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SECOND ORDER PARALLEL TENSORS ON LP-SASAKIAN
MANIFOLDS WITH A COEFFICIENT «

LOVEJOY S. DAS

ABSTRACT. In 1926, Levy [3] had proved that a second order symmetric
parallel nonsingular tensor on a space of constant curvature is a constant
multiple of the metric tensor. Sharma [4] has proved that a second order
parallel tensor in a Kéhler space of constant holomorphic sectional curvature
is a linear combination with constant coefficient of the Kahlerian metric and
the fundamental 2-form. In this paper, we have shown that a second order
symmetric parallel tensor on Lorentzian Para Sasakian manifold (briefly
LP-Sasakian) with a coefficient « (non zero Scalar function) is a constant
multiple of the associated metric tensor and we have also proved that there
is no non zero skew symmetric second order parallel tensor on a LP-Sasakian
manifold.

1. INTRODUCTION

In 1923, Eisenhart [2] showed that a Riemannian manifold admitting a sec-
ond order symmetric parallel tensor other than a constant multiple of metric
tensor is reducible. In 1926 Levy [3] obtained the necessary and sufficient con-
ditions for the existence of such tensors. Sharma [4] has generalized Levy’s
result by showing that a second order parallel (not necessarily symmetric and
non-singular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. Sharma has also proved in [4] that
on a Sasakian manifold, there is no non zero parallel 2-form. In this paper
we have defined LP-Sasakian manifold with a coefficient «, (non zero scalar
function) and have proved the following two theorems:

Theorem 1.1. On a LP- Sasakian manifold with a coefficient o, a second
order symmetric parallel tensor is a constant multiple of the associated positive
definite Riemannian metric tensor.
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Theorem 1.2. On a LP-Sasakian manifold with a coefficient o, there is no
non zero parallel 2-form.

Let M be an n-dimensional differentiable manifold of class ¢* endowed with
(1,1) tensor field ®, a contravariant vector field 7', a covariant vector field A
and a Lorentzian metric g on M which makes T a timelike unit vector field
such that the following conditions are satisfied [1].

(1.1) A(T) = -1

(1.2) ®(T)=0

(1.3) A(®X) =0

(1.4) P’X=X+AX)T

(1.5) A(X) =g(X,T)

(1.6) g (X, 0Y) =g(X,Y)+ A(X)A®Y)

(1.7) d(X,Y)=g(X,0Y)=g(Y,0X) = d(X,Y)
(1.8) d(X,T)=0.

Then a manifold satisfying conditions (1.1)—(1.8) is called a LP-Sasakian struc-
ture (®,7, A, g)on M.

Definition 1.1. If in a LP-Sasakian manifold, the following relation

(1.9) PX = é(VxT)

(1.10) D(X,Y) = = (VxA(Y) = ~(VxA)(Y)
(1.11) a(X) =Vxa

(1.12) g (X, @) = a(X)

(1.13) Vx®(Y,Z2) =
al{g (X,Y) +n(Y)n(X)}n(Z)+{9(X,2Z) +n(Z)n(X)}n(Y)].

hold, where V denotes the Riemannian connection of the metric tensor g, then
M is called a LP-Sasakian manifold with coefficient «.

2. PROOFS OF THEOREM 1.1 AND 1.2

In proving Theorems 1.1 and 1.2 we need the following theorems.

Theorem 2.1. On a LP-Sasakian manifold with coefficient o the following
holds

(21) AR(X,Y)Z)=0a’[g(Y,Z) A(X) —g(X,Z) A(Y)]
—[a(X)2 (Y, Z) —a(Y)® (X, 2)]

Proof. On differentiating (1.10) covariantly and using (1.11), (1.12) and (1.13)
the proof follows immediately. O
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Theorem 2.2. For a LP-Sasakian manifold with coefficient o, we have:
(22) R(T,X)Y=a?[AMV)X+g(X,V)T]+a(Y)PX —ad(X,Y),
where g (X, @) = a(X).

Proof. The proof follows in an obvious manner after making use of (1.12) and
(2.1). O

Theorem 2.3. For a LP-Sasakian manifold, with a coefficient o the following
holds:

(2.3) R(T,X)T = Box + o*[X + A(X)T)]
Proof. In view of equation (3.2), the proof follows immediately. O

Proof of Theorem 1.1. Let J denote a (0,2)-tensor field on a LP-Sasakian
manifold M with a coefficient o such that V.J = 0, then it follows that

(2.4) J(RW,X)Y,Z)+J(Y,R(W,X)Z)=0

holds for arbitrary vector fields X, Y, Z, W on M. Substituting W =Y = 7 =
T in (2.4) we get

(2.5) J(R(T,X)T,T)+ J(T,R(T,X)T)=0.
On using Theorem 3.3, the equation (2.5) becomes
(2.6) 28J (®X,T) + 22T (X,T) +2a%g (X, T) J (T, T) = 0.
On simplifying (2.6), we get
B

(2.7) ~g(X,T)J(T.T) = J(X.T) = 57 (@X,T) =0
Replacing X by ®Y in (2.7) we get

B
(2.8) J(®Y,T) =g (®Y,T)J(T,T) + EJ (@°Y,T)

Using (1.4) and (1.5) in the above equation we get

(2.9) J(<I>Y,T):—g[J(T,T)A(Y)%—J(Y,T)]

Using (2.7) and (2.9) we get

(2.10) J(TTYAY)+ J(Y,T)=0if a* + 52 #0
Differentiating (2.10) covariantly with respect to y we get

(2.11) J(T,T)g(X,®Y) 429 (X, T)J (®Y,T)+ J (X, PY) =0

From the above equation and (1.9) we obtain

(2.12) J(T,T)g(X,®Y) = —-J(X,®Y)

Replacing @y by y in (2.12) we get
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In view of the fact that J(7,T) is constant which can be checked by differen-
tiating it along any vector field on M. Thus we have proved the theorem. [J

Proof of Theorem 1.2. Let J be a parallel 2-form on a LP-Sasakian manifold M
with a coefficient . Then putting W =Y = T in (2.4) and using Theorem 3.3
and equations (1.1)—(1.6) we get

(2.14) BJ(®X,2)+*J (X, Z)+*J (T, Z) A(X) +*J (T, X)A(2)
+J(T,2X)a(Z) - J (@, T)®(X,Z) =0

Let us define ®* to be a (2,0) tensor field metrically equivalent to ® then
contracting (2.14) with ®* and using the antisymmetry property of J and the
symmetry property of ®*, we obtain in view of equations (1.3)—(1.6) and after
simplifying the following:

(2.15) J (@ T)=0.
Substituting (2.15) in (2.14) we get
(2.16) BJ(®X,2)+ [J(X,2)+ J(T,Z) A(X) + J (T, X) A(Z)]
+J(T,8X) o (Z) = 0.
On simplifying (2.16) we get
(2.17) BJ(®Z, X))+’ [J(Z,X)+ J(T,X)A(Z)+ J(T,Z) A(X)]
+J(T,27)a(X) = 0.
On simplifying (2.16) and (2.17) we get
(2.18) —BlJ (Z,8X) + J(X,0Z)] — a (X) J(®Z,T) — a(Z)J (®X,T) = 0.
On replacing X by ®Y in (2.18) we get
(219) —BlJ (Z,2%Y) + J (DY, 0Z)]—
a(®Y)J(®Z,T) —a(Z)J (P°Y,T) = 0.
On making use of (1.4) in the above equation, we get the following equation:
(220) —pJ(Z,Y)+J(Z,T)AY)+ J(OY,22)] —a(2)J(Y,T)
—a(QY)J(9Z,T) =0.
On simplifying (2.20) we get
(221) =pBJY.Z2)+J (Y, T)A(Z)+ J(®Z,QY)| —a(Y)J(Z,T)
— a(®Z) J (DY, T) =0,
In view of (2.20) and (2.21) and after simplifying we obtain
(2.22) BJ(T,Z)AY)+J(T,)Y)AY)]+a(2)J(T.Y)
+J(T,®Z)a(®Y) +a(Y) J(Z.T) + a(®Z) J (T, dY) = 0.
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Putting Y = @ in (2.22) and using (2.15) we get

89

(2.23) BJ(T,Z)A(@)+ J(T,2Z) o (Pa) + (@) J (Z,T) =0
Let us put a@ = a and 8 = a (¢, @) in (2.23) we get
(2.24) J(Z,T)[BA (@) — a (@) = J(T,®Z)B.
Replacing Z by ®Z in (2.24) we get
(2.25) J(Z,T)[3? —a] = BJI(T,Z).
Replacing Z by ®Z in (2.25) we get
(2.26) J(9°Z,T) = E_LBZJ@Z, T).
On making use of (2.25) and (1.4) in (2.26) we get
T — B2
(2.27) Bﬁ J(Z,T) = af@ J(Z,T).
From (2.27) it follows immediately that
(2.28) J(Z,T)=0unless (@— )" — (B) #£0.
Using (2.28) in (2.28) we get
(2.29) BJ(Z,®X)+a*J (Z,X) =0
Differentiating (2.28) covariantly along Y and using the fact that V.J = 0 we
get
(2.30) J(Z,®Y) = 0.

In view of (2.30) and (2.29), we see that J (Y, Z) = 0.
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