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ON THE GROWTH OF SOLUTIONS OF SOME
NON-HOMOGENEOUS LINEAR DIFFERENTIAL

EQUATIONS

BENHARRAT BELAÏDI AND HABIB HABIB

Abstract. In this paper, we investigate the growth of solutions to the
non-homogeneous linear differential equation

f (k) +Ak−1e
bk−1zf (k−1) + · · ·+A1e

b1zf ′ +A0e
b0zf = Feaz,

where Aj(z) 6≡ 0 (j = 0, 1, . . . , k − 1), F (z) 6≡ 0 are entire functions and
a 6= 0, bj 6= 0 (j = 0, 1, . . . , k − 1) are complex numbers.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value distri-
bution theory [7, 9, 14]. In addition, we will use λ (f) and λ (f) to denote
respectively the exponents of convergence of the zero-sequence and distinct ze-
ros of a meromorphic function f , ρ (f) to denote the order of growth of f . In
order to estimate the growth of infinite order solutions, we recall the definition
of the hyper-order.

Definition 1.1 ([14]). Let f be a meromorphic function. Then the hyper-
order ρ2 (f) of f(z) is defined by

ρ2 (f) = lim sup
r→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire
function, then the hyper-order ρ2 (f) of f(z) is defined by

ρ2 (f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM (r, f)

log r
,

where M (r, f) = max|z|=r |f(z)|.
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Definition 1.2. [14] Let f be a meromorphic function. Then the hyper-
exponent of convergence of the sequence of zeros of f(z) is defined by

λ2 (f) = lim sup
r→+∞

log logN
(
r, 1

f

)
log r

,

whereN
(
r, 1

f

)
is the integrated counting function of zeros of f(z) in {z : |z| ≤ r}.

Similarly, the hyper-exponent of convergence of the sequence of distinct zeros
of f(z) is defined by

λ2 (f) = lim sup
r→+∞

log logN
(
r, 1

f

)
log r

,

where N
(
r, 1

f

)
is the integrated counting function of distinct zeros of f(z) in

{z : |z| ≤ r}.

The complex oscillatory problems of the non-homogeneous linear differen-
tial equations are a very important aspect of the complex oscillation theory of
differential equations, which has a large number of potential applications. For
growth estimates of solutions of a non-homogeneous linear differential equa-
tion, in general there exist exceptional solutions that are not easy to discuss,
see [9, Chapter 8].

In [11] Wang and Laine investigated the growth of solutions of some second
order nonhomogeneous linear differential equation and obtained.

Theorem A ([11]). Let Aj(z) 6≡ 0 (j = 0, 1) and F (z) be entire functions
with max{ρ (Aj) (j = 0, 1), ρ (F )} < 1, and let a, b be complex constants that
satisfy ab 6= 0 and a 6= b. Then every nontrivial solution f of the differential
equation

f ′′ + A1(z)e
azf ′ + A0 (z) e

bzf = F,

is of infinite order.

Remark 1.1. The result of Theorem A was also obtained by the author and El
Farissi in [2] by another proof.

Later in [12] Wang and Laine extend the result of Theorem A to higher
order non-homogeneous linear differential as follows.

Theorem B ([12]). Suppose that Aj(z) = hj(z)e
Pj(z) (j = 0, 1, . . . , k − 1)

where Pj(z) = ajnz
n + · · · + aj0 are polynomials with degree n ≥ 1, hj(z) 6≡ 0

(j = 0, 1, . . . , k−1) are entire functions of order less than n, and that H(z) 6≡ 0
is an entire function of order less than n. If ajn (j = 0, 1, . . . , k−1) are distinct
complex numbers, then every solution f of the differential equation

f (k) + Ak−1(z)f
(k−1) + · · ·+ A1(z)f

′ + A0(z)f = H(z)

is of infinite order.
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Recently, the authors investigated the growth of some nonhomogeneous
higher order linear differential equations and obtained the following result.

Theorem C ([3]). Let k ≥ 2 be an integer, Ij ⊂ N (j = 0, 1, . . . , k − 1)

be finite sets such that Ij ∩ Im = ∅ (j 6= m) and I =
k−1
∪
j=0

Ij. Suppose that

Bj =
∑
i∈Ij

Aie
Pi(z) (j = 0, 1, . . . , k − 1), where Ai(z) 6≡ 0 (i ∈ I) are entire

functions with max{ρ (Ai) , i ∈ I} < n, Pi(z) = ainz
n + · · ·+ ai1z + ai0 (i ∈ I)

are polynomials with degree n ≥ 1 and that F (z) 6≡ 0 is an entire function with
ρ (F ) < n. If ain (i ∈ I) are distinct complex numbers, then every solution f
of the differential equation

f (k) +Bk−1f
(k−1) + · · ·+Blf

(l) + · · ·+B1f
′ +B0f = F

satisfies ρ (f) = +∞.

The main purpose of this paper is to investigate the order and the hyper-
order of growth to some higher order linear differential equations. In fact we
will prove the following results.

Suppose that

I = {0, 1, 2, . . . , k − 1} ,
I1 = {i ∈ I : ci > 1} 6= ∅,
I2 = {i ∈ I : 0 < ci < 1} 6= ∅,
I3 = {i ∈ I : ci < 0} 6= ∅,
I4 = {i ∈ I : ci = 1} 6= ∅,

where I1 ∪ I2 ∪ I3 ∪ I4 = I and ci (i ∈ I) are real numbers.

Theorem 1.1. Let Aj(z) 6≡ 0 (j ∈ I), F (z) 6≡ 0 be entire functions with
max {ρ (Aj) (j ∈ I) , ρ (F )} < 1, a 6= 0 and bi 6= 0 (i ∈ I) be complex numbers
such that bi = cia (i ∈ I). Suppose that there is one s ∈ I1 such that cs > cj
for all j ∈ I1 \ {s}, suppose that there is one l ∈ I3 such that cl < cj for all
j ∈ I3 \ {l}, and suppose that c0 6= 1 and c0 6= cj for all j ∈ I \ {0}. Then
every solution f of the differential equation

(1.1) f (k) + Ak−1e
bk−1zf (k−1) + · · ·+ A1e

b1zf ′ + A0e
b0zf = Feaz

has infinite order and the hyper-order satisfies ρ2 (f) ≤ 1.

Theorem 1.2. Under the hypotheses of Theorem 1.1, suppose further that
ϕ(z) 6≡ 0 is an entire function with finite order. Then every solution f of
(1.1) satisfies

λ (f) = λ (f) = λ (f − ϕ) = λ (f − ϕ) = ρ (f) = ∞
and

λ2 (f) = λ2 (f) = λ2 (f − ϕ) = λ2 (f − ϕ) = ρ2 (f) ≤ 1.
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2. Auxiliary lemmas

Lemma 2.1 ([13]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are meromor-
phic functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the
following conditions:

(i)
n∑

j=1

fj (z) e
gj(z) ≡ fn+1.

(ii) If 1 ≤ j ≤ n + 1 and 1 ≤ k ≤ n, then the order of fj is less than the
order of egk(z). If n ≥ 2, 1 ≤ j ≤ n + 1 and 1 ≤ h < k ≤ n, then the
order of fj is less than the order of egh−gk .

Then fj(z) ≡ 0 (j = 1, 2, . . . , n+ 1).

Lemma 2.2 ([4]). Suppose that P (z) = (α+ iβ) zn + · · · (α, β are real num-
bers, |α| + |β| 6= 0) is a polynomial with degree n ≥ 1, that A(z) 6≡ 0 is an
entire function with ρ (A) < n. Set g(z) = A(z)eP (z), z = reiθ, δ (P, θ) =
α cosnθ − β sinnθ. Then for any given ε > 0, there is a set E1 ⊂ [0, 2π) that
has linear measure zero, such that for any θ ∈ [0, 2π)� (E1 ∪ E2), there is
R > 0, such that for |z| = r > R, we have

(i) If δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} .

(ii) If δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1− ε) δ (P, θ) rn} ,

where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 2.3 ([6]). Let f be a transcendental meromorphic function of finite
order ρ. Let ε > 0 be a constant, k and j be integers satisfying k > j ≥ 0.
Then the following two statements hold:

(i) There exists a set E3 ⊂ (1,+∞) which has finite logarithmic measure,
such that for all z satisfying |z| /∈ E3 ∪ [0, 1], we have

(2.1)

∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) .

(ii) There exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that
if θ ∈ [0, 2π) \E4, then there is a constant R = R (θ) > 0 such that (2.1)
holds for all z satisfying arg z = θ and |z| ≥ R.

Lemma 2.4 ([12]). Let f(z) be an entire function and suppose that

G(z) :=
log+

∣∣f (k) (z)
∣∣

|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists
an infinite sequence of points zn = rne

iθ (n = 1, 2, . . .), where rn → +∞, such
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that G (zn) → ∞ and∣∣∣∣f (j) (zn)

f (k) (zn)

∣∣∣∣ ≤ 1

(k − j)!
(1 + o (1)) rk−j

n , j = 0, 1, . . . , k − 1

as n → +∞.

Lemma 2.5 ([12]). Let f(z) be an entire function with ρ (f) = ρ < +∞.
Suppose that there exists a set E5 ⊂ [0, 2π) which has linear measure zero,
such that log+

∣∣f (
reiθ

)∣∣ ≤ Mrσ for any ray arg z = θ ∈ [0, 2π) \ E5, where M
is a positive constant depending on θ, while σ is a positive constant independent
of θ. Then ρ (f) ≤ σ.

Lemma 2.6 ([1, 5]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic
functions.

(i) If f is a meromorphic solution of the equation

(2.2) f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = F

with ρ (f) = +∞, then f satisfies

λ (f) = λ (f) = ρ (f) = +∞.

(ii) If f is a meromorphic solution of equation (2.2) with ρ (f) = +∞ and
ρ2 (f) = ρ, then

λ (f) = λ (f) = ρ (f) = +∞, λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

By using Wiman–Valiron theory [8], we easily obtain the following result
which we omit the proof.

Lemma 2.7. Let B0(z), . . . , Bk−1(z), H(z) be entire functions of finite order.
If f is a solution of the equation

f (k) +Bk−1(z)f
(k−1) + · · ·+B1(z)f

′ +B0(z)f = H,

then ρ2 (f) ≤ max {ρ (B0) , . . . , ρ (Bk−1) , ρ (H)}.

3. Proof of Theorem 1.1

Since bi = cia (i ∈ I), then by (1.1) we get

(3.1) e−azf (k) +
∑
i∈I1

Aie
(ci−1)azf (i) +

∑
i∈I2

Aie
(ci−1)azf (i)

+
∑
i∈I3

Aie
(ci−1)azf (i) +

∑
i∈I4

Aif
(i) = F.

First we prove that every solution f of (1.1) satisfies ρ (f) ≥ 1. We assume
that ρ (f) < 1. It is clear that f 6≡ 0. We can rewrite (3.1) in the form

(3.2) f (k)e−az +
∑
i∈Γ

Bie
(ci−1)az + A0fe

(c0−1)az = F −
∑
i∈I4

Aif
(i),



106 BENHARRAT BELAÏDI AND HABIB HABIB

where Γ ⊆ I \ (I4 ∪ {0}) such that (ci − 1)a (i ∈ Γ) are distinct numbers and
Bi (i ∈ Γ) are entire functions with order less than 1. We can see that −a,
(c0 − 1) a, (ci − 1) a (i ∈ Γ) are distinct numbers. Obviously, ρ

(
f (k)

)
< 1 and

ρ
(
Aif

(i)
)
< 1 (i ∈ I). Then by (3.2) and the Lemma 2.1, we have A0f ≡ 0.

This is a contradiction. Hence, ρ (f) ≥ 1. Therefore f is a transcendental
solution of equation (1.1).

Now we prove that ρ (f) = +∞. Suppose that ρ (f) = ρ < +∞. Set
α = max {ρ (Aj) (j = 0, 1, . . . , k − 1) , ρ (F )}. Then α < 1. For any given ε
(0 < 2ε < 1− α) and for sufficiently large r, we have

(3.3) |F (z)| ≤ exp
{
rα+ε

}
,

(3.4) |Ai(z)| ≤ exp
{
rα+ε

}
, i ∈ I4.

By Lemma 2.2, there exists a set E ⊂ [0, 2π) of linear measure zero, such that
whenever θ ∈ [0, 2π) \ E, then δ (az, θ) 6= 0. By Lemma 2.3, there exists a set
E4 ⊂ [0, 2π) which has linear measure zero, such that if θ ∈ [0, 2π) \ E4, then
there is a constant R = R (θ) > 1 such that for all z satisfying arg z = θ and
|z| ≥ R, we have

(3.5)

∣∣∣∣f (j)(z)

f (i)(z)

∣∣∣∣ ≤ |z|2ρ , 0 ≤ i < j ≤ k.

For any fixed θ ∈ [0, 2π) \ (E ∪ E4), set

δs = δ ((cs − 1) az, θ) , δl = δ ((cl − 1) az, θ) ,

δ1 = max {δ ((ci − 1) az, θ) : i ∈ I1 \ {s}}
and

δ3 = max {δ ((ci − 1) az, θ) : i ∈ I3 \ {l}} .
Then δs 6= 0, δl 6= 0, δ1 6= 0 and δ3 6= 0. We now discuss two cases separately.

Case 1. δ (−az, θ) > 0. We know that δ ((ci − 1) az, θ) = (1− ci) δ (−az, θ),
hence:

If i ∈ I1, then δ ((ci − 1) az, θ) < 0.
If i ∈ I2, then 0 < δ ((ci − 1) az, θ) < δ (−az, θ).
If i ∈ I3 \ {l}, then 0 < δ (−az, θ) < δ ((ci − 1) az, θ) ≤ δ3 < δl.

By Lemma 2.2, for any given ε with 0 < 2ε < min
{

δl−δ3
δl

, 1− α
}
, we obtain∣∣Ale

(cl−1)az
∣∣ ≥ exp {(1− ε) δlr} ,(3.6) ∣∣e−az
∣∣ ≤ exp {(1 + ε) δ (−az, θ) r} ,(3.7) ∣∣Aie

(ci−1)az
∣∣ ≤ exp {(1− ε) δ ((ci − 1) az, θ) r} < 1, i ∈ I1,(3.8) ∣∣Aie

(ci−1)az
∣∣ ≤ exp {(1 + ε) δ ((ci − 1) az, θ) r}(3.9)

< exp {(1 + ε) δ (−az, θ) r} , i ∈ I2,∣∣Aie
(ci−1)az

∣∣ ≤ exp {(1 + ε) δ ((ci − 1) az, θ) r}(3.10)

≤ exp {(1 + ε) δ3r} , i ∈ I3 \ {l}



ON THE GROWTH OF SOLUTIONS 107

for sufficiently large r. We now prove that log+
∣∣f (l)(z)

∣∣ / |z|α+ε is bounded on

the ray arg z = θ. We assume that log+
∣∣f (l)(z)

∣∣ / |z|α+ε is unbounded on the

ray arg z = θ. Then by Lemma 2.4, there is a sequence of points zm = rme
iθ,

such that rm → +∞, and that

(3.11)
log+

∣∣f (l) (zm)
∣∣

rα+ε
m

→ +∞,

(3.12)

∣∣∣∣f (j) (zm)

f (l) (zm)

∣∣∣∣ ≤ 1

(l − j)!
(1 + o (1)) rl−j

m , (j = 0, 1, . . . , l − 1) ,

for m is large enough. From (3.3) and (3.11), we get

(3.13)

∣∣∣∣ F (zm)

f (l) (zm)

∣∣∣∣ → 0,

for m is large enough. From (3.1), we obtain∣∣Ale
(cl−1)az

∣∣ ≤ ∣∣e−az
∣∣ ∣∣∣∣f (k)

f (l)

∣∣∣∣+∑
i∈I1

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (l)

∣∣∣∣(3.14)

+
∑
i∈I2

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (l)

∣∣∣∣+ ∑
i∈I3\{l}

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (l)

∣∣∣∣
+
∑
i∈I4

|Ai|
∣∣∣∣f (i)

f (l)

∣∣∣∣+ ∣∣∣∣ Ff (l)

∣∣∣∣ .
Substituting (3.4)–(3.10), (3.12) and (3.13) into (3.14), we have

exp {(1− ε) δlrm} ≤
∣∣Al (zm) e

(cl−1)azm
∣∣(3.15)

≤
∣∣e−azm

∣∣ ∣∣∣∣f (k) (zm)

f (l) (zm)

∣∣∣∣+∑
i∈I1

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (l) (zm)

∣∣∣∣
+
∑
i∈I2

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (l) (zm)

∣∣∣∣
+

∑
i∈I3\{l}

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (l) (zm)

∣∣∣∣
+
∑
i∈I4

|Ai (zm)|
∣∣∣∣f (i) (zm)

f (l) (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f (l) (zm)

∣∣∣∣
≤ M0r

M1
m exp {(1 + ε) δ3rm} exp

{
rα+ε
m

}
,

where M0 > 0 and M1 > 0 are some constants. By 0 < ε < δl−δ3
2δl

and (3.15),
we can get

exp

{
(δl − δ3)

2

2δl
rm

}
≤ M0r

M1
m exp

{
rα+ε
m

}
,
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which is a contradiction because α+ ε < 1. Therefore, log+
∣∣f (l)(z)

∣∣ / |z|α+ε is
bounded and we have ∣∣f (l)(z)

∣∣ ≤ M exp
{
rα+ε

}
on the ray arg z = θ. By the same reasoning as in the proof of [10, Lemma
3.1], we immediately conclude that

|f(z)| ≤ 1

l!
(1 + o (1)) rl

∣∣f (l)(z)
∣∣ ≤ 1

l!
(1 + o (1))Mrl exp

{
rα+ε

}
≤ M exp

{
rα+2ε

}
on the ray arg z = θ.

Case 2. δ (−az, θ) < 0. We know that δ ((ci − 1) az, θ) = (1− ci) δ (−az, θ),
hence:

If i ∈ I1 \ {s}, then 0 < δ ((ci − 1) az, θ) ≤ δ1 < δs.
If i ∈ I2 ∪ I3, then δ ((ci − 1) az, θ) < 0.

By Lemma 2.2, for any given ε with 0 < 2ε < min
{

δs−δ1
δs

, 1− α
}
, we obtain∣∣Ase

(cs−1)az
∣∣ ≥ exp {(1− ε) δsr} ,(3.16) ∣∣e−az
∣∣ ≤ exp {(1− ε) δ (−az, θ) r} < 1,(3.17) ∣∣Aie

(ci−1)az
∣∣ ≤ exp {(1 + ε) δ ((ci − 1) az, θ) r}(3.18)

≤ exp {(1 + ε) δ1r} , i ∈ I1 \ {s} ,∣∣Aie
(ci−1)az

∣∣ ≤ exp {(1− ε) δ ((ci − 1) az, θ) r} < 1, i ∈ I2 ∪ I3(3.19)

for sufficiently large r. We now prove that log+
∣∣f (s)(z)

∣∣ / |z|α+ε is bounded on

the ray arg z = θ. We assume that log+
∣∣f (s)(z)

∣∣ / |z|α+ε is unbounded on the

ray arg z = θ. Then by Lemma 2.4, there is a sequence of points zm = rme
iθ,

such that rm → +∞, and that

(3.20)
log+

∣∣f (s) (zm)
∣∣

rα+ε
m

→ +∞,

(3.21)

∣∣∣∣f (j) (zm)

f (s) (zm)

∣∣∣∣ ≤ 1

(s− j)!
(1 + o (1)) rs−j

m , (j = 0, 1, . . . , s− 1) ,

for m is large enough. From (3.3) and (3.20) we get

(3.22)

∣∣∣∣ F (zm)

f (s) (zm)

∣∣∣∣ → 0,

for m is large enough. From (3.1) we obtain∣∣Ase
(cs−1)az

∣∣(3.23)

≤
∣∣e−az

∣∣ ∣∣∣∣f (k)

f (s)

∣∣∣∣+ ∑
i∈I1\{s}

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (s)

∣∣∣∣+∑
i∈I2

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (s)

∣∣∣∣
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+
∑
i∈I3

∣∣Aie
(ci−1)az

∣∣ ∣∣∣∣f (i)

f (s)

∣∣∣∣+∑
i∈I4

|Ai|
∣∣∣∣f (i)

f (s)

∣∣∣∣+ ∣∣∣∣ F

f (s)

∣∣∣∣ .
Substituting (3.4), (3.5), (3.16)–(3.19), (3.21) and (3.22) into (3.23), we have

exp {(1− ε) δsrm} ≤
∣∣As (zm) e

(cs−1)azm
∣∣(3.24)

≤
∣∣e−azm

∣∣ ∣∣∣∣f (k) (zm)

f (s) (zm)

∣∣∣∣+ ∑
i∈I1\{s}

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (s) (zm)

∣∣∣∣
+
∑
i∈I2

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (s) (zm)

∣∣∣∣
+
∑
i∈I3

∣∣Ai (zm) e
(ci−1)azm

∣∣ ∣∣∣∣f (i) (zm)

f (s) (zm)

∣∣∣∣
+
∑
i∈I4

|Ai (zm)|
∣∣∣∣f (i) (zm)

f (s) (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f (s) (zm)

∣∣∣∣
≤ M2r

M3
m exp {(1 + ε) δ1rm} exp

{
rα+ε
m

}
,

where M2 > 0 and M3 > 0 are some constants. By 0 < ε < δs−δ1
2δs

and (3.24),
we get

exp

{
(δs − δ1)

2

2δs
rm

}
≤ M2r

M3
m exp

{
rα+ε
m

}
,

which is a contradiction because α+ ε < 1. Therefore, log+
∣∣f (s)(z)

∣∣ / |z|α+ε is
bounded and we have ∣∣f (s)(z)

∣∣ ≤ M exp
{
rα+ε

}
on the ray arg z = θ. This implies, as in Case 1, that

(3.25) |f(z)| ≤ M exp
{
rα+2ε

}
.

Therefore, for any given θ ∈ [0, 2π) \ (E ∪ E4), we have got (3.25) on the ray
arg z = θ, provided that r is large enough. Then by Lemma 2.5, we have
ρ (f) ≤ α + 2ε < 1, which is a contradiction. Hence every transcendental
solution f of (1.1) must be of infinite order. Since

max
{
ρ
(
Aje

bjz
)
(j = 0, . . . , k − 1) , ρ (Feaz)

}
= 1,

then by Lemma 2.7 we have ρ2 (f) ≤ 1.

4. Proof of Theorem 1.2

Suppose that f is a solution of equation (1.1). Then, by Theorem 1.1 we
have ρ (f) = +∞ and ρ2 (f) ≤ 1. Set g(z) = f(z) − ϕ(z). Then g(z) is an
entire function with ρ (g) = ρ (f) = +∞ and ρ2 (g) = ρ2 (f) ≤ 1. Substituting
f = g + ϕ into (1.1) , we have

(4.1) g(k) + Ak−1e
bk−1zg(k−1) + · · ·+ A1e

b1zg′ + A0e
b0zg = D,



110 BENHARRAT BELAÏDI AND HABIB HABIB

where

D = Feaz −
[
ϕ(k) + Ak−1e

bk−1zϕ(k−1) + · · ·+ A1e
b1zϕ′ + A0e

b0zϕ
]
.

We prove that D 6≡ 0. In fact, if D ≡ 0, then

ϕ(k) + Ak−1e
bk−1zϕ(k−1) + · · ·+ A1e

b1zϕ′ + A0e
b0zϕ = Feaz.

Hence ρ (ϕ) = +∞, which is a contradiction. Therefore D 6≡ 0. We know that
the functions Aje

bjz (j = 0, 1, . . . , k− 1), D are of finite order. By Lemma 2.6
and (4.1) we have

λ (f − ϕ) = λ (f − ϕ) = ρ (f − ϕ) = ρ (f) = ∞,

λ2 (f − ϕ) = λ2 (f − ϕ) = ρ2 (f − ϕ) = ρ2 (f) ≤ 1.

Then, by f is infinite order solution of equation (1.1) and Lemma 2.6 we obtain

λ (f) = λ (f) = λ (f − ϕ) = λ (f − ϕ) = ρ (f) = ∞

λ2 (f) = λ2 (f) = λ2 (f − ϕ) = λ2 (f − ϕ) = ρ2 (f) ≤ 1.

which completes the proof.
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