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ON THE CONCIRCULAR VECTOR FIELDS OF SPACES
WITH AFFINE CONNECTION

IRENA HINTERLEITNER, VOLODYMYR BEREZOVSKI, ELENA CHEPURNA,
AND JOSEF MIKEŠ

Abstract. In this paper we study concircular vector fields of spaces with
affine connection. We found the fundamental equation of these fields for
the minimal requirements on the differentiability of the connection. The
maximal numbers of linearly independent fields (with constant coefficients)
is equal to n+ 1 and is realized only on projective flat spaces. Further we
found a criterion on the Weyl tensor of the projective curvature of spaces,
in which exist exactly n− 1 independent concircular vector fields.

1. Introduction

Under a geodesic circle we understand a curve for which the first curvature
is constant and the second curvature is zero. In 1944 K. Yano [26] introduced a
conformal mapping of (pseudo-) Riemannian spaces which preserves geodesic
circles and is called concircular.

The existence of these mappings is connected with the existence of concir-
cular vector fields φ, which satisfy the equations ∇φ = ρ Id. Special types
of these fields were studied earlier in the case when they are covariantly con-
stant (ρ = 0) by T. Levi-Civita [11], for convergent vector fields (ρ = const)
by P. A. Shirokov [23], and for concircular ones by H. W. Brinkmann [2] and
H. L. Vries [4]. Later they were independently studied as geodesic fields by
Ya.L. Shapiro [22, 21], and as equidistant fields by N. S. Sinyukov [24, p. 92–
98].
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Concircular vector fields and their generalizations play great role in many
problems in differential geometry, for example in the theory of geodesic, almost
geodesic mappings, see [1, 3, 6, 9, 12, 13, 15, 14, 16, 17, 19, 20, 24, 25].

In our work we study concircular vector fields on spaces with affine connec-
tion. In our paper we going to show some results connected to basic notations
under the conditions of minimal differentiability of affine connection and other
geometric objects which define concircular vector fields.

2. Fundamental equations of concircular vector fields

Let An = (M,∇) be n-dimensional manifolds with affine connection ∇,
n ≥ 2.

Definition 1. A concircular vector field is a vector field φ in An such that for
all points x ∈M the following relation is satisfied

(1) ∇φ = ϱ Id,

where ϱ is a function on M .

If ϱ is constant then the vector field is convergent, and, moreover, if ϱ = 0
then the vector field is covariantly constant. this definition is analogous for
such vector fields on (pseudo-) Riemannian manifolds [5, 16, 12, 24, 17, 26].

In a local coordinate neighbourhood (U, x), U ⊂ M , the equation (1) has
the form ∇jφ

h = ϱ δhj , where δ
h
j is the Kronecker symbol. We can write it in

the following form

(2) ∇jφ
h ≡ ∂jφ

h + Γh
αjφ

α = ϱ · δhj ,

where ∂j = ∂/∂xj.
It is easily seen that formula (2), and also (1), is true when

An ∈ C0 (i.e. Γh
ij(x) ∈ C0), φi(x) ∈ C1 and ϱ(x) ∈ C0.

The following lemma holds.

Lemma 1 (Hinterleitner, Mikeš [7]). Let λh(x) ∈ C1 be a vector field and ρ(x)

a function. If ∂λ
h

∂xi
− ρ δhi ∈ C1 then λh ∈ C2 and ρ ∈ C1.

Validity of Lemma 1 follows from the following more general lemma.

Lemma 2. Let λh(x) ∈ C1 be a vector field, ϱ(x) a function and

Dh
i =

(
δab 0
0 0

)
, a, b = 1, . . . , r, 1 < r ≤ n.

If ∂iλ
h − ϱDh

i ∈ C1 then λh ∈ C2 and ϱ ∈ C1.

Proof. The condition ∂iλ
h − ϱDh

i ∈ C1 can be written in the following form

(3) ∂iλ
h − ϱDh

i = fh
i (x),
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where fh
i (x) are functions of class C1. Evidently, from (3) follows that ϱ is

smooth function. For fixed but arbitrary indices i ̸= a, 1 ≤ i ≤ n, 1 ≤ a ≤ r,
we integrate (3) with respect to dxi:

λa = Λa +

∫ xi

xi
0

fa
i (x

1, . . . , xi−1, t, xi+1, . . . , xn) dt,

where Λa is a function, which does not depend on xi.
Because of the existence of the partial derivatives of the functions λa and

the above integrals (see [10, p. 300]), also the derivatives ∂aΛ
a exist; in this

proof we don’t use Einstein’s summation convention. Then we can write (3)
for h = i = a:

(4) ϱ = −fa
a + ∂aΛ

a +

∫ xi

xi
0

∂af
a
i (x

1, . . . , xi−1, t, xi+1, . . . , xn) dt.

Because the derivative with respect to xi of the right-hand side of (4) exists,
the derivative of the function ϱ exists, too. Obviously ∂iϱ = ∂hf

h
i − ∂if

h
h ,

therefore ϱ ∈ C1 and from (3) follows λh ∈ C2. □
In a similar way we can prove that for r = 1 Lemma 2 is not valid.

If An ∈ C1 (i.e. Γh
ij(x) ∈ C1) holds, then from formula (2) follows

∂φi

∂xj
− ϱ ·

δij ∈ C1, and from Lemma 2 we get:

φi(x) ∈ C2 and ϱ(x) ∈ C1.

From this viewpoint we specify and generalize the results involving concir-
cular vector fields below.

After differentiation of (1) we have φh
,jk = ∇kϱ δ

h
j and alternation with

respect to indices j and k we obtain the formula φh
,jk−φh

,kj = ∇kϱ δ
h
j −∇jϱ δ

h
k .

From the Ricci identity follow the integrability conditions of equation (1):

(5) φαRh
αjk = ∇jϱ δ

h
k −∇kϱ δ

h
j ,

where Rh
ijk are components of the curvature tensor.

We contract the indices h and k in (5) and get

∇jϱ = − 1

n− 1
φαRαj,

where Rij = Rk
ikj are components of the Ricci tensor and (5) has the form

(6) φαW̃ h
αjk = 0,

where

(7) W̃ h
ijk = Rh

ijk −
1

n− 1
(Rij δ

h
k −Rik δ

h
j ).

The tensor W̃ is similar to the Weyl tensor of projective curvature W , see
[16, p. 133]. In an equiaffine space An (where the Ricci tensor is symmetric,
i.e. Rij = Rji) the tensor W̃ is identical to W .
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Moreover, after contraction of (6) with respect to the indices h and k for
n > 2 we get

(8) φα(Rαi −Riα) = 0.

The system of equations

(9)
∇jφ

h = ρ · δhj ,
∇jϱ = − 1

n− 1
φαRαj.

is closed.
It is a system of linear differential equations of Cauchy type, in first order

covariant derivatives of the vector φh(x) and the function ϱ(x), with coefficients
uniquely determined by the connection ∇ of the manifold An ∈ C1.

For any family of initial values φh(x0) = φh
0 and ρ(x0) = ρ0 of the func-

tions under consideration in the given point x0, it admits at most one solution.
Consequently, the number of free parameters in the general solution of the
system is at most n+ 1.

Similar research of (pseudo-) Riemannian spaces Vn was published in [3].
For higher differentiability of the vector field ϕ, see [4, 9], and for manifolds
with affine connections, see [6, 18, 19].

Since the system is linear, it admits at most n + 1 linearly independent
solutions corresponding to constant coefficients. This is obvious the cardinality
of the system of independent concircular vector fields of the space An ∈ C1.

It follows from the analysis of the system of equations (9) that if An ∈ Cr,
r ≥ 1, then φh ∈ Cr+1 and ρ ∈ Cr. From this we obtain the following theorem.

Theorem 1. If the manifold An with affine connection (An ∈ Cr, r ≥ 1)
admits a concircular vector field φh ∈ C1, then φh belongs to Cr+1.

We suppose that the differentiability class r is equal to 2, 3, . . . ,∞, ω, where
∞ and ω denote infinitely differentiable, and real analytic functions, respec-
tively.

It is known that only projective flat manifolds admit the maximal number
of n+1 linearly independent concircular vector fields. This holds locally. This
fact follows from the study of the integrability conditions of (9) and their
differential prolongations (explicitly W̃ h

ijk = 0, Rij = Rji and Rij,k = Rik,j).
In Riemannian spaces Vn = (M, g) the equations (9) were modified as follows

[3]:
∇jφi = ρ · gij,
∇jϱ = B φj,

where B is a function on M , φi = φαgαi, and gij are components of metric g.
If equations (9) have more than one solution, then the function B is constant.

If a Riemannian space Vn ∈ C2 (n > 2) admits at least two linearly inde-
pendent concircular vector fields φi(x) ∈ C1 with constant coefficients, then
B is a constant, uniquely determined by the metric of the space Vn, see [3].



ON CONCIRCULAR VECTOR FIELDS 57

Remark 1. In [9] and [8, p. 88] a similar theorem was published, but the proof
was done only for Vn ∈ C3, φi(x) ∈ C3 and ϱ(x) ∈ C2, and, moreover, it has
local validity.

3. A space with affine connection which admits at least two
linearly independent concircular vector fields

The initial conditions φh(x0) = 0 and ρ(x0) = 0 have only the trivial solution
φh(x) = 0 and ρ(x) = 0 on An = (M,∇) ∈ C1 for the system of equations
(9). For this reason φh(x) and ρ(x) are vanishing on An, if φ

h(x) = 0 in the
neighborhood Ux0 of the point x0. Then the following lemma holds.

Lemma 3. The non-vanishing concircular vector field φh(x) can be equal to
zero only on point sets of zero measure.

By mathematical induction we have the following lemma.

Lemma 4. A set of r (r < n) linear independent concircular vector fields
{φh

1|, φ
h
2|, . . . , φ

h
r|} on An can be linearly dependent only on point sets of zero

measure.

Proof. Successively we can substitute r = 1, 2, . . . , n−1. Let {φh
1|, φ

h
2|, . . . , φ

h
r|}

be linearly independent (except at point sets of zero measure) concircular
vector fields on An, which satisfy the following equations φh

s|,j = ρs| · δhj , where
ρs| are functions on An.

Let these vectors be linearly independent at the point x0 ∈M , then they are
linearly independent at a point x in a certain neighborhood Ux0 ⊂M . Finally,
let φh be a concircular vector field on M and

(10) φh(x) =
r∑

s=1

αs|(x) · φh
s|(x) for x ∈ Ux0 ,

where αs|(x) are functions on Ux0 . Because φh(x), φh
s|(x) ∈ C1, the functions

as|(x) are differentiable. Covariantly differentiating (10) with respect to xj we

find (ρ −
r∑

s=1

αs| ·ϱs|) δhj =
r∑

s=1

∇jαs| ·φh
s|. From this follows that ρ =

r∑
s=1

αs| · ρs|
and ∇jαs| = 0 (i.e. αs| = const) on Ux0 .

For the initial conditions φh(x0) =
r∑

s=1

αs| ·φh
s|(x0) and ρ(x0) =

r∑
s=1

αs| ·ρs|(x0)

the equations (9) have only one solution: φh(x) =
r∑

s=1

αs| · φh
s|(x) on An. □

Theorem 2. There are no manifolds with affine connection An ∈ C1, (n > 2),
except equiaffine projective flat spaces, which admit more than (n− 1) linearly
independent concircular vector fields φi(x) ∈ C1 corresponding to constant
coefficients (of linearly dependence).
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Proof. Let us suppose the opposite. Let An be a space which is not equiaffine
projective flat and yet admits more than (n− 1) linearly independent concir-
cular vector fields with constant coefficients. The conditions (6) read

(11) φαW̃ h
αjk = 0.

We can write the tensor W̃ h
ijk as W̃ h

ijk =
m∑
s=1

as|iΩ
h
s|ijk where as|i are some

linearly independent covectors, and Ωh
s|jk are linearly independent tensors.

Since An is not equiaffine projectively flat, m ≥ 1 holds.
From the conditions (11) we obtain

(12) φαa1|α = 0, φαa2|α = 0, . . . , φαam|α = 0.

Since m ≥ 1, among the equations of the system (12) there is at least one
substantial equation. From the previous facts it follows that there exist less
or equal to n − 1 linearly independent vector fields φh, a contradiction. This
proves the Theorem 2. □

From the Theorem 2 the following two Theorems follow

Theorem 3. Let An ∈ C1, (n > 2), be a space with affine connection ∇ in
which there are (n − 1) linearly independent concircular vector fields φh(x) ∈
C1. Then the tensor W̃ has the following expression

(13) W̃ h
ijk = aiΩ

h
jk,

where ai and Ωh
jk are a non vanishing covector and tensor of type (1, 2), re-

spectively.

Theorem 4. An ∈ C3 (n > 2) admits (n−1) linearly independent concircular
vector fields φi(x) ∈ C1, if and only if in An the following relations are satisfied

W̃ h
ijk = aiΩ

h
jk,

ai, j = µjai + biaj;

bi, j = νjai + bibj −
1

n− 1
Rij,

where ai is a non-vanishing covector; ci, µi, νi are some covectors.

4. Examples

Assume that An has the components of affine connection ∇ defined in the
following way Γ1

11 ∈ Cr, r ≥ 0, ∃i ̸= 1 ∂iΓ
1
11 ̸= 0 and the other components of

Γh
ij are vanishing. If Γ1

11 ∈ C1 then Rh
ijk = aiΩ

h
jk, Rij = aiΩ

h
jh and (13).

We can easily convince ourselves that in An exist exactly n − 1 non-linear
covariantly constant vector fields ξh, i.e. for which is ∇ξh = 0. These fields
have ξhs| = δhs , s = 2, 3, · · · , n. This is a general solution of equations (1). The
condition ϱ = 0 is necessary.

The above solution is valid even though Γ1
11 ∈ C0 and Γ1

11 ̸∈ C1. In this case
there may be formula (13).
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Let Ãn be a space with affine connection ∇̃ for which Γ̃h
ij = Γh

ij+ψiδ
h
j +ψjδ

h
i ,

where ψi = ∂iΨ. The vector fields φh
s| = exp(−Ψ) · ξhs| satisfy the equations

(1). When Γ̃h
ij ∈ C1, then formula (13) is valid in Ãn . Notice that An and Ãn

have common geodesics.
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[15] J. Mikeš et al. Differential mappings of special mappings. Palacky Univ. Press, Olomouc,

2015.
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