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EXISTENCE OF LOCAL SOLUTIONS FOR SOME
INTEGRO-DIFFERENTIAL EQUATIONS OF ARBITRARY

FRACTIONAL ORDER

MOHAMMED M. MATAR AND TARIQ O. SALIM

Abstract. In this paper we investigate the existence and uniqueness of a
local solution for different types of fractional integro-differential equations
of any order. The results are obtained by using fixed point theorems. An
example is introduced to illustrate the theorem.

1. Introduction

Fractional differential equations have been gained much attention during the
past decades. The extensive results on initial and boundary value problems of
fractional order for the problems of existence and uniqueness of solutions are
due to the appropriate applicability of such problems to many realistic phe-
nomenon. More precisely, the fractional differential equations are appeared in
many engineering and scientific disciplines such as physics, chemistry, biology,
economics, control theory, signal and image processing, biophysics, blood flow
phenomena, aerodynamics, and fitting of experimental data (see [7]-[9] and
references therein). The fact that fractional differential equations are consid-
ered as alternative models to nonlinear differential equations which induced
extensive researches in various fields including the theoretical part. The ex-
istence and uniqueness problems of fractional nonlinear differential equations
as a basic theoretical part are investigated by many authors (see [1]-[15]) and
references therein). In [3] and [14], the authors obtained sufficient conditions
for the existence of solutions for a class of boundary value problem for frac-
tional differential equations in the cases of 0 < α ≤ 1 and 1 < α ≤ 2 re-
spectively by using the Caputo fractional derivative and nonlocal conditions.
Whereas, The authors in [1] considered the existence problem of solutions
for a class of boundary value problems for fractional differential equations of
order 2 < α ≤ 3 involving the Caputo fractional derivative. The existence
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and uniqueness of initial value problems for some fractional differential equa-
tions are investigated by many authors (see [4], [6], and [8]). The fractional
integro-differential equations in different orders are investigated by [10]-[13]
using Banach, Schaefer and Krasnoleskii fixed point theorems. The existence
of local solutions to initial value problem of Cauchy type for fractional differen-
tial equations involving Caputo definition are deeply investigated in the books
([7], [15], and references therein). In fact, the equivalent Volterra or Fred-
holm integral equations to Cauchy problem for nonlinear fractional differential
equations introduced in the cited articles are essential to prove the existence of
such systems. Motivated by these works, we study in this paper the existence
and uniqueness of a local solution to initial-value and boundary-valued Cauchy
problem for some fractional integro-differential equations at any inner point of
a finite interval involving the Caputo derivative. The results are obtained by
applying the fixed point theorems on the corresponding Volterra and Fredholm
integral equations.

2. Equivalent integral forms

Let X = C(J,R) be a Banach space of all continuous real valued functions
defined on the interval J = [t0, T ], t0 ≥ 0, T < ∞, α ∈ (n− 1, n], and n ∈ N.

A function f is said to be fractional integrable of order α > 0 (see [7], and
[15]) if for all t > t0,

Iαf(t) = (Iαf) (t) =
1

Γ (α)

t∫
t0

(t− s)α−1 f(s)ds,

exists and if α = 0, then I0f(t) = f(t). The Caputo fractional derivative of
x is defined as CDα

t0
x(t) = In−α

(
dnx
dtn

)
(t), for t > t0, provided that Dnx is

fractional integrable of order n− α.
In what follows, we assume that all functions below are fractional integrable

functions of any order less than or equal to n on their domains.
For a given fractional differential equation, we obtain in this section some

equivalent integral forms in order to use in the proof of the existence problems.
We begin these forms by the following basic linear form.

Theorem 1. Let f, g ∈ X, and F be fractional integrable with order α. Then,
the fractional integro-differential system

CDα
t0
x(t) = g(t) +

t∫
t0

f(s)ds, t ∈ J − {t∗}(2.1)

x(k)(t∗) = bk ∈ R, k = 0, 1, 2, . . . , n− 1, t∗ ∈ J
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is equivalent to the Volterra integral equation

(2.2) x(t) =
n−1∑
k=0

(t− t∗)
k

k!

(
bk − Iα−kF (t∗)

)
+ IαF (t), t ∈ J,

where F (t) = g(t) +
t∫

t0

f(s)ds.

Proof. See [13, Theorem 3.1]. �
In accordance with the proof of Theorem 1, it is not hard to deduce some

equivalent forms of different nonlinear integro-differential systems. In what

follows, assume that G(t, x(t)) = g(t, x(t)) +
t∫

t0

f(s, x(t))ds.

Corollary 1. The nonlinear fractional integro-differential system

CDα
t0
x(t) = g(t, x(t)) +

t∫
t0

f(s, x(t))ds, , t ∈ J − {t∗}(2.3)

x(k)(t∗) = bk ∈ R, k = 0, 1, 2, . . . , n− 1, t∗ ∈ J

is equivalent to the integral equation

x(t) =
n−1∑
k=0

(t− t∗)
k

k!
bk +

1

Γ (α)

t∫
t0

(t− s)α−1G(s, x(s))ds

−
n−1∑
k=0

(t− t∗)
k

k!Γ (α− k)

t∗∫
t0

(t∗ − s)α−k−1 G(s, x(s))ds,

for t ∈ J .

Corollary 2. The nonlinear fractional integro-differential system

CDα
t0
x(t) = g(t, x(t)) +

t∫
t0

f(s, x(t))ds, t ∈ [t0, T )

x(k)(T ) = bk ∈ R, k = 0, 1, 2, . . . , n− 1,

is equivalent to the integral equation

x(t) =
n−1∑
k=0

(−1)k
(T − t)k

k!
bk +

1

Γ (α)

t∫
t0

(t− s)α−1 G(s, x(s))ds(2.4)

+
n−1∑
k=0

(−1)k+1 (T − t)k

k!Γ (α− k)

T∫
t0

(T − s)α−k−1 G(s, x(s))ds,
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for t ∈ J .

Corollary 3. The nonlinear fractional integro-differential system

CDα
t0
x(t) = g(t, x(t)) +

t∫
t0

f(s, x(t))ds, t ∈ (t0, T )(2.5)

x(t0) = b0 ∈ R, x(k)(T ) = bk ∈ R, k = 1, 2, . . . , n− 1

is equivalent to the integral equation

x(t) = b0 −
n−1∑
k=1

(−1)k

k!

(
(T − t0)

k − (T − t)k
)
bk(2.6)

+
1

Γ (α)

t∫
t0

(t− s)α−1G(s, x(s))ds

+
n−1∑
k=1

(−1)k

k!Γ (α− k)

(
(T − t0)

k − (T − t)k
) T∫
t0

(T − s)α−k−1G(s, x(s))ds,

for t ∈ J .

Now, consider the fractional integro-differential equation

CDα
t0
x(t) = H(t,κ(t), %(t)), t ∈ J − {t∗}(2.7)

x(k)(t∗) = bk ∈ R, k = 0, 1, 2, . . . , n− 1, t∗ ∈ J

where κ(t) =
t∫

t0

f(t, s, x(s))ds, and %(t) =
T∫
t0

g(t, s, x(s))ds are respectively

the Volterra and Fredholm integral operators with values in X. The function
H : J × X × X → R is fractional integrable with order α. In accordance of
Theorem 1, one can deduce the equivalent mixed Volterra-Fredholm integral
form of (2.7) as

x(t) =
n−1∑
k=0

(t− t∗)
k

k!
bk +

1

Γ (α)

t∫
t0

(t− s)α−1 H(s,κ(s), %(s))ds(2.8)

−
n−1∑
k=0

(t− t∗)
k

k!Γ (α− k)

t∗∫
t0

(t∗ − s)α−k−1H(s,κ(s), %(s))ds.

3. Existence and uniqueness problems

We investigate in this section the existence of solution for the fractional
integro-differential systems (2.3)-(2.7) by using the well-known Banach and
Schaefer’s fixed point Theorems. Let J1 = [t∗ − h, t∗ + h] ⊂ (t0, T ), where
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0 < h < min{t∗− t0, T − t∗}, and X1 = C(J1,R) be the space of all real valued
continuous functions.
H1. Let f, g : J ×X → R be jointly continuous Lipschitzian functions that is,
there exist positive constants A and B such that

‖f(t, x)− f(t, y)‖ ≤ A‖x− y‖,
‖g(t, x)− g(t, y)‖ ≤ B‖x− y‖,

for any t ∈ J, and x, y ∈ X. Moreover, let C = supt∈J ‖f(t, 0)‖, D =
supt∈J ‖g(t, 0)‖, and L = max{A,B,C,D}.

Therefore, in accordance with Corollary 1, the fractional nonlinear system

CDα
t∗−hx(t) = g(t, x(t)) +

t∫
t∗−h

f(s, x(t))ds, t ∈ J1 − {t∗}(3.1)

x(k)(t∗) = bk ∈ R, k = 0, 1, 2, . . . , n− 1,

is equivalent to the integral equation

x(t) =
n−1∑
k=0

(t− t∗)
k

k!
bk +

1

Γ (α)

t∫
t∗−h

(t− s)α−1 G(s, x(s))ds(3.2)

−
n−1∑
k=0

(t− t∗)
k

k!Γ (α− k)

t∗∫
t∗−h

(t∗ − s)α−k−1G(s, x(s))ds.

where G is fractional integrable of order α. Accordingly, we define the operator
Ψ on X1 as follows:

Ψx(t) =
n−1∑
k=0

(t− t∗)
k

k!
bk +

1

Γ (α)

t∫
t∗−h

(t− s)α−1 G(s, x(s))ds(3.3)

−
n−1∑
k=0

(t− t∗)
k

k!Γ (α− k)

t∗∫
t∗−h

(t∗ − s)α−k−1G(s, x(s))ds.

The next hypothesis is essential to state and prove the first main result in this
section.
H2. Let θ1, and r1 be positive real numbers such that

θ1 = L(1 + 2h)hα

(
2α

Γ (α+ 1)
+

n−1∑
k=0

1

k!Γ (α− k + 1)

)
< 1,

r1 ≥
θ1 +

∑n−1
k=0

hk

k!
|bk|

1− θ1
.

Moreover, let Ω1 = {x ∈ X1 : ‖x‖ ≤ r1}.
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Theorem 2. Let H1 and H2 be satisfied, then, there exists a unique solution
for the fractional integro-differential system (3.1) in X1.

Proof. The Banach fixed point theorem is used to show that Ψ defined by
(3.3) has a fixed point on the closed subspace Ω1 of the Banach space X1.
This fixed point satisfies the integral equation (3.2), hence is a solution of
(3.1). For any t ∈ J1, the continuity of f(t, x(t)) and g(t, x(t)) implies the
continuity of G(t, x(t)) and hence the continuity of Ψx(t). By using H1, we
have

|Ψx(t)| ≤
n−1∑
k=0

|t− t∗|k

k!
|bk|

+
n−1∑
k=0

|t− t∗|k

k!

(B ‖x‖+D) + (A ‖x‖+ C) (t− t∗ + h)

Γ (α− k + 1)
hα−k

+
(B ‖x‖+D) + (A ‖x‖+ C) (t− t∗ + h)

Γ (α+ 1)
(t− t∗ + h)α

≤
n−1∑
k=0

hk

k!
|bk|+

n−1∑
k=0

hα

k!

L (‖x‖+ 1) (1 + 2h)

Γ (α− k + 1)

+
L (‖x‖+ 1) (1 + 2h)

Γ (α+ 1)
(2h)α

≤
n−1∑
k=0

hk

k!
|bk|

+L(1 + 2h)hα

(
2α

Γ (α+ 1)
+

n−1∑
k=0

1

k!Γ (α− k + 1)

)

+L(1 + 2h)hα

(
2α

Γ (α+ 1)
+

n−1∑
k=0

1

k!Γ (α− k + 1)

)
‖x‖ .

Hence, if x ∈ Ω1, it is obvious that Ψx ∈ Ω1. Next, let x, y ∈ Ω1, then

|Ψx(t)−Ψy(t)| ≤
n−1∑
k=0

|t− t∗|k

k!

(B + A (t− t∗ + h)) ‖x− y‖
Γ (α− k + 1)

hα−k

+
(B + A (t− t∗ + h)) ‖x− y‖

Γ (α+ 1)
(t− t∗ + h)α

≤ L(1 + 2h)hα

(
2α

Γ (α+ 1)
+

n−1∑
k=0

1

k!Γ (α− k + 1)

)
‖x− y‖

≤ θ1 ‖x− y‖ ,
since θ1 < 1, then Ψ is a contraction mapping on Ω1. Hence, Ψ has a fixed
point which is the unique solution to (3.1). �
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Next result is getting the existence of a local solution for the Cauchy problem
(2.4). Let J2 = [T − h, T ] ⊂ (t0, T ], where 0 < h < T − t0, and X2 = C(J2,R)
be the space of all real valued continuous functions on J2. The system

CDα
T−hx(t) = g(t, x(t)) +

t∫
T−h

f(s, x(t))ds, t ∈ [T − h, T ),(3.4)

x(k)(T ) = bk ∈ R, k = 0, 1, 2, . . . , n− 1

is equivalent to the Volterra-Fredholm integral equation

x(t) =
n−1∑
k=0

(−1)k
(T − t)k

k!
bk +

1

Γ (α)

t∫
T−h

(t− s)α−1 G(s, x(s))ds

−
n−1∑
k=0

(−1)k
(T − t)k

k!Γ (α− k)

T∫
T−h

(T − s)α−k−1G(s, x(s))ds

for x ∈ X2, and t ∈ J2.
The modified version of H2 can be given by the following:

H3. Let θ2, and r2 be positive real numbers such that

θ2 = L(1 + h)hα

(
1

Γ (α+ 1)
+

n−1∑
k=0

1

k!Γ (α− k + 1)

)
< 1,

r2 ≥
θ2 +

∑n−1
k=0

hk

k!
|bk|

1− θ2
.

Moreover, let Ω2 = {x ∈ X2 : ‖x‖ ≤ r2}.
The proof of the next result is similar to that one of Theorem 2, hence it is

omitted.

Corollary 4. Let H1 and H3 be satisfied, then, there exists a unique solution
for the fractional integro-differential system (3.4) in X2.

Now, consider the initial value problem of the fractional integro-differential
system

CDα
t0
x(t) = g(t, x(t)) +

t∫
t∗

f(s, x(t))ds, , t ∈ (t0, T ),(3.5)

x(k)(t0) = bk ∈ R, k = 0, 1, 2, . . . , n− 1,

that has an equivalent Volterra integral equation given by

x(t) =
n−1∑
k=0

(t− t0)
k

k!
bk +

1

Γ (α)

t∫
t0

(t− s)α−1G(s, x(s))ds
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for t ∈ J0 = [t0, t0 + h], x ∈ X0 = C(J0,R).
To establish the existence and uniqueness results to the system (3.5), we

replace the next hypothesis instead of H2.
H4. Let θ0, and r0 be positive real numbers such that

θ0 =
L(h+ 1)

Γ (α+ 1)
hα < 1, and r0 ≥

θ0 +
∑n−1

k=0
hk

k!
|bk|

1− θ0
.

Moreover, let Ω0 = {x ∈ X0 : ‖x‖ ≤ r0}.

Corollary 5. Let H1, and H4 be satisfied, then, there exists a unique solution
for the fractional integro-differential system (3.5) in X0.

Next, we consider the system (2.5)-(2.6).
H5. Let θ3, and r3 be positive real numbers such that

θ3 = L(1 + T − t0)(T − t0)
α

(
1

Γ (α+ 1)
+

n−1∑
k=1

1

k!Γ (α− k + 1)

)
< 1,

r3 ≥
θ3 +

∑n−1
k=0

(T−t0)k

k!
|bk|

1− θ3
.

Moreover, let Ω3 = {x ∈ X3 : ‖x‖ ≤ r3}.

Corollary 6. Let H1, and H5 be satisfied, then, there exists a unique solution
for the fractional integro-differential system (2.5) in X.

Remark 1. By modifications on the hypotheses H1–H5, we can obtain all the
previous results of the existence and uniqueness of solution for the fractional
integro-differential systems (2.7) and (2.8).

We close this article by obtaining a sufficient condition of existence problem
for the system (2.7) by using Schaefer’s fixed point theorem.

Theorem 3 ([5]). Let X be a Banach space. Assume that Ψ : X → X is
completely continuous operator and the set V = {x ∈ X : x = µΨx, 0 < µ < 1}
is bounded. Then Ψ has a fixed point in X.

Define the operator Ψ on X by (see 2.8)

Ψx(t) =
n−1∑
k=0

(t− t∗)
k

k!
bk +

1

Γ (α)

t∫
t0

(t− s)α−1H(s,κ(s), %(s))ds

−
n−1∑
k=0

(t− t∗)
k

k!Γ (α− k)

t∗∫
t0

(t∗ − s)α−k−1 H(s,κ(s), %(s))ds.
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H6. Let f, g : D×X → X be continuous functions, whereD = {(t, s) : t0 ≤ s ≤ t ≤ T},
and assume that H satisfying a linear growth condition

‖H(·, x, y)‖ ≤ K(1 + ‖x‖+ ‖y‖),
for any x, y ∈ X.

Theorem 4. Assume that H6 is satisfied. Then the fractional integro-differential
equation (2.7) has at least one solution.

Proof. The continuity of f and g on D × X implies the continuity of H and
hence the continuity of the operator Ψ on X. Define the nonempty closed
convex subset Ω = {x ∈ X : ‖x‖ ≤ r} of the Banach space X. If

fmax = max{‖f(t, s, x)‖ : (t, s, x) ∈ D × Ω}
gmax = max{‖g(t, s, x)‖ : (t, s, x) ∈ D × Ω}

then for any x ∈ Ω, (t, s) ∈ D, we have

(3.6) |Ψx(t)| ≤ K (1 + fmax (T − t0) + gmax (T − t0)) (t− t0)
α

Γ (α+ 1)

+
n−1∑
k=0

(T − t∗)
k

k!

(
|bk|+

K (1 + fmax (T − t0) + gmax (T − t0)) (t∗ − t0)
α−k

Γ (α− k + 1)

)
.

Hence Ψx has an upper boundM < ∞ onX. Furthermore, if t0 ≤ t1 ≤ t2 ≤ T,
then

|(Ψx) (t2)− (Ψx) (t1)| ≤
n−1∑
k=0

∣∣(t2 − t∗)
k − (t1 − t∗)

k
∣∣

k!

×

(
|bk|+

K (1 + fmax (T − t0) + gmax (T − t0)) (t∗ − t0)
α−k

Γ (α− k + 1)

)

+
K (1 + fmax (T − t0) + gmax (T − t0))

Γ (α)

t1∫
t0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ ds

+
K (1 + fmax (T − t0) + gmax (T − t0))

Γ (α)

t2∫
t1

|t2 − s|α−1 ds

≤
n−1∑
k=0

∣∣(t2 − t∗)
k − (t1 − t∗)

k
∣∣

k!

×

(
|bk|+

K (1 + fmax (T − t0) + gmax (T − t0)) (t∗ − t0)
α−k

Γ (α− k + 1)

)

+
K (1 + fmax (T − t0) + gmax (T − t0))

Γ (α+ 1)
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× (2 |t2 − t1|α + |(t2 − t0)
α − (t1 − t0)

α|)
which is independent of x, and tends to 0 as t1 → t2. This implies that
Ψ is equicontinuous on J . In consequence, it follows by the Arzela-Ascoli
theorem that the operator Ψ is completely continuous. Next, let x ∈ V =
{y ∈ Ω : y = µΨy, 0 < µ < 1} , then x = µΨx, for some µ ∈ (0, 1). Using
(3.6)), we have |x(t)| = µ |Ψx(t)| ≤ M, for any t ∈ J . Hence ‖x‖ ≤ M, which
implies the boundedness of V . As a consequence of Theorem 3, the operator Ψ
has at least one fixed point x ∈ Ω, which is the solution of (2.7). This finishes
the proof. �
Example 1. Consider the following fractional system

CD
5
2
0 x(t) =

t|x(t)|
3 + 3|x(t)|

+

t∫
0

s sin
x(s)

3
ds, t ∈ (0,

1

2
) ∪ (

1

2
, 1](3.7)

x

(
1

2

)
= x

′
(
1

2

)
= x

′′
(
1

2

)
= 1.

The functions f(t, x(t)) = t sin x(t)
3
, and g(t, x(t)) = t|x(t)|

3+3|x(t)|are jointly con-

tinuous functions on [0, 1] × [0,∞). Moreover, the hypotheses (H1) and (H2)
are satisfied such that L = 1

3
, h < 1

2
, and θ1 < 1. Hence for large r, there exist

a unique solution for the fractional differential system (3.7) on C[0, 1].
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