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ON A SUFFICIENT AND NECESSARY CONDITION FOR A
MULTIVARIATE POLYNOMIAL TO HAVE

ALGEBRAICALLY DEPENDENT ROOTS - AN
ELEMENTARY PROOF

CSABA VINCZE AND ADRIENN VARGA

Abstract. In the paper we prove that a multivariate polynomial has al-
gebraically dependent roots iff the coefficients are algebraic numbers up to
a common proportional term. A complex analytic proof can be found in [2]
with applications in the theory of linear functional equations, see also [3,
an open problem, section 4.4] and [1]. Here we present an elementary proof
involving cardinality properties and basic linear algebra.

1. Introduction

Let C be the field of complex numbers. The element (β1, . . . , βm) ∈ Cm

is called an algebraically dependent system over the field Q of the rational
numbers if there exists a not identically zero polynomial Q ∈ Q[x1, . . . , xm]
such that Q(β1, . . . , βm) = 0. Otherwise we say that it is an algebraically
independent system. If m = 1 then we speak about algebraic and transcen-
dental numbers instead of algebraically dependent and independent systems.
Since Viéta’s formulas provide direct relationships between the roots and the
coefficients (up to a common proportional term) it can be easily seen that if a
univariate polynomial p(x) ∈ C[x] has algebraic roots then the coefficients are
algebraic numbers up to a constant proportional term. The proof of the con-
verse statement is based on a symmetrization process by taking the product
as the coefficients of p(x) runs through their algebraic conjugates. The funda-
mental theorem of symmetric polynomials shows that the product polynomial
belongs to the polynomial ring Q[x] and the product vanishes at each root of
the polynomial p(x). Therefore its roots are algebraic. The symmetrization
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process can be generalized for the case of multivariate polynomials in a more
or less direct way, see [2]. Therefore we are going to prove that if a multi-
variate polynomial has algebraically dependent roots then the coefficients of
the polynomial are algebraic numbers up to a common proportional term. A
complex analytic proof can be found in [2] with applications in the theory of
linear functional equations, see also [3, an open problem, section 4.4] and [1].
Here we present an elementary proof involving cardinality properties and basic
linear algebra.

2. The main theorem

Theorem 1. Let P ∈ C[x1, . . . , xm] be a not identically zero polynomial; the
solutions of equation

(1) P (x1, . . . , xm) = 0

are algebraically dependent over the rationals if and only if the coefficients of
P are algebraic numbers over the rationals up to a common proportional term.

The criteria says that the coefficients of the polynomial have the following
special form:

pi1...im = λωi1...im

for some algebraic numbers ωi1...im ’s, λ ∈ C and 0 ≤ i1 ≤ d1, . . ., 0 ≤ im ≤ dm,
where

d1 := deg1 P, . . . , dm := degm P

denotes the degree of the polynomial P ∈ C[x1, . . . , xm] with respect to the
variable xj, j = 1, . . . ,m. In what follows we prove that if equation (1) has
algebraically dependent roots then the coefficients of the polynomial are alge-
braic numbers up to a common proportional term (for the converse statement
and the special case of univariate polynomials see section 1). At first the special
case of polynomials in two variables will be discussed to avoid the technical
difficulties of the multivariable setting. Since the proof contains an induc-
tive argument we note again that the statement is obvious in case of m = 1
(univariate polynomials) because Viéta’s formulas provide direct relationships
between the roots and the coefficients up to a common proportional term. To
prove the general statement we adopt the basic ideas of section 3 to the case
of multivariate polynomials in general.

3. Polynomials in two variables

Suppose that all solutions of equation

(2) P (x1, x2) = 0

are algebraically dependent over the rationals. For any solution (w1, w2)
of equation (2) let Qw1,w2 ∈ Q[x1, x2] be a nonzero polynomial such that
Qw1,w2(w1, w2) = 0.
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3.1. The cardinality argument and the Vandermonde process. Con-
sider the set

M := {(z1, z2) ∈ C2 | P (z1, z2) ̸= 0};
it is an open subset in C2. Since the projections are open mappings we can
choose open subsets U1, U2 ⊂ C such that U1 × U2 ⊂ M. In what follows we
restrict our investigations to the product U1×U2. Since P (z1, z2) ̸= 0 (z1 ∈ U1,
z2 ∈ U2) we have that equation P (x1, z2) = 0 has only finitely many roots w1i1

(i1 < ∞) for any given z2 ∈ U2. Let us define the polynomial

(3) Qẑ1,z2
1 :=

∏
i1<∞

Qw1i1
,z2 .

The ˆ - operator deletes the argument which means that the polynomial Qẑ1,z2
1

does not depend on z1 ∈ U1. Since Qẑ1,z2
1 ∈ Q[x1, x2] and z2 ∈ U2 ⊂ C, a

cardinality argument shows that we can choose a non-finite subset N2 ⊂ U2

such that

(4) Qẑ1,z2
1 = Qẑ1,ẑ2

1 (z2 ∈ N2),

i.e. the same polynomial Qẑ1,ẑ2
1 ∈ Q[x1, x2] occurs for any z2 ∈ N2. By (3) the

polynomial P (x1, z2) divides Q
ẑ1,ẑ2
1 (x1, z2) in the polynomial ring C[x1] for any

z2 ∈ N2. In a similar way we can introduce a polynomial Qẑ1,ẑ2
2 ∈ Q[x1, x2] such

that P (z1, x2) divides Q(z1, x2) in the polynomial ring C[x2] for any z1 ∈ N1,
where N1 ⊂ U1 is not a finite subset. Taking the product

(5) Qẑ1,ẑ2
12 := Qẑ1,ẑ2

1 ·Qẑ1,ẑ2
2

we can write that

(6) Qẑ1,ẑ2
12 (x1, z2) = P (x1, z2)

N1∑
j1=0

r1j1(ẑ1, z2)x
j1
1 (z2 ∈ N2),

(7) Qẑ1,ẑ2
12 (z1, x2) = P (z1, x2)

N2∑
j2=0

r2j2(z1, ẑ2)x
j2
2 (z1 ∈ N1).

Therefore

(8)

N1∑
j1=0

r1j1(ẑ1, z2)z
j1
1 =

N2∑
j2=0

r2j2(z1, ẑ2)z
j2
2 (z1 ∈ N1, z2 ∈ N2)

because of P (z1, z2) ̸= 0 (z1 ∈ N1 ⊂ U1, z2 ∈ N2 ⊂ U2). Since N1 contains
more than finitely many elements we can choose different values z10, . . . , z1N1

to satisfy (8). In terms of a linear system of equations:

V (z10, . . . , z1N1)


r10(ẑ1, z2)
r11(ẑ1, z2)

.

r1N1(ẑ1, z2)

 =

N2∑
j2=0


r2j2(z10, ẑ2)
r2j2(z11, ẑ2)

.
r2j2(z1N1 , ẑ2)

 zj22 ,
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where

V (z10, . . . , z1N1) :=


1 z10 . . . zN1

10

1 z11 . . . zN1
11

. . . .
1 z1N1 . . . z

N1
1N1


is the usual Vandermonde matrix. By Cramer’s rule

(9) r1j1(ẑ1, z2) =

N2∑
j2=0

r12j1j2(ẑ1, ẑ2)z
j2
2 (z2 ∈ N2, j1 = 0, . . . , N1),

where the coefficient r12j1j2(ẑ1, ẑ2) is independent of the choice of z1 and z2.
Using (9), equation (6) can be written as

(10) Qẑ1,ẑ2
12 (x1, z2) = P (x1, z2)

N1∑
j1=0

N2∑
j2=0

r12j1j2(ẑ1, ẑ2)x
j1
1 z

j2
2 (z2 ∈ N2).

Since both sides are polynomials in the second variable for fixed x1 and N2 is
not finite it follows that

(11) Qẑ1,ẑ2
12 (x1, x2) = P (x1, x2)

N1∑
j1=1

N2∑
j2=1

r12j1j2(ẑ1, ẑ2)x
j1
1 x

j2
2 ,

i.e. P (x1, x2) divides the polynomial Q := Qẑ1,ẑ2
12 ∈ Q[x1, x2]:

(12) Q(x1, x2) = P (x1, x2)R(x1, x2), where R(x1, x2) ∈ C[x1, x2].

3.2. The comparison of the coefficients. The next step is to compare the
coefficients of the polynomials on different sides of (12). Let d1 := deg1 P be
the degree of the polynomial with respect to the first variable. The coefficient
of xd1

1 can be written as the polynomial

Pd1(x2) :=

d2∑
i2=0

pd1i2x
i2
2

of the second variable and the substitution of each root w2 of Pd1 causes a
decreasing in the degree of the right hand side of (12) with respect to x1.
Therefore the polynomial Q also has to decrease its maximal degree D1 with
respect to x1. This means that the polynomial QD1(x2) (the coefficient of
xD1
1 in the polynomial Q) vanishes at each root of Pd1(x2), i.e. each root is

an algebraic number. By the inductive hypothesis (the case of univariate
polynomials is well-known),

(13) pd1i2 = λωi2 (i2 = 0, . . . , d2),

where λ ∈ C is a common proportional term and ωi2 ’s are algebraic numbers
over the rationals. Let us choose an algebraic number a2 such that Q(x1, a2) ∈
C[x1] is not identically zero. Then the solutions of equation

P (x1, a2) = 0
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are algebraic because of (12) and, using the inductive hypothesis, the coeffi-
cients of the polynomial

(14) P (x1, a2) =

d1∑
i1=0

(
d2∑

i2=0

pi1i2a
i2
2

)
xi1
1

can be written as
d2∑

i2=0

pi1i2a
i2
2 = ci1(a2)

d2∑
i2=0

pd1i2a
i2
2︸ ︷︷ ︸

the main coeff. of (14).

,

where i1 = 0, . . . , d1 and ci1(a2) is an algebraic number depending on a2;
especially cd1(a2) = 1. According to (13)

(15)

d2∑
i2=0

pi1i2a
i2
2 = λωi1(a2), ωi1(a2) = ci1(a2)

d2∑
i2=0

ωi2a
i2
2 ,

where i1 = 0, . . . , d1 and ωi1(a2)’s are algebraic numbers depending on a2.
Since the cardinality of the algebraic numbers is not finite we can choose
different values a20, . . . , a2N to satisfy (15). In terms of a linear system of
equations

(16) V (a20, . . . , a2N )


p00 . . . pN0

p01 . . . pN1

. . .
p0N . . . pNN

 = λ


ω0(a20) . . . ωN (a20)
ω0(a21) . . . ωN (a21)

. . .
ω0(a2N ) . . . ωN (a2N )

 ,

where

V (a20, . . . , a2N) :=


1 a20 . . . aN20
1 a21 . . . aN21
. . . .
1 a2N . . . aN2N


is the usual Vandermonde matrix, N := max{d1, d2}; note that we allow zero
elements too, i.e. if the monomial term xk

1x
l
2 is missing for some values of k

and l in the polynomial P then pkl := 0. Since the algebraic numbers form
a field the matrix V −1(a20, . . . , a2N) contains algebraic numbers and we have
that

(17) pi1i2 = λωi1i2 ,

where ωi1i2 ’s are algebraic numbers, λ ∈ C and 0 ≤ i1 ≤ d1, 0 ≤ i2 ≤ d2.

4. Polynomials in more than two variables

In what follows we illustrate how to generalize the process in section 3 for
more than two variables. Suppose that all solutions of equation

(18) P (x1, . . . , xm) = 0
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are algebraically dependent over the rationals. For any solution (w1, . . . , wm)
of equation (18) let Qw1,...,wm ∈ Q[x1, . . . , xm] be a nonzero polynomial such
that Qw1,...,wm(w1, . . . , wm) = 0.

4.1. The cardinality argument and the Vandermonde process. Con-
sider the set

M := {(z1, . . . , zm) ∈ Cm | P (z1, . . . , zm) ̸= 0};

it is an open subset in Cm. Since the projections are open mappings we can
choose open subsets U1, . . ., Um ∈ C such that U1 × · · · × Um ⊂ M. In what
follows we restrict our investigations to the product U1 × · · · × Um.

By keeping the variables z3 ∈ U3, . . ., zm ∈ Um constant we have polynomials
in two variables to repeat the steps in subsection 3.1.

Namely, for any z2 ∈ U2 let us define the polynomial

(19) Qẑ1,z2,...,zm
1 :=

∏
i1<∞

Qw1i1
,z2,...,zm ,

where w1i1 runs through the finitely many roots of equation P (x1, z2, . . . , zm) =

0. Since Qẑ1,z2,...,zm
1 ∈ Q[x1, . . . , xm] and z2 ∈ U2 ⊂ C, a cardinality argument

shows that we can choose a non-finite subset N2 ⊂ U2 such that

(20) Qẑ1,z2,z3,...,zm
1 = Qẑ1,ẑ2,z3,...,zm

1 (z2 ∈ N2),

i.e. the same polynomial Qẑ1,ẑ2,z3,...,zm
1 ∈ Q[x1, . . . , xm] occurs for any z2 ∈

N2. The polynomial P (x1, z2, . . . , zm) divides Qẑ1,ẑ2,z3,...,zm
1 (x1, z2, . . . , zm) in

the polynomial ring C[x1] for any z2 ∈ N2. In a similar way we can introduce a

polynomial Qẑ1,ẑ2,z3...,zm
2 ∈ Q[x1, . . . , xm] such that P (z1, x2, z3, . . . , zm) divides

Qẑ1,ẑ2,z3...,zm
2 (z1, x2, z3, . . . , zm) in the polynomial ring C[x2] for any z1 ∈ N1,

where N1 ⊂ U1 is not a finite subset. Taking the product

(21) Qẑ1,ẑ2,z3,...,zm
12 := Qẑ1,ẑ2,z3,...,zm

1 ·Qẑ1,ẑ2,z3,...,zm
2

we can write that

(22) Qẑ1,ẑ2,z3,...,zm
12 (x1, z2, z3, . . . , zm) =

P (x1, z2, z3, . . . , zm)

N1∑
j1=0

r1j1(ẑ1, z2, z3, . . . , zm)x
j1
1 (z2 ∈ N2),

(23) Qẑ1,ẑ2,z3,...,zm
12 (z1, x2, z3, . . . , zm) =

P (z1, x2, z3, . . . , zm)

N2∑
j2=0

r2j2(z1, ẑ2, z3, . . . , zm)x
j2
2 (z1 ∈ N1).

Therefore
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(24)

N1∑
j1=0

r1j1(ẑ1, z2, z3, . . . , zm)z
j1
1 =

N2∑
j2=0

r2j2(z1, ẑ2, z3, . . . , zm)z
j2
2 (z1 ∈ N1, z2 ∈ N2)

because of P (z1, . . . , zm) ̸= 0 (z1 ∈ N1 ⊂ U1, z2 ∈ N2 ⊂ U2); note that z3 ∈ U3,
. . ., zm ∈ Um are fixed. Since N1 contains more than finitely many elements
we can choose different values z10, . . . , z1N1 to satisfy (24):

V (z10, . . . , z1N1)


r10(ẑ1, z2, . . . , zm)
r11(ẑ1, z2, . . . , zm)

.
r1N1(ẑ1, z2, . . . , zm)

 =

N2∑
j2=0


r2j2(z10, ẑ2, z3, . . . , zm)
r2j2(z11, ẑ2, z3, . . . , zm)

.
r2j2(z1N1 , ẑ2, z3, . . . , zm)

 zj22 .

By Cramer’s rule

(25)

r1j1(ẑ1, z2, . . . , zm) =

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3, . . . , zm)z
j2
2 (z2 ∈ N2, j1 = 0, . . . , N1),

where the coefficient r12j1j2(ẑ1, ẑ2, z3, . . . , zm) is independent of the choice of z1
and z2. Using (25), equation (22) can be written as

(26) Qẑ1,ẑ2,z3,...,zm
12 (x1, z2, z3, . . . , zm) =

P (x1, z2, z3, . . . , zm)

N1∑
j1=0

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3 . . . , zm)x
j1
1 z

j2
2

for any z2 ∈ N2. Since both sides are polynomials in the second variable for
fixed x1 and N2 is not finite we have the following generalization of (11).

(27) Qẑ1,ẑ2,z3,...,zm
12 (x1, x2, z3, . . . , zm) =

P (x1, x2, z3, . . . , zm)

N1∑
j1=1

N2∑
j2=1

r12j1j2(ẑ1, ẑ2, z3, . . . , zm)x
j1
1 x

j2
2 ,

i.e. for any z3 ∈ U3, . . . , zm ∈ Um there is a polynomialQẑ1,ẑ2,z3,...,zm
12 ∈ Q[x1, . . . , xm]

which can be divided by P (x1, x2, z3, . . . , zm):

(28) Qẑ1,ẑ2,z3,...,zm
12 (x1, x2, z3, . . . , zm) =

P (x1, x2, z3, . . . , zm)R12(x1, x2, z3, . . . , zm),

where R12(x1, x2, z3, . . . , zm) ∈ C[x1, x2]. Equation (28) corresponds to (12).

It can be easily seen that a polynomial Q
z1,...,ẑi,...,ẑj ,...,zm
ij ∈ Q[x1, . . . , xm] can be

choosen for any pair of different indices in a similar way:
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(29) Qẑ1,z2,ẑ3,z4,...,zm
13 (x1, z2, x3, z4, . . . , zm) =

P (x1, z2, x3, z4, . . . , zm)R13(x1, z2, x3, z4, . . . , zm),

(30)
Qz1,ẑ2,ẑ3,z4,...,zm

23 (z1, x2, x3, z4, . . . , zm) =

P (z1, x2, x3, z4, . . . , zm)R23(z1, x2, x3, z4, . . . , zm) and so on.

By keeping the variables z4 ∈ U4, . . . , zm ∈ Um constant we can general-
ize formula (27) for the triplet i = 1, j = 2 and k = 3 as follows. Since

Qẑ1,ẑ2,z3,z4,...zm
12 ∈ Q[x1, . . . , xm] and z3 ∈ U3, a cardinality argument shows that

we can choose a non-finite subset N3 ⊂ U3 such that

(31) Qẑ1,ẑ2,z3,z4,...,zm
12 = Qẑ1,ẑ2,ẑ3,z4,...,zm

12 (z3 ∈ N3),

i.e. the same polynomialQẑ1,ẑ2,ẑ3,z4,...,zm
12 ∈ Q[x1, . . . , xm] occurs for any z3 ∈ N3.

In a similar way we can introduce polynomials satisfying

(32) Qẑ1,z2,ẑ3,z4,...,zm
13 = Qẑ1,ẑ2,ẑ3,z4,...,zm

13 (z2 ∈ N2),

(33) Qz1,ẑ2,ẑ3,z4,...,zm
23 = Qẑ1,ẑ2,ẑ3,z4,...,zm

23 (z1 ∈ N1),

where N1 ⊂ U1 and N2 ⊂ U2 are not finite subsets. Taking the product

(34) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 := Qẑ1,ẑ2,ẑ3,z4,...,zm

12 ·Qẑ1,ẑ2,ẑ3,z4,...,zm
13 ·Qẑ1,ẑ2,ẑ3,z4,...,zm

23

it follows that

(35) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (x1, x2, z3, z4, . . . , zm) =

P (x1, x2, z3, z4, . . . , zm)

N1∑
j1=0

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm)x
j1
1 x

j2
2

(z3 ∈ N3),

(36) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (x1, z2, x3, z4, . . . , zm) =

P (x1, z2, x3, z4, . . . , zm)

N1∑
j1=0

N3∑
j3=0

r13j1j3(ẑ1, z2, ẑ3, z4, . . . , zm)x
j1
1 x

j3
3

(z2 ∈ N2),

(37) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (z1, x2, x3, z4, . . . , zm) =

P (z1, x2, x3, z4, . . . , zm)

N2∑
j2=0

N3∑
j3=0

r23j2j3(z1, ẑ2, ẑ3, z4, . . . , zm)x
j2
2 x

j3
3

(z1 ∈ N1)
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and we have the system of equations

N1∑
j1=0

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm)z
j1
1 zj22 =(38)

N1∑
j1=0

N3∑
j3=0

r13j1j3(ẑ1, z2, ẑ3, z4, . . . , zm)z
j1
1 zj33

(z1 ∈ N1, z2 ∈ N2, z3 ∈ N3),

N1∑
j1=0

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm)z
j1
1 zj22 =

N2∑
j2=0

N3∑
j3=0

r23j2j3(z1, ẑ2, ẑ3, z4, . . . , zm)z
j2
2 zj33

(z1 ∈ N1, z2 ∈ N2, z3 ∈ N3),

N1∑
j1=0

N3∑
j3=0

r13j1j3(ẑ1, z2, ẑ3, z4, . . . , zm)z
j1
1 zj33 =

N2∑
j2=0

N3∑
j3=0

r23j2j3(z1, ẑ2, ẑ3, z4, . . . , zm)z
j2
2 zj33

(z1 ∈ N1, z2 ∈ N2, z3 ∈ N3).

According to the common polynomial terms, (38) can be simplified as

N2∑
j2=0

r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm)z
j2
2 =(39)

N3∑
j3=0

r13j1j3(ẑ1, z2, ẑ3, z4, . . . , zm)z
j3
3

(z2 ∈ N2, z3 ∈ N3, j1 = 0, . . . , N1),

N1∑
j1=0

r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm)z
j1
1 =

N3∑
j3=0

r23j2j3(z1, ẑ2, ẑ3, z4, . . . , zm)z
j3
3

(z1 ∈ N1, z3 ∈ N3, j2 = 0, . . . , N2),

N1∑
j1=0

r13j1j3(ẑ1, z2, ẑ3, z4, . . . , zm)z
j1
1 =
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N2∑
j2=0

r23j2j3(z1, ẑ2, ẑ3, z4, . . . , zm)z
j2
2

(z1 ∈ N1, z2 ∈ N2, j3 = 0, . . . , N3).

These are equations of type (8). Therefore we can also generalize equation
(9) by the same process as in subsection 3.1: for example

(40) r12j1j2(ẑ1, ẑ2, z3, z4, . . . , zm) =

N3∑
j3=0

r123j1j2j3(ẑ1, ẑ2, ẑ3, z4, . . . , zm)z
j3
3

(z3 ∈ N3, j1 = 0, . . . , N1, j2 = 0, . . . , N2),

where the coefficient r123j1j2j3(ẑ1, ẑ2, ẑ3, z4, . . . , zm) is independent of the choice
of z1, z2 and z3. Using (40), equation (35) can be written as

(41) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (x1, x2, z3, z4, . . . , zm) =

P (x1, x2, z3, . . . , zm)

N1∑
j1=0

N2∑
j2=0

N3∑
j3=0

r123j1j2j3(ẑ1, ẑ2, ẑ3, z4, . . . , zm)x
j1
1 x

j2
2 z

j3
3

(z3 ∈ N3).

Since both sides are polynomials in the third variable for fixed x1, x2 and N3

is not finite it follows that

Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (x1, x2, x3, z4, . . . , zm) =

P (x1, x2, x3, z4, . . . , zm)

N1∑
j1=0

N2∑
j2=0

N3∑
j3=0

r123j1j2j3(ẑ1, ẑ2, ẑ3, z4, . . . , zm)x
j1
1 x

j2
2 x

j3
3 ,

i.e. for any z4 ∈ U4, . . . , zm ∈ Um there is a polynomial Qẑ1,ẑ2,ẑ3,z4,...,zm
123 ∈

Q[x1, . . . , xm] which can be divided by P (x1, x2, x3, z4, . . . , zm):

(42) Qẑ1,ẑ2,ẑ3,z4,...,zm
123 (x1, x2, x3, z4, . . . , zm) =

P (x1, x2, x3, z4, . . . , zm)R123(x1, x2, x3, z4, . . . , zm),

where R123(x1, x2, x3, z4, . . . , zm) ∈ C[x1, x2, x3]. It is a generalization of (28)

and a polynomial Q
z1,...,ẑi,...,ẑj ,...,ẑk,...,zm
ijk ∈ Q[x1, . . . , xm] can be choosen for any

triplet of different indices in a similar way. Repeating the procedure up to m
different indices we can find a polynomial Q := Qẑ1,...,ẑm

1...m ∈ Q[x1, . . . , xm] such
that

(43) Q(x1, x2, . . . , xm) = P (x1, x2, . . . , xm)R(x1, x2, . . . , xm),

where R(x1, . . . , xm) := R1...m(x1, . . . , xm) ∈ C[x1, . . . , xm].



ON A SUFFICIENT AND NECESSARY CONDITION. . . 11

4.2. The comparison of the coefficients. The next step is to compare the
coefficients of the polynomials on different sides of (43). Let d1 := deg1 P be
the degree of the polynomial with respect to the first variable. The coefficient
of xd1

1 can be written as the polynomial

Pd1(x2, . . . , xm) :=

d2∑
i2=0

. . .
dm∑

im=0

pd1i2...imx
i2
2 · . . . · xim

m .

of the variables x2, . . . , xm and the substitution of each root (w2, . . . , wm) of Pd1

causes a decreasing in the degree of the right hand side of (43) with respect
to x1. Therefore the polynomial Q also has to decrease its maximal degree
D1 with respect to x1. This means that the polynomial QD1(x2, . . . , xm) (the
coefficient of xD1

1 in the polynomial Q) vanishes at each root of Pd1(x2, . . . , xm),
i.e. each root is algebraically dependent. Since the number of the variables is
m−1 we can use the statement of the main theorem as an inductive hypothesis:

(44) pd1i2...im = λωi2...im ,

where λ ∈ C is a common proportional term and ωi2...im are algebraic num-
bers over the rationals. Let us choose algebraic numbers a2, . . . , am such that
Q(x1, a2, . . . , am) ∈ C[x1] is not identically zero. Then the solutions of equation

P (x1, a2, . . . , am) = 0

are algebraic because of (43) and the coefficients of the polynomial

(45) P (x1, a2, . . . , am) =

d1∑
i1=0

(
d2∑

i2=0

. . .

dm∑
im=0

pi1i2...ima
i2
2 · . . . · aimm

)
xi1
1

can be written as
d2∑

i2=0

. . .

dm∑
im=0

pi1i2...ima
i2
2 · . . . · aimm = ci1(a2, . . . , am)

d2∑
i2=0

. . .

dm∑
im=0

pd1i2...ima
i2
2 · . . . · aimm︸ ︷︷ ︸

the main coeff. of (45).

,

where i1 = 0, . . . , d1 and ci1(a2, . . . , am) is an algebraic number depending on
a2, . . . , am; especially cd1(a2, . . . , am) = 1. According to (44)

(46)

d2∑
i2=0

. . .

dm∑
im=0

pi1i2...ima
i2
2 · . . . · aimm = λωi1(a2, . . . , am),

ωi1(a2, . . . , am) = ci1(a2, . . . , am)

d2∑
i2=0

. . .

dm∑
im=0

ωi2...ima
i2
2 · . . . · aimm ,

where i1 = 0, . . . , d1 and ωi1(a2, . . . , am)’s are algebraic numbers depending on
a2, . . . , am. Since the cardinality of the algebraic numbers is not finite we can
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choose different values a20, . . . , a2N to satisfy (46). In terms of a linear system
of equations

V (a20, . . . , a2N)


X00 . . . XN0

X01 . . . XN1

. . .
X0N . . . XNN

 =

λ


ω0(a20, a3, . . . am) . . . ωN(a20, a3, . . . , aN)
ω0(a21, a3, . . . am) . . . ωN(a21, a3, . . . , aN)

. . .
ω0(a2N , a3, . . . am) . . . ωN(a2N , a3, . . . , aN)

 ,

where

V (a20, . . . , a2N) :=


1 a20 . . . aN20
1 a21 . . . aN21
. . . .
1 a2N . . . aN2N


is the usual Vandermonde matrix,

Xkl :=

d3∑
i3=0

. . .
dm∑

im=0

pkli3...ima
i3
3 · . . . · aimm ,

where k, l = 0, . . . , N and N := max{d1, . . . , dm}; note that we allow zero
elements too, i.e. if the monomial term xk

1x
l
2x

i3
3 · . . . · xim

m is missing for some
values of k and l in the polynomial P then pkli3...im := 0. Since the algebraic
numbers form a field the matrix V −1(a20, . . . , a2N) contains algebraic numbers
and we have that Xkl’s must be also algebraic, i.e.

(47)

d3∑
i3=0

. . .
dm∑

im=0

pi1i2i3...ima
i3
3 · . . . · aimm = λωi1i2(a3, . . . , am),

where ωi1i2(a3, . . . , am)’s are algebraic numbers depending on a3, . . . , am, i1 =
0, . . . , d1 and i2 = 0, . . . , d2. Equation (47) is of the same type as (46). The
process can be repeated by choosing different values a30, . . . , a3N to satisfy (47)
and so on. After finitely many steps we can conclude that

pi1...im = λωi1...im ,

where ωi1...im are algebraic numbers, λ ∈ C and 0 ≤ i1 ≤ d1, . . . , 0 ≤ im ≤ dm.
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