. (i) Viktor Levandovskyy has defined in [6] the G-algebras and has
constructed the theory of Grobner bases for them. Let K be a field, a K-
algebra A is called a G-algebra if K C Z(A) (center of A) and A is generated
by a finite set {z1,...,x,} of elements that satisfy the following conditions:
(a) the collection of standard monomials of A, Mon(A) = Mon({z1,...,z,}),
is a K-basis of A. (b) zjz; = ¢jzx; + dij, for 1 < i < j < n, with ¢;; € K*
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and d;; € A. (c) There exists a total order <4 on Mon(A) such that for i < j,
lm(dw) <4 TiZ;j. (d) For1 <1< j <k< n, CiijkdijZL’k — l’kdij + Cjkl’jdik —
Cijdik; +djpr; — cijcinwidjr, = 0. According to this definition, the coefficients of
a polynomial in a G-algebra are in a field and they commute with the variables
x1,...,%,. From this, and also from (c) and (d), we conclude that the class of
G-algebras does not coincide with the class of 0 — PBW extensions. However,
the intersection of these two classes of rings is not empty. In fact, the universal
enveloping algebra of a finite dimensional Lie algebra, Weyl algebras and the
additive or multiplicative analogue of a Weyl algebra, are G-algebras and also
o — PBW extensions.

(ii) A similar remark can be done with respect to PBW rings and algebras
defined by Bueso, Gémez-Torrecillas and Verschoren in [3].

2. MONOMIAL ORDERS ON Mon(A™)

We will often write the elements of A™ also as row vectors if this not repre-
sent confusion. We recall that the canonical basis of A™ is

er = (1,0,...,0),es = (0,1,0,...,0),..., em = (0,0,...,1).

Definition 14. A monomial in A™ is a vector X = Xe;, where X = 2 €
Mon(A) and 1 <i <m, i.e.,

X =Xe; =(0,...,X,...,0),

where X is in the ith position, named the index of X, ind(X) :=i. A term
is a vector ¢X, where ¢ € R. The set of monomials of A™ will be denoted by
Mon(A™). Let Y = Ye; € Mon(A™), we say that X divides Y if i = j and
X divides Y. We will say that any monomial X € Mon(A™) divides the null
vector 0. The least common multiple of X and Y, denoted by lem(X,Y),
is 0 if i # j, and Ue;, where U = lem(X,Y), if i = j. Finally, we define
exp(X) := exp(X) = a and deg(X) := deg(X) = |a|.
We now define monomials orders on Mon(A™).
Definition 15. A monomial order on Mon(A™) is a total order > satisfying
the following three conditions:
(i) Im(2Pz%)e; = x%e;, for every monomial X = r%e; € Mon(A™) and any
monomial z° in Mon(A).
(ii) If Y = 2Pe; = X = 2%¢;, then Im(z72%)e; = Im(z72%)e; for all X, Y €
Mon(A™) and every 7 € Mon(A).
(iii) > is degree compatible, i.e., deg(X) > deg(Y) = X = Y.
If X =Y but X #7Y we will write X > Y. Y =< X means that X > Y.
Proposition 16. Fvery monomial order on Mon(A™) is a well order.
Proof. We can easy adapt the proof for left ideals presented in [5]. ([l

Given a monomial order > on Mon(A), we can define two natural orders on
Mon(A™).
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Definition 17. Let X = Xe; and Y = Ye; € Mon(A™).
(i) The TOP term over position order is defined by

(X -V

XY <« <or

(X =Y and >

(ii) The TOPREV order is defined by

(X =Y

X>Y << qor

(X =Y and i<y

Remark 18. (i) Note that with TOP we have
€m ™ €p_1 7 €
and
€1 > €y - e

for TOPREV.

(ii) The POT (position over term) and POTREV orders defined in [1] and
[7] for modules over classical polynomial commutative rings are not degree
compatible.

(iii) Other examples of monomial orders in Mon(A™) are considered in [3].

We fix monomial orders on Mon(A) and Mon(A™); let f # 0 be a vector of
A™. then we may write f as a sum of terms in the following way
f=aXi+ - +aXy
where ¢1,...,¢, € R— {0} and X; > X5 > --- = X, are monomials of
Mon(A™).
Definition 19. With the above notation, we say that
(i) 1t(f) := 1 X is the leading term of f.
(ii) lc(f) := ¢ is the leading coefficient of f.
(iii) Im(f) := X is the leading monomial of f.
For f = 0 we define Im(0) = 0,1c(0) = 0,1t(0) = 0, and if > is a monomial
order on Mon(A™), then we define X > 0 for any X € Mon(A™). So, we
extend > to Mon(A™) U {0}.

3. REDUCTION IN A™

The reduction process in A™ is defined as follows.

Definition 20. Let F' be a finite set of non-zero vectors of A™, and let f,h €

A™ we say that f reduces to h by F' in one step, denoted f N h, if there
exist elements f1,...,f; € F and rq,...,r; € R such that
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(i) Im(f)|Im(f), 1 < i < ¢, ie., ind(lm(f;)) = ind(Im(f)) and there exists
% € Mon(A) such that a; + exp(Im(f;)) = exp(Im(f)).
(i) le(f) = mo*t(lc(fi))cars, + -+ + ro®(le(fy))cans,, With ca, g,
Cayexp(lm(f;)) -
(iii) h=f— 31 ra™f;.
We say that f reduces to h by F', denoted f i>+ h, if and only if there exist
vectors hy, ..., h;_; € A™ such that

f X n L5 n 2. Eon, L

f is reduced also called minimal w.r.t. F if f = 0 or there is no one step
reduction of f by F, i.e., one of the first two conditions of Definition 20 fails.

Otherwise, we will say that f is reducible w.r.t. F. If f ihr h and h is reduced
w.r.t. F, then we say that h is a remainder for f w.r.t. F.

Remark 21. Related to the previous definition we have the following remarks:
(i) By Theorem 6, the coefficients c,, . are unique and satisfy

Iaixexp(lrn(fi)) = Cq, fvxai-i-exp(lm(fi)) +pa- £

where pq, ¢, = 0 or deg(Im(pa, r,)) < | + exp(Im(f;))], 1 <@ <t

(ii) Im(f) > lm(h) and f — h € (F), where (F) is the submodule of A™
generated by F'.

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0 5o.

(v)
1t(f) = Zr le(z* 1t(f,)),

The proofs of the next technical proposition and theorem can be also adapted
from [5].

Proposition 22. Let A be a 0 — PBW extension such that c, g is invertible
for each o, 5 € N". Let ffhe A", 0 € N" and F = {f,,...,f,} be a finite set
of non-zero vectors of A™. Then,

() If f Ly h, then there exists p € A™ with p = 0 or Im(z%f) = 1m(p)

such that 2°f+ p L 2 In particular, if A is quasi-commutative,
then p = 0.

(ii) If f i>+ h and p € A™ is such that p = 0 or lm(h) > lm(p), then
f+p-, h+p.

(iii) If f L+ h, then there exists p € A™ with p =0 or Im(z?f) = Im(p)
such that 2’ f+ p i>+ 2’h. If A is quasi-commutative, then p = 0.

(iv) If f i>+ 0, then there exists p € A™ with p = 0 or lIm(z’f) = lm(p)
such that 2°f+ p i>+ 0. If A is quasi-commutative, then p = 0.
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Theorem 23. Let F' = {f,,...,f,} be a set of non-zero vectors of A™ and
fe A™, then the Division Algorithm below produces polynomials q1,...,q € A

and a reduced vector h € A™ w.r.t. F such that fi>+ h and
f=afi+-+afit+h
with
Im(f) = max{lm(Im(g:) Im(f,)), .. ., Im(Im(g;) Im(f;)), Im(h) }.

Division Algorithm in A™

INPUT: f f),....fic A" with f; #0 (1 < j <)
OUTPUT: ¢1,...,q: € A, he A™ with f= afi+--+aqf,+h
h reduced w.r.t. {f,,....f,} and
Im(f) = max{Im(lm(q;) Im(f,)), ..., Im(lm(q;) Im(f,)), lm(h)}
INITIALIZATION: ¢; :=0,¢5:=0,...,¢, :=0,h:=f
WHILE h # 0 and there exists j such that Im(f;) divides lm(h)
DO
Calculate J := {j| lm(f;) divides Im(h)}
FOR j € J DO
Calculate o; € N" such that «o; +
exp(Im(f;)) = exp(lm(h))
IF the equation lc(h) =, ;0% (Ie(f;))ca, 5, is solu-
ble, where cq, s, are defined as in Definition 20
THEN
Calculate one solution (r;) e
h:=h-— Zjejrjxajf'j
FOR j € J DO
qj = qj +rjr
ELSE
Stop

Ezample 24. We consider the Heisenberg algebra, A := hi(2) = o(Q)(z,v, 2),
with deglex order and x > y > z in Mon(A) and the TOPREV order in
Mon(A?) with e; = ey = e3. Let f := 2%yze; + y*ze; + x2e; + 22es, f =
rze;+res+yes and f, := xye; +zes+ zes. Following the Division Algorithm
we will compute ¢, q2 € A and h € A3 such that f = ¢ f; + @f, + h, with
Im(f) = max{lm(Im(q1) Im(f,)), Im(Im(g2) Im(f,)),Im(h)}. We will represent
the elements of Mon(A) by t* instead of ®. For j = 1,2, we will note a; :=
(Oéjl, Qja, Oéjg) € N3.
Step 1: we start with h := f,¢; := 0 and ¢ := 0; since Im(f,) | Im(h) and
Im(f,) | Im(h), we compute c; such that o; + exp(lm(f;)) = exp(lm(h)).
o Im(t°'1Im(f;)) = Im(h), so Im(z®11y*122*37z) = z?yz, and hence
a1 = 1; app = 15 a3 = 0. Thus, t** = xy.
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o Im(t*21m(f,)) = Im(h), so lm(z*21y2222°21y) = z%yz, and hence
o1 = 1; g = 0; gz = 1. Thus, t*2 = x2.
Next, for j = 1,2 we compute ¢, ¢,
o torgerrmife)) = (zy)(x2) = z(2zy)z = 22%yz. Thus, ca, ¢, = 2.
o to2gerr(m(f2)) — (12)(zy) = m(%xz +y)y = %xQZ;y + xy? = 2%yz + 2y
S0, Cay,p, = 1.
We must solve the equation
1 =1lc(h) =m0 (Ic(f1))cCar,f, +120°*(1c(F3))Can, £,
=r10°(1)2 + reo*?(1)1
= 2T1 + T2,
then r; =0 and ry = 1.
We make h := h — (1t f, + rat*2 f,), ie.,
h :=h — (zz(xye, + zey + ze3))
= h — (vzrye, + x2’ey + v2°es)
= h — ((2%yz + zy*) e, + x2°ey + x2°€3)
= £L'2y281 + xze; + y2262 + 2’263 — x2y261 — xy261 — 332’262 — ZL’2263
= —xy2el — 372262 — xz2eg + y2262 + xze; + 2263.
In addition, we have ¢; := q; + rt® =0 and ¢o := ¢y + ot = x2.

Step 2: h := —xy’e; —x2’es—r2es+yzes+rze; +2%es, so Im(h) = xy’e;
and lc(h) = —1; moreover, ¢y = 0 and ¢ = zz. Since lm(f,) | lm(h), we
compute oy such that as + exp(lm(f,)) = exp(lm(h)):

e Im(t*21m(f,)) = Im(h), then Im(x*2'y*222°%7y) = zy? s0 ag = 0;
Qg9 = 1; Qg3 = 0. Thus, t*2 = Y.
We compute cq, ¢, t2tPUnF2)) = y(zy) = 22y, Then, ¢4, 5, = 2.
We solve the equation
—1= IC(h,) = T20a2 (1C<f2>>ca2,f2
= ry0°%(1)2 = 27,

thus, ry = —%.
We make h := h — ryt®? f,, ie.,
1
h:=h+ iy(xyel + zes + ze3)
=h+ L + ! + !
= 2yxyel 23/2632 2y263
2 2 2 1 1 2
= —xz’ey —x2°esz +y‘zey, +xze; + §yzeg + §y263 + z%es.
We have also that ¢; := 0 and ¢ := ¢qo + 79t*? = x2 — %y.
Step 3: h = —xz’e; — xz’es + y’zey + vz€) + Jyzes + syze; + 2%y, S0

Im(h) = z2%e; and lc(h) = —1; moreover, ¢ = 0 and ¢» = zz — 3y. Since
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Im(f,) tIm(h) and lm(f,) t lm(h), then h is reduced with respect to {f, s},
so the algorithm stops.

Thus, we get q1,q2 € A and h € A? reduced such that f = ¢ f; + ¢of , + h.
In fact,

1
Q1f1+Q2f2+h_0f1+(xz_iy)fQ‘i‘h

1
=(zz — =y)(rye; + zes + ze3) — x2°

5 ey — 932263 + y2262 + xzey

1 1 9
+ §yzeg + éyzeg + z%es

2 2 2 2 2 1
=z yze, +ry‘e; —xy'e +xz"ey — 53/262 +xz7es3 — iyzeg

2 2 2 1 1 2
—xz°eg —xz'es +yzey +xzey + Eyzeg + 5:1,/263 + 2%e3

=r’yze, + y’zes + xze; + 2es = f,
and max{Im(Im(g;) Im(f,)), lm(h)},=1 2> = max{0, z?yze;, 2%y} = 2%yze; =
Im(f).

4. GROBNER BASES

Our next purpose is to define Grobner bases for submodules of A™.

Definition 25. Let M # 0 be a submodule of A™ and let G be a non empty
finite subset of non-zero vectors of M, we say that G is a Grobner basis for M
if each element 0 # f € M is reducible w.r.t. G.

We will say that {0} is a Grobner basis for M = 0.

Theorem 26. Let M # 0 be a submodule of A™ and let G be a finite subset
of non-zero vectors of M. Then the following conditions are equivalent:

(i) G is a Grobner basis for M.
(ii) For any vector fe A™,
f€ M if and only z'ffi>+ 0.

(iii) For any 0 # f& M there exist gy, ..., g, € G such that Im(g;)|Im(f),
1 <j <t e, ind(lm(g;)) = ind(Im(f)) and there exist oy € N™ such
that a; + exp(lm(g;)) = exp(lm(f)) and

le(f) € (0 (Ie(g1))car g, -, 0 (1c(gy))Car g,

(iv) For a« € N" and 1 < u < m, let (o, M), be the left ideal of R defined

by
(o, M), := (le(P|f € M, ind(Im(f)) = u, exp(Im(f)) = «).
Then, (a, M),, = J,,, with

Ju = (0" (Ic(g))cs4lg € G,ind(Im(g)) = u and B + exp(lm(g)) = a).
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Proof. (i) = (ii): let f € M, if f = 0, then by definition f i>+ 0. If f#£0,
then there exists by € A™ such that f - hy, with Im(f) > lm(h;) and
f—hy € {(G) C M, hence hy € M; if hy = 0, so we end. If hy # 0, then we
can repeat this reasoning for hy, and since Mon(A™) is well ordered, we get
that f ihr 0.

Conversely, if f i>+ 0, then by Theorem 23, there exist g,,...,g9, € G
and q1,...,q € A such that f =q19, +---+ @9, i.e., f € M.

(ii) = (i): evident.

(i) < (iil): this is a direct consequence of Definition 20.

(iii) = (iv) Since R is left Noetherian, there exist ry,...,rs € R, f,...,f, €
M such that (o, M), = (r1,...,rs), ind(lm(f,)) = v and exp(Im(f,)) = « for
each 1 < ¢ <[, with (r,...,75) C (Ic(f4),...,1c(F;)). Then, (lc(f,),...,lc(f)))
= (a, M),. Let r € (o, M),, there exist ay, ...,q € Rsuch thatr = a;lc(f,)+
-+ aile(f,;); by (iii), for each 4, 1 <4 < [, there exist g;,...,9,,; € G and
bji € R such that le(f;) = b1, (le(g1;))Caysg,, + -+ brio ™ (1c(gy,i) ) Cayying, .
with v = ind(Im(f,)) = ind(lm(gji)) and exp(Im(f,)) = oy + exp(lm(gﬁ)),
thus (a, M), C J,. Conversely, if r € J,, then r = bjo” (Ic(g,))cp 4, + - +
bio? (c(g,))csrq,, With b; € R, B; € N, g, € G such that ind(Im(g;)) = u
and 3; + exp(lm(g;)) = a for any 1 < i < t. Note that 2%g, € M,
ind(Im(s%g,)) = u, exp(in(z®g,)) = a, le(sg,) = 0% (c(g,))csq, for
1 <i<t andr=>ble(zP gy) + -+ ble(zPg,), ie, r € (a, M),

(iv) = (iii): let 0 # f € M and let u = ind(Im(f)), o = exp(Im(f)), then
le(f) € (o, M)y; by (iv) le(f) = bio™ (le(gy))cs,g, + -+ + bio™(le(g,))cp, g,
with b; € R, 5; € N, g, € G such that u = ind(lm(g;)) and 8;+exp(lm(g;)) =
o for any 1 <4 <t. From this we conclude that Im(g;)|Im(f), 1 <j <t. O

From this theorem we get the following consequences.

Corollary 27. Let M # 0 be a submodule of A™. Then,
(i) If G is a Grébner basis for M, then M = (G).
(ii) Let G be a Grébner basis for M, if f€ M cmdfihr h, with h reduced
w.r.t. G, then h=0.
(iii) Let G ={gy,...,g,} be a set of non-zero vectors of M with lc(g;) = 1,
for each 1 < @ < t, such that given © € M there exists i such that
Im(g,) divides lm(r). Then, G is a Grébner basis of M.

5. CoMPUTING GROBNER BASES

The following two theorems are the support for the Buchberger’s algorithm
for computing Grobner bases when A is a quasi-commutative bijective o —
PBW extension The proofs of these results are as in [5].

Definition 28. Let F' := {g,...,g,} € A™ such that the least common
multiple of {lm(g,),...,lm(g,)}, denoted by Xp, is non-zero. Let § € N",
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Bi == exp(lm(g;)) and v; € N" such that v; + 5; = exp(Xr), 1 < i <s. Bpy
will denote a finite set of generators of

Sro = Syzg[o" 0 (1c(g)))cyir0, -+ 07 (le(g,))c10,8.)]-

For § = 0 := (0,...,0), Spy will be denoted by S and Bpy by Bp.

Theorem 29. Let M # 0 be a submodule of A™ and let G be a finite subset
of non-zero generators of M. Then the following conditions are equivalent:

(i) G is a Grobner basis of M.
(i) For all F :={gy,...,9,} C G, with Xp # 0, and for all § € N" and
any (by,...,bs) € Bpy,

i=1

In particular, if G is a Grébner basis of M then for oll F :={g,,...,9,} C G,
with Xp # 0, and any (by,...,bs) € Bp,

i:bzl'%gz i>+ 0.

=1

Theorem 30. Let A be a quasi-commutative bijective o — PBW extension.
Let M # 0 be a submodule of A™ and let G be a finite subset of non-zero
generators of M. Then the following conditions are equivalent:

(i) G is a Grobner basis of M.
(ii) Forall F:={gy,...,9,} € G, with Xp # 0, and any (b, ...,bs) € Bp,

Z bz g, ihr 0.
i=1

Corollary 31. Let A be a quasi-commutative bijective 0 — PBW extension.
Let F' = A{f,...,f.} be a set of non-zero vectors of A™. The algorithm below
produces a Grébner basis for the submodule (f;, ..., f,) P(X) denotes the set
of subsets of the set X :
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Grobner Basis Algorithm for Modules over
Quasi-Commutative Bijective 0 — PBIW Extensions

INPUT: F:={f,,....fYC A" £ #0,1<i<s
OUTPUT: G ={gy,...,9,} a Grébner basis for (F)
INITIALIZATION: G :=0,G':= F
WHILE G’ # G DO
D := P(G') — P(G)

G =G
FOR cach S :={g,,,...,g,} € D, with Xg # 0, DO
Compute Bg

FOR each b= (by,...,b;) € Bs DO
Reduce Zle bjzi g, i/hr T,
with T reduced with respect to G’
and y; defined as in Definition 28

IF r+# 0 THEN
G =G U{r}

From Theorem 8 and the previous corollary we get the following direct
conclusion.

Corollary 32. Let A be a quasi-commutative bijective 0 — PBW extension.
Then each submodule of A™ has a Grébner basis.

Now, we illustrate with an example the algorithm presented in Corollary 31.

Example 33. We will consider the multiplicative analogue of the Weyl algebra

A = 03(/\21, )\317 )\32) = 03 (27 l 3> == U(@[$1])<$2, l’3>,

2 )
hence we have the relations

ToX1 = Ao 01Ty = 2019, S0 o09(x1) = 2x; and de(x1) =0,

1 1
T3l = )\311}11’3 = 533'1]73, SO 0'3(5E1) = 55[)1 and 53(.]71) = O,

T3T9 = )\325L’2I3 = 31’2!133, S0 Co3 = 3,
and for r € Q, o3(r) = r = o3(r). We choose in Mon(A) the deglex order with
xy > x3 and in Mon(A?) the TOPREV order with e; = es.

Let f, = 2223e; + moxses, Im(f)) = 23e; and f, = 2z11973€) + 7969,
Im(f,) = zox3e;. We will construct a Grobner basis for the module M :=
<f17 f2>

Step 1: we start with G := 0, G’ := {f,, f»}. Since G’ # G, we make

D = P(G,) - P(G) = {Sl,SQ,SLQ}, with Sl = {fl}vSQ = {f2}751,2 =
{f1, f2}. We also make G := G’, and for every S € D such that X g # 0 we
compute Bg:
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e For S; we have

SyZQ[II][U% (lc(fl))cw,&]’
where 8; = exp(lm(f,)) = (2,0); X5, = Lem{lm(f,)} = lm(f,) = 23ey;
exp(Xs,) = (2,0); 71 = exp(Xg,) — B = (0, 0); 2P = 23, 50 ¢y, 5, = 1.
Then,

o (1e(f1))en = 07 (21)1 = o305 (1) = 2.

Thus, Syzq,,j[27] = {0} and Bg, = {0}, i.e., we do not add any vector to G".

e For S5 we have an identical situation.
e For S; » we compute

SyZQ[:{:l][U’Y1 (1C(fl))cv17ﬁ1 o (lc(f2))c’72,52]7

where 81 = exp(Im(f,)) = (2,0) and 8> = exp(Im(f5)) = (1,1);

X5y, = lem{lm(f,),Im(f,)} = lem(a3e1, za73€1) = 2373€1;

eXp(XSI,Q) = (27 1); M= eXp(XSLz) _ﬁl = <07 1) and Yo = eXp(XSLZ) _52
= (1, 0); 27 2P = w323 = 3wow3wy = 92373, 50 ¢y 5, = 9; in a similar way
2xP? = 2lzy, ie., ¢, 5, = 1. Then,

9
o™ (le(f 1) ,m = 07 (27)9 = 0305(21)9 = (03(1)03(21))9 = 27
and
02 (1c(fy))Cr8, = 072(221)1 = 0905(271) = 09(271) = 471.

Hence Syzg,, (27 4a1] = {(b1,02) € Qlz)* | bi(F27) + ba(421) = 0} and
Bs,, = {(4,—%z1)}. From this we get

9 9
2,.2
4!1771](.1 — ZZEL’L”YZfQ = 4$3<ZE1I261 + {EQI‘3€2) — Z$1$2(2[E1{L’21‘361 + 35282)
9 9
= 4[L’3I%l‘§€1 + 4[L’3(L’2[E3€2 - ZI‘1I221’1$2{L’3€1 — ZZL’1I§€2

= Qx%xgxgel + 121:235%62 — 935%:6%90361 — lexgeg

9
2 2, ._
= 12z925e9 — ZZE1$262 = fa,

so lm(f3) = zoxie;. We observe that f, is reduced with respect to G'. We

make G’ := G'U {f3}7 i'e'7 G = {f17 f27 f3}

Step 2: since G = {f, fo} # G' = {f1, fa [}, we make D := P(G') —
P(G), i.e., D = {Sg, 5173, 5273, 3172’3}, Where Sl = {f1}7 5173 = {f17 f3}, 52’3 =
{f2 3}, 5123 = {Ff1, f2, f3}. We make G := G’, and for every S € D such
that X¢ # 0 we must compute Bg. Since Xg, , = Xg5,, = Xg,,, = 0, we
only need to consider Sj.

e We have to compute

SyZQ[zl] [U’YS (lc(fi’»))c'ys,ﬂs] )
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where 3 = exp(Im(f3)) = (1,2); X, = lem{lm(f3)} = Im(f;) = z223es;
exp(Xs,) = (1,2); 73 = exp(Xg,) — B3 = (0, 0); 2732 = T9x3, SO Crg 85 = L.
Hence

07 (e(f3))era s = 07°(12)1 = 0303(12) = 12,

and Syzg,,1[12] = {0}, i.e., Bs, = {0}. This means that we not add any vector
to G" and hence G = {f, fo, f3} is a Grobner basis for M.

6. SYZYGY OF A MODULE

We present in this section a method for computing the syzygy module of a
submodule M = (f,,...,f,) of A™ using Grébner bases. This implies that
we have a method for computing such bases. Thus, we will assume that A is
a bijective quasi-commutative o — PBW extension.

Let f be the canonical homomorphism defined by

A Loam

where {ey,..., es} is the canonical basis of A°. Observe that f can be repre-
sented by a matrix, i.e., if f; := (fy;,... , fmj)T, then the matrix of f in the
canonical bases of A® and A™ is

fll . fls
F o= [fl fs] = € Myxs(A).
fml fms

Note that I'm(f) is the column module of F, i.e., the left A-module generated
by the columns of F"

Im(f):<f(el)>7f(es)>:<f1a7fs>:<F>

Moreover, observe that if @ := (a1, ...,a,)’ € A*, then

(6.1) f(a) = (a"F)T.
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In fact,

fla)=aif(e))+ - +asfles) =arf,+ -+ asf
Jin fis
=a; | ¢ |+ tas |
Jm fims
ayfi1+ -+ asfis

ai fm1 + -+ Qs fons
fll fml
:([al"'as} )T
Jis o Jms
— (aTFT)T.

We recall that

Syz({f1,.. -, fs}) ={a = (al,...,as)T € A|layfy + -+ af, =0}
Note that

(62) Syz({fla te 7fs}> = ker(f)7
but Syz({f;,...,f,}) # ker(F) since we have
(6.3) a < Syz({f,,....f.})) & a'F' =o0.

The modules of syzygies of M and F' are defined by
(6.4) Sys(M) := Syz(F) := Syz({f1,. .., f})-

The generators of Syz(F') can be disposed into a matrix, so sometimes we
will refer to Syz(F') as a matrix. Thus, if Syz(F') is generated by r vectors,
Z1,..., 2., then

Syz(F) = (z1,...,2,.),

and we will use the following matrix notation

211 ° Rl1r
Syz(F) = Z(F):=[z1-+ 2| = | : D€ Mo (A),
Zgl *°° Rsr
thus we have
(6.5) Z(F)'FT =0.

Let G :={g,...,9:} be a Grobner basis of M, then from Division Algorithm
and Corollary 27, there exist polynomials ¢;; € A, 1 <¢ <t, 1< j < s such
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that
Fi=q19:1+ - +ang
s =091+ + @9y,
ie.,
(6.6) FT' =Q"G",
with
Q11 " qis g - gue
Q:= gyl = | : dle Gi=lgrg) = | :
G Qs Gt Gt
From (6.6) we get
(6.7) Z(F)Y'QTG" =o.

From the algorithm of Corollary 31 we observe that each element of G can
be expressed as an A-linear combination of columns of F, i.e., there exists
polynomials hj; € A such that

91:h11f1+"'+h31.fs

g, = huf,+-+haf,,

so we have
(6.8) GT =H'FT,
with
hir -+ hy
H = [hsz] - :
hsl Tt hst

The next theorem will prove that Syz(F') can be calculated using Syz(G), and
in turn, Lemma 39 below will establish that for quasi-commutative bijective
o — PBW extensions, Syz(G) can be computed using Syz(L¢), where

Lo = [lt(g,) -+ 1i(g,)].
Suppose that Syz(Lg) is generated by [ elements,

2y A
(6.9) Syz(L¢g) = Z(Lg) = [z’l’ ce z;’] =

7
A1 R
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The proof of Lemma 39 will show that Syz(G) can be generated also by [

elements, say, z,..., 2}, i.e., Syz(G) = (z),..., z]); we write
2y 2y
Syz(G) := Z(G) := [z} -+ z]] = | : D | € My(A),
Z/ IR z/
tl tl
and hence
(6.10) Z(G)'GT = 0.

Theorem 34. With the above notation, Syz(F) coincides with the column
module of the extended matriz [(Z(G)"HT)T I, — (QTHT)T], i.e., in a matriz
notation

(6.11) Sy2(F) = [(Z(G)THT)T I, — (QTHT)"].

Proof. Let z := (z1,...,25)7 be one of generators of Syz(F), i.e., one of
columns of Z(F), then by (6.3) 2T FT = 0, and by (6.6) we have 27QTG”T = 0.
Let w := (27QT)T, then u € Syz(G) and there exists polynomials wy, ..., w; €
A such that w = w2} + -+ + w2}, ie, v = (W' Z(G)")T, with w =
(wy,...,w)T. Then, u" HT = (wTZ(G)")HT | ie., zTQTH" = (wT Z(G)")HT
and from this we have
2T = 2TQTHT 4 27 — 27QTHT
— ZTQTHT + ZT(IS o QTHT)
= (w"Z(G)"H" + 2" (I, — Q"H™).

From this can be checked that z € ([(Z(G)"HT)" I, — (QTHT)™]).
Conversely, from (6.8) and (6.10) we have (Z(G)THT)FT = Z(G)T (HTFT) =
Z(G)T'GT = 0, but this means that each column of (Z(G)"H™)T is in Syz(F).
In a similar way, from (6.8) and (6.6) we get ([,—QTHT)F' = FT—QTHTFT =
FT-QTGT = FT—FT = 0, i.e., each column of (I,—QT HT)T is also in Syz(F).
This complete the proof. 0

Our next task is to compute Syz(Lg). Let L = [y X -+ ¢ X ] be a matrix
of size m x t, where X; = Xje;,..., X = X;e; are monomials of A™,
1.0 € A={0} and 1 < iy,...,5 < m. We note that some indexes
1,...,% could be equals.

Definition 35. We say that a syzygy h = (hy,...,h;)T € Syz(L) is homoge-
neous of degree X = Xe;, where X € Mon(A) and 1 <i <m, if

(i) h; is a term, for each 1 < j <.

(ii) For each 1 < j <, either h; = 0 or if h; # 0 then Im(Im(h;)X;) = X.

Proposition 36. Let L be as above. For quasi-commutative 0 — PBW exten-
sions, Syz(L) has a finite generating set of homogeneous syzygies.
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Proof. Since A is a Noetherian module, Syz(L) is a finitely generated submod-
ule of A’. So, it is enough to prove that each generator h = (hy,..., h)T of
Syz(L) is a finite sum of homogeneous syzygies of Syz(L). We have hic; X e, +
-+ hiey Xve;, = 0, and we can group together summands according to equal
canonical vectors such that h can be expressed as a finite sum of syzygies of
Syz(L). We observe that each of such syzygies have null entries for those places
J where e;; does not coincide with the canonical vector of its group. The idea
is to prove that each of such syzygies is a sum of homogeneous syzygies of
Syz(L). But this means that we have reduced the problem to Lemma 4.2.2 of
[1], where the canonical vector is the same for all entries. We include the proof
for completeness.

So, let f = (f1,..., fi)T € Syz(c1 X1, ..., Xy), then fiey Xi+- -+ fiee Xy =
0; we expand each polynomial f; as a sum of u terms (adding zero summands,
if it is necessary):

.fj :aljyi+"'+aujyu7

where a;; € R and Y] > Yy > --- > Y, € Mon(A) are the different monomials
we found in fi,..., f;; 1 < j <t. Then,

((ZHYl + -+ aulYu)chl + -+ (altYI + -t CLutYu)CtXt = 0.

Since A is quasi-commutative, the product of two terms is a term, so in the
previous relation we can assume that there are d < tu different monomials,
Zy,...,Zq. Hence, completing with zero entries (if it is necessary), we can
write

f=(buY,... >bltY1t)T + -+ (b Yar, - - 7bthdt)T>

where (b1 Y1, - -+ 0kt Yie)T € Syz(e1 X1, . .., ¢;Xy) is homogeneous of degree Zy,
1<k <d. ]

Definition 37. Let Xy,...,X; € Mon(A™) and let J C {1,...,t}. Let
Xy = lem{X;|j € J}.
We say that J is saturated with respect to {Xy, ..., Xy}, if
XXy =j€J

for any j € {1,...,t}. The saturation J' of J consists of all j € {1,...,t} such
that leXJ.

Lemma 38. Let L be as above. For quasi-commutative bijective 0 — PBW
extensions, a homogeneous generating set for Syz(L) is

{s/|J C{1,...,t} is saturated with respect to {X1,..., X;},1 <v <ry},

where
J J
s, = E b,z e,

jedJ
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with v; € N* such that ; + 3; = exp(X;), B; = exp(X;), j € J, and b) :=
(b);)jes, with BY == {b{,...,b] } is a set of generators for Syzp[o7i (c;)cy, 5, |
jeJl.

Proof. First note that s/ is a homogeneous syzygy of Syz(L) of degree X ; since

each entry of s/ is a term, for each non-zero entry we have lm(z% X ;) = X ;,
and moreover, if i; := ind(X ;), then

(s)HTL")" = bl X ;=Y b0 (c;)a" X

JEJ jeJ
- (Z(b;}jgw (Cj)c’Yjﬁj)mvj—i_ﬁj)eiJ =0.
jeJ

On the other hand, let h € Syz(L), then by Proposition 36, Syz(L) is generated
by homogeneous syzygies, so we can assume that h is a homogeneous syzygy of
some degree Y =Ye;, YV := 2% We will represent h as a linear combination
of syzygies of type s/. Let h = (d1Y1,...,d;Y;)T, with dy € R and Y}, := 2%
1<Ek<tletJ={je{l,...,t}|d; # 0}, then Im(Y; X ;) = Y for j € J, and
0=> dY;;X; =) djo*(c;)V;X; =Y djo™ (¢;)ca,5,Y.

jes jed jed
In addition, since Im(Y;X;) = Y then X; | Y for any j € J, and hence
X, | Y, ie., there exists 6 such that 6 4+ exp(X ;) = a = 6 + ~; + f;; but,
a; + p; =asince Im(Y; X ;) =Y, s0 aj =0+ ;.

Thus,
0=2 djo™(¢))ca, Y =Y djo" " (¢;)chn,,Y
j€d jed

and from Remark 7 we get that

0= o (c;))Cosn,8 = Y dichs, C02,0" ()04, 5

JjeJ jedJ

=Y dicg} 0" (07 (¢))Con, o1, 5
jeJ

= Z d; 097 U% CJ))UQ(CWﬁj)C@m-Fﬁj'
jeJ

We multiply the last equality by Ce_ixp( , but ¢!

_ -1
e g bexp(X ) — Co+8 for any
7€ J,80

O—Zd 097 O'J (¢j)ey,.8;)-

jeJ
Since A is bijective, there exists d; such that o?(d}) = d;c, .

RN
0= Za (d5)o O (o ( (¢j)Cy,.8,)

JjeJ
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and from this we get
0= ngaw(cj)c%ﬁj.
jeJ
Let J" be the saturation of J with respect to {X,..., X}, since d; = 0 if
j € J' —J, then d; = 0, and hence, (d} | j € J') € Syzg[o7i(cj)cy, 5, | 5 € J].

From this we have
T

. J/
(dy[j€T)=>_aby.

v=1

Since X = X, then X ; also divides Y, and hence

t
= Ye — ol 0 vie — 0( 70,7 o .
h—E d]Y]e]—E djceﬁja:xfe]—g o’ (d;)x"x" e;
Jj=1

jed’ jed’
Ty Ty

o 0 31, i - 9 J! v; . [ J
= E rdre; = E x E ayby; | 2Ve; = zayb,;xe;

jeJ’ jeJ’ v=1 jeJ v=1

Tyt
_ 6 J
= E x’ay, E bz e;

v=1 jet’

Ty
= Z o?(a,)z?s?.
v=1
0

Finally, we will calculate Syz(G) using Syz(L¢g). Applying Division Algo-
rithm and Corollary 27 to the columns of Syz(L¢) (see (6.9)), foreach 1 < v <[
there exists polynomials py,, ..., pn € A such that

21,91+ + 20,9, = Progy + - + D gy

ie.,
(6.12) Z(Lg)'GT = PTGT,
with
P11 - Pu
P:=: :
Pt1 - DPu

With this notation, we have the following result.

Lemma 39. For quasi-commutative bijective o — PBW extensions, the column
module of Z(G) coincides with the column module of Z(Lg) — P, i.e., in a
matrix notation

(6.13) Z(G) = Z(Lg) — P.
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Proof. From (6.12), (Z(Lg) — P)TGT = 0, so each column of Z(Lg) — P is in
Syz(G), i.e., each column of Z(L¢g) — P is an A-linear combination of columns
of Z(G). Thus, (Z(Lg) — P) C (Z(Q)).

Now, we have to prove that (Z(G)) C (Z(Lg) — P). Suppose that (Z(G)) €
(Z(Lg) — P), so there exists 2z’ = (2],...,2])7 € (Z(G)) such that 2z’ ¢
(Z(Lg) — P); from all such vectors we choose one such that
(6.14) X = 1nrlax{lm(lm( )1m(g;))}

<j<
be the least. Let X = Xe; and

Jo={je{l,...,t}[Im(Im(2}) Im(g;)) = X }.

Since A is quasi-commutative and 2z’ € Syz(G) then

> 1t(Z) lt(g,) = 0.

jeJ
Let h = ZjeJlt(zé)Ej, where €y,..., €; is the canonical basis of A'. Then,
h € Syz(lt(gl), ...,1t(g,)) is a homogeneous syzygy of degree X. Let B :=
{z1,..., z]'} be a homogeneous generating set for the syzygy module Syz(L¢)),

where 27 has degree Z, = Z,e;, (sce (6.9)). Then, h = 3! | a,2", where
a, € A, and hence
h= (a2, + - +az),. . a2+ +azp)’.

We can assume that for each 1 < v <, a, is a term. In fact, consider the first
entry of h: completing with null terms, each a, is an ordered sum of s terms
(en X+ -+ s Xis)2ly + -+ (enXn + -+ as Xis) 21,

with X1 = X =+ = X, foreach 1 <v </, so

Im (X7 Im(2]})) = Im(Xp2lm(2]])) = -+ > Im(X351m(2])))
(6.15) :

Im(X;; Im(27))) = Im(Xp Im(27))) = -+ - = Im(X;, lm(27)))

Since each zj is a homogeneous syzygy, each entry z7, of 27 is a term, but the
first entry of h is also a term, then from (6.15) we can assume that a, is a
term.

We note that for j € J

6(25) = a1z, + - + a2y,
and for j ¢ J

a1zjy + -+ a2y = 0.
Moreover, let j € J, so lm(lm(alz”l—l— +azy) lm(g;)) = Im(Im(2}) Im(g;)) =
X, and we can choose those v such that lm(avzﬂ)) Im(z}), for the others v
we can take a, = 0. Thus, for 5 and such v we have

Im(lm(a,) Im(Im(z},) Im(g;))) = X = Xe;.
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On the other hand, for j,j € J With j" # j, we know that z! is homogeneous
of degree Z, = Zy,e,,, hence, if zj, # 0, then Im(Im(27, )lm(gj ) =2, =
Im(Im(2},) Im(g;)). Thus, we must conclude that i, =1 and

(6.16) Im(lm(a,) Im(lm(z},) Im(g,))) = X,

for any v and any j such that a, # 0 and 27, # 0.

We define q' := (¢},...,q))T, where q; =2y if j ¢ J and ¢ := 2 — 1t(2))
if j € J. We observe that z’ = h 4 ¢q', and hence 2z’ = 22:1 ayzl + q' =
S ay(sy+p,)+ ¢, with s, := 2" — p,, where p, is the column v of matrix

v

P defined in (6.12). Then, we define

l

r=_ap,)+q,

v=1

We will

and we note that r = 2’ — ) a,8, € Syz(G) c) — P).
T i)} =< X. For each

get a contradiction proving that max;<;<;{lm(Im(
1 <5 <t we have

—(Z(L
7)1m(g
r; =a1pj+ -+ api+ CI}
and hence
Im(Im(r;) Im(g;)) = Im(Im(a1pj1 + - - - + apy + q;5) Im(g;))
= Im(max{lm(a1pj1 + - - + ap;i), Im(g;)} Im(g;))
< n(mase{ max {Im(lmn(a,) ()} () } (g, ).

By the definition of ¢’ we have that for each 1 < j < ¢, Im(Im(q}) Im(g;)) < X.

In fact, if j ¢ J, Im(Im(q}) Im(g;)) = Im(Im(z}) Im(g,)) < X, and for j € J,
Im(Im(q})Im(g,)) = Im(Im(2; —1t(z})) Im(g,)) < X. On the other hand,

t
szvg] Zp]vgja
j=1

with
t
4
1m<Z; #,9;) = max {lm(lm(p;,) Im(g.;))}.
j=
But, ZJ L 2j,1t(g;) = 0 for each v, then
Zz '9;) < max{lm(lm( ) 1m(g;))}.
Hence,

max {Im(lm(p;,) Im(g;))} < fnax{lm(lm( »)1m(g;))}

1<5<t
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for each 1 < v < [. From (6.16), maxi<j<:{lm(Im(a,) Im(Im(p;,) Im(g;)))} <
1<v<l

maxi <j<¢{Im(Im(a,) Im(lm(z7,) Im(g;)))} = X, and hence, we can conclude
1<v<l

that max;<j<,{lm(lm(r;) Im(g,))} < X. o

Example 40. Let M = (f, f,), where f, = 22z3e; + zox3€y and f, =
221 1973€] + 19y € A2 with A := o(Q[z1])(xe, 3). In Example 33 we com-
puted a Grébner basis G = {f, f,, f3} of M, where f; = 122523e,— 2z123€5.
Now we will calculate Syz(F') with F' = {f,, f5}:

(i) Firstly, we compute Syz(Lg) using Lemma 38:

LG = [lt(fl) lt(fQ) lt(fS)} = [w%x%el 21‘12721’361 121’21’%82} .

For this we choose the saturated subsets J of {1,2,3} with respect to
{z3e1, Tax3e;, xoxies} and such that X ; # 0:
e For J; = {1} we compute a system B’ of generators of

Syz@[a:l] [Oﬁl (1C<fl))c’ﬂ751] )

where 3; := exp(Im(f;)) and v, = exp(X ;) — 81. Then, B”* = {0},
and hence we have only one generator b' = (b{1) = 0 and &' =
bllamé, = 0&,, with & = (1,0,0)".

e For J, = {2} and J3 = {3} the situation is similar.

e For J; 5 = {1,2}, a system of generators of

Syzgpe 07 (e(f1))en 8 072 (e(F2)) v 6],

where 8; = exp(Im(f,)), B2 = exp(lm(f,)), 11 = exp(X,,) — f1 and
Yo = exp(X,,) — Ba, is B2 = {(4,—%x1)}, thus we have only one
generator b7"? = (b712 p/L?) = (4, —971) and

31‘]1’2 = bﬁ’zx“él + b‘{;’Qx”ég

= 4$3é1 — Z—ll'lxgég

4$3
= g L142

0

41’3
SyZ(Lg> = < —%x’l.ﬂjg > s
0

Then,

or in a matrix notation
4&73
SyZ(L(;) = Z(Lg> = —%xll’g
0
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Next we compute Syz(G): By Division Algorithm we have

9
drsf, — Z—ll’ﬂfzfz +0f3 =pufi+pafy+pafs,

so by the Example 33, p1;1 = 0 = py; and p3; =1, i.e., P = e3. Thus,

and

4.1’3
Syz(G) = < —%$1$2 >
—1

Finally we compute Syz(F): since

f1:1f1+0f2+0f37 f2:of1+1f2+0f3

then
10
Q=101
00
Moreover,

9
F1=1f1+0fy [f2=0f; +1f,, f3:4$3f1—1$1$2f2a

hence

o 10 4![‘3
H = |:0 1 —%$1£C2:| ’

By Theorem 34,
Syz(F) = [(Z(G)"H")" I, = (QTH")"],
with

1 0
(Z2(&)"H")" = | [42s — 22122 —1] | O 1

4333 —%xlm

and
L —(QTH")" = {8 8} :

From this we conclude that Syz(F') = 0. Observe that this means that
M is free.
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