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MULTIPLY WARPED PRODUCT ON QUASI-EINSTEIN
MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC

CONNECTION

SAMPA PAHAN, BUDDHADEV PAL, AND ARINDAM BHATTACHARYYA

Abstract. In this paper, we have studied warped products and multi-
ply warped product on quasi-Einstein manifold with semi-symmetric non-
metric connection. Then we have applied our results to generalized Robertson-Walker
space times with a semi-symmetric non-metric connection.

1. Introduction

Let (Mn, g), (n > 2) be a Riemannian manifold and US = {x ∈ M : S ̸= r
n
g

at x}, then the manifold (Mn, g) is said to be quasi-Einstein manifold [4, 6] if
on US ⊂ M , we have

(1.1) S − αg = βA⊗ A,

whereA is a 1-form on US and α and β some functions on US. It is clear that the
1-form A as well as the function β are nonzero at every point on US.The scalars
α, β are known as the associated scalars of the manifold. Also, the 1-form A is
called the associated 1-form of the manifold defined by g(X, ρ) = A(X) for any
vector field X, ρ being a unit vector field, called the generator of the manifold.
Such an n-dimensional quasi-Einstein manifold is denoted by (QE)n.

Let (B, gB) and (F, gF ) be two Riemannian manifolds and f > 0 is a
differential function on B. Consider the product manifold B × F with its
projections π : B × F → B and σ : B × F → F . The warped product
B ×f F is the manifold B × F with the Riemannian structure such that
||X||2 = ||π∗(X)||2+f 2(π(p))||σ∗(X)||2, for any vector field X on M . Thus we
have gM = gB + f 2gF holds on M . Here B is called the base of M and F the
fiber. The function f is called the warping function of the warped product [9].
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The concept of warped products was first introduced by Bishop and O’Neil [3]
to construct examples of Riemannian manifold with negative curvature.

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifoldM = B×b1F1×b2F2 . . .×bmFm

with the metric g = gB ⊕ b21gF1 ⊕ b22gF2 ⊕ b23gF3 . . . ⊕ b2mgFm , where each i ∈
{1, 2, . . . ,m}, bi : B → (0,∞) is smooth and (Fi, gFi

) is a pseudo-Riemannian
manifold. In particular, when B = (c, d), the metric gB = −dt2 is negative
and (Fi, gFi

) is a Riemannian manifold. We call M as the multiply generalized
Robertson-Walker space-time.

A multiply twisted product (M, g) is a product manifold of the form M =
B×b1 F1 ×b2 F2 . . .×bm Fm with the metric g = gB ⊕ b21gF1 ⊕ b22gF2 ⊕ b23gF3 . . .⊕
b2mgFm , where each i ∈ {1, 2, . . . ,m}, bi : B × Fi → (0,∞) is smooth.

In 1924, Friedmann and Schouten was introduced the notion of a semi-
symmetric linear connection on a differential manifold [5]. The idea of metric
connection with torsion on Riemannian manifold has given by Hayden (1932)
in [7]. In 1970, Yano [15] was introduced a systematic study of semi-symmetric
metric connection on Riemannian manifold. Later K. S. Amur and S. S. Pu-
jar [1], C. S. Bagewadi [2], Sharafuddin and Hussian (1976) [11], S. Sular,
C. Özgür [12], M. Tripathi [13] have also studied semi-symmetric metric con-
nection on Riemannian manifold. In [10], S. Sular and C. Özgür has studied
warped product on semi-symmetric non-metric connection. Y. Wang has con-
sidered multiply warped product with a semi-symmetric non-metric connec-
tion, then applied the results to generalized Robertson-Walker space-time in
[14].

In this paper, we have considered quasi-Einstein warped product manifolds
endowed with semi-symmetric metric non-connection. First we have obtained
the necessary and sufficient conditions of quasi-Einstein warped product man-
ifold with semi-symmetric non-metric connection. Next we have established
that under certain conditions Robertson-Walker space times would be con-
verted to quasi-Einstein manifold with the above connection. Later we have
shown that (n̄−1)-dimensional base is isometric to a (n̄−1)-dimensional sphere
of a particular radius with respect to semi-symmetric non-metric connection.
In the last section we have studied special multiply warped product with semi
symmetric non-metric connection.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold with the Levi-civita connection ∇.
A linear connection ∇̃ on (Mn, g) is said to be semi-symmetric if its torsion
tensor T can be written as

T (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ],

satisfies the condition

T (X,Y ) = π(Y )X − π(X)Y,
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where π is an 1− form on Mn with the associated vector field P defined by
π(X) = g(X,P ), for all vector fields X ∈ χ(Mn).

A connection ∇̃ is called semi-symmetric non-metric connection if ∇̃g ̸= 0.
The relation between semi-symmetric non-metric connection ∇̃ and the Levi-

Civita connection ∇ of Mn and it is given by [14]

(2.1) ∇̃XY = ∇XY + π(Y )X,

where g(X,P ) = π(X).
Further, a relation between the curvature tensors R and R̃ of type (1,3) of

the connections ∇ and ∇̃ respectively is given by [14],

(2.2) R̃(X,Y )Z = R(X,Y )Z + g(Z,∇XP )Y − g(Z,∇Y P )X

+ π(Z)[π(Y )X − π(X)Y ],

for any vector field X,Y, Z on Mn.

3. Generalized Robertson-Walker Space-times with a
Semi-Symmetric Non-Metric Connection

In this section we have considered quasi-Einstein warped product manifolds
with respect to semi-symmetric non-metric connection. Now, we have proved
the following theorem.

Theorem 3.1. Let (M, g) be a warped product I ×f F where I is an open
interval in R, dim I = 1 and dimF = n̄− 1, (n̄ ≥ 3). Then (M, g) is a quasi-
Einstein manifold with respect to semi-symmetric non-metric connection iff
F is quasi-Einstein manifold for P ∈ χ(B) with respect to the Levi-Civita
connection or the warping function f is a constant on I for P ∈ χ(F ).

Proof. Assume that P ∈ χ(B) and let gI be the metric on I. Taking f = e
q
2

and by using the proposition use of [10] we get

(3.1) S̃(
∂

∂t
,
∂

∂t
) = − n̄− 1

4
[2q′′ + (q′)2 − 4]gI(

∂

∂t
,
∂

∂t
),

(3.2) S̃(
∂

∂t
, V ) = 0,

(3.3) S̃(V,W ) = SF (V,W ) + eq[
n̄− 1

2
q′ +

q′′

2
− n̄− 3

4
(q′)2]gF (V,W ),

for any vector field V,W on F .
Since, M is a quasi-Einstein manifold with respect to the semi-symmetric

non-metric connection, we have

S̃(
∂

∂t
,
∂

∂t
) = αg(

∂

∂t
,
∂

∂t
) + βη(

∂

∂t
)η(

∂

∂t
),

and
S̃(V,W ) = αg(V,W ) + βη(V )η(W ),
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Then the last equations reduce to

(3.4) S̃(
∂

∂t
,
∂

∂t
) = αgI(

∂

∂t
,
∂

∂t
) + βη(

∂

∂t
)η(

∂

∂t
),

and

(3.5) S̃(V,W ) = αeqgF (V,W ) + βη(V )η(W ).

Decomposing the vector field U uniquely into its components UI and UF on I
and F , respectively, then we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t
which gives U = υ ∂

∂t
+ UF , where υ is a function on M . Then we

can write

(3.6) η(
∂

∂t
) = g(U,

∂

∂t
) = υ.

Using the equations (3.6), the equations (3.4), (3.5) reduce to

(3.7) S̃(
∂

∂t
,
∂

∂t
) = α + βυ2,

and

(3.8) S̃(V,W ) = αeqgF (V,W ) + βη(V )η(W ).

Comparing the right hand sides of (3.1) and (3.7) we get,

(3.9) α+ βυ2 = − n̄− 1

4
[2q′′ + (q′)2 − 4].

Similarly comparing the right hand sides of (3.3) and (3.8) we obtain

(3.10) SF (V,W ) = eq[α+
n̄− 3

4
(q′)2− (n̄− 1)

2
q′− q′′

2
]gF (V,W )+βη(V )η(W ),

which gives that F is a quasi-Einstein manifold with respect to the Levi-Civita
connection for P ∈ χ(B).

Now taking P ∈ χ(F ) and by use of [10] we get,

(3.11) S̃(
∂

∂t
, V ) = (n̄− 1)

q′

2
π(V )gI(

∂

∂t
,
∂

∂t
)

and

(3.12) S̃(V,
∂

∂t
) = (1− n̄)

q′

2
π(V )gI(

∂

∂t
,
∂

∂t
),

for any vector field V ∈ χ(F ).
Since M is a quasi-Einstein manifold, we have

(3.13) S̃(
∂

∂t
, V ) = S̃(V,

∂

∂t
) = αg(V,

∂

∂t
) + βη(V )η(

∂

∂t
).

Now g(V, ∂
∂t
) = 0 as ∂

∂t
∈ χ(B) and V ∈ χ(F ).

Hence from the last equation we get

(3.14) S̃(
∂

∂t
, V ) = S̃(V,

∂

∂t
) = βη(V )η(

∂

∂t
).
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Therefore we have

(3.15) η(V )η(
∂

∂t
) = (n̄− 1)

q′

2
π(V )gI(

∂

∂t
,
∂

∂t
),

(3.16) η(V )η(
∂

∂t
) = (1− n̄)

q′

2
π(V )gI(

∂

∂t
,
∂

∂t
).

Comparing from (3.15), (3.16) we get

q′ = 0.

Hence, q is constant. Therefore f is constant. □
Now, we consider the warped product M = B ×f I with dimB = n̄ − 1,

dim I = 1 (n̄ ≥ 3). Under this assumption we have obtained the following
theorem.

Theorem 3.2. Let (M, g) be a warped product B ×f I, where dimI = 1 and
dimB = n̄− 1 (n̄ ≥ 3).

i) If (M, g) is a quasi-Einstein manifold with scalars α, β respect to the
semi-symmetric non-metric connection, P ∈ χ(B) is parallel on B with
respect to the Levi-Civita connection on B and f is a constant on B,
then α = 0.

ii) If (M, g) is a quasi-Einstein manifold with respect to the semi-symmetric
non-metric connection for P ∈ χ(F ), then f is a constant on B.

iii) If f is a constant on B and B is a quasi-Einstein manifold with re-
spect to the Levi-Civita connection for P ∈ χ(F ), then M is an quasi-
Einstein manifold with respect to the semi-symmetric non-metric con-
nection.

Proof. Assume that (M, g) is a quasi-Einstein manifold with respect to the
semi-symmetric non-metric connection. Then we write

(3.17) S̃(X, Y ) = αg(X, Y ) + βη(X)η(Y ).

Decomposing the vector field U uniquely into its components UB and UI on B
and I, respectively, then we have

(3.18) U = UB + UI .

Since dim I = 1, we can take UI = υ ∂
∂t

which gives U = υ ∂
∂t
+UB, where υ is a

function on M . From (3.17), (3.18) and from the proposition of [10], we have,

(3.19) S̃B(X, Y ) = αgB(X, Y ) + βgB(X,UB)gB(Y, UB)−
Hf (X, Y )

f

− g(Y,∇XP ) + π(X)π(Y ).

By contraction over X and Y and we get

(3.20) r̃B = α(n̄− 1) + βgB(UB, UB)−
∆f

f
+ π(P )−

n̄−1∑
i=1

g(ei,∇eiP ).
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Also from (3.17) we have

(3.21) r̃M = αn̄+ βgB(UB, UB),

So, by the use of (3.21) in (3.20) we get

(3.22) r̃B = r̃M − α− ∆f

f
+ π(P )−

n̄−1∑
i=1

g(ei,∇eiP )

Also from the proposition of [10] we get

r̃M = r̃B − 2
∆f

f
− π(P ) +

n̄−1∑
i=1

g(ei,∇eiP ) + (n̄− 1)
Pf

f
.

Therefore, from above two relation we get

α+
∆f

f
−π(P )+

n̄−1∑
i=1

g(ei,∇eiP ) = −2
∆f

f
−π(P )+

n̄−1∑
i=1

g(ei,∇eiP )+(n̄−1)
Pf

f
.

Since P ∈ χ(B) is parallel and f is a constant on B, then we get α = 0.
ii) Let P ∈ χ(F ). By the use of the proposition of [10] we get,

S̃(X,V ) = (n̄− 1)π(V )
Xf

f

and

S̃(V,X) = (1− n̄)π(V )
Xf

f
,

for any vector field X ∈ χ(B) and V ∈ χ(F ). Since F = I, then taking V = P
we have

(3.23) S̃(X,P ) = (n̄− 1)π(P )
Xf

f
,

and

(3.24) S̃(P,X) = (1− n̄)π(P )
Xf

f
.

Since M is a quasi-Einstein manifold, we have

S̃(X,P ) = S̃(P,X) = αg(P,X) + βη(P )η(X).

Again we have g(P,X) = 0 for X ∈ χ(B) and P ∈ χ(F ).
Hence, we have Xf = 0. This implies that f is constant.
iii) Assume that B is a quasi-Einstein manifold with respect to Levi-Civita

connection. Then we have

(3.25) SB(X, Y ) = αg(X, Y ) + βη(X)η(Y ),

for any vector field X,Y tangent to B.

S̃M(X, Y ) = SB(X,Y ) +
Hf (X,Y )

f
,



MULTIPLY WARPED PRODUCT ON QUASI-EINSTEIN MANIFOLD 109

for any vector field P ∈ χ(F ). Since f is a constant, then Hf (X, Y ) = 0 for
all X,Y ∈ χ(B).

The above equation reduces to

(3.26) S̃M(X, Y ) = SB(X, Y ).

By the use of (3.25) in (3.26) we get

(3.27) S̃M(X, Y ) = αg(X, Y ) + βη(X)η(Y ).

which shows that M is a quasi-Einstein manifold with respect to the semi-
symmetric non-metric connection. □

Next, we consider generalized Robertson-Walker space time with a semi-
symmetric non-metric connection. Now we prove the following theorem.

Theorem 3.3. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = l. Then (M, g) is a quasi-Einstein man-

ifold with respect to semi-symmetric non-metric connection ∇̃ with constant
associated scalars α and β, if and only if the following conditions are satisfied.

i) (F, gF ) is quasi-Einstein manifold with scalar αF , βF .

ii) l(1− f ′′

f
) = α− υ2β,

iii) αF + (1− l)f ′2 − αf 2 + f ′′f + lf ′f = 0 and β = βF .

Proof. By the proposition of [10] we have

S̃(
∂

∂t
,
∂

∂t
) = l(

f ′′

f
− 1),

S̃(
∂

∂t
, V ) = S̃(V,

∂

∂t
) = 0,

S̃(V,W ) = SF (V,W ) + gF (V,W ){ff ′′ − (l − 1)f ′2 + lff ′}.
Then by the quasi-Einstein condition, we get the theorem 3.3. □

From the theorem 3.3. Putting dimF = 1 we get the following corollary.

Corollary 3.1. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to semi-symmetric non-metric connection if and only if

f ′′ + (α− υ2β − 1)f = 0.

By the corollary 3.1. and elementary methods for ordinary differential equa-
tions we get

Theorem 3.4. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t
, dimF = 1. Then (M, g) is a quasi-Einstein manifold

with respect to semi-symmetric non-metric connection if and only if

i) when α− υ2β < 1, f(t) = c1e
(
√

1−(α−υ2β))t + c2e
−(
√

1−(α−υ2β))t,
ii) when α− υ2β = 1, f(t) = c1 + c2t,
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iii) when α − υ2β > 1, we have that f(t) = c1 cos((
√
α− υ2β − 1)t)

+c2 sin((
√

α− υ2β − 1)t).

Next the following theorem shows when base of quasi-Einstein warped prod-
uct manifold is isometric to a sphere of a particular radius.

Theorem 3.5. Let (M, g) be a warped product B ×f I connected with (n̄ −
1)−dimensional Riemannian manifold B where n̄ ≥ 3 and one-dimensional
Riemannian manifold I. If (M, g) is a quasi-Einstein manifold with constant
associated scalars α and β, U ∈ χ(M) with respect to semi-symmetric non-
metric connection, P ∈ χ(B) and the Hessian of f is proportional to metric
tensor gB, then (B, gB) is a (n̄− 1)−dimensional sphere of radius ρ = n̄−1√

r̃B+α
.

Proof. Let M be a warped product manifold. Then from the proposition of
[10] we have

(3.28) S̃M(X, Y ) = S̃B(X, Y ) +

[
Hf (X,Y )

f
+ g(∇XP, Y )− π(X)π(Y )

]
,

for any vector field X, Y on B. Since M is a quasi-Einstein manifold with
respect to semi-symmetric non-metric connection, we have

(3.29) S̃M(X, Y ) = αg(X, Y ) + βη(X)η(Y ).

Decomposing the vector field U uniquely into its components UB and UI on B
and I, respectively, then we have

(3.30) U = UB + UI .

Since dim I = 1, we can take UI = υ ∂
∂t

which gives U = υ ∂
∂t
+ UB, where υ is

a function on M . Putting the value of (3.29), (3.30) in (3.28) we get

(3.31) S̃B(X, Y ) = αgB(X, Y ) + βgB(X,UB)gB(Y, UB)

−
[
Hf (X, Y )

f
+ g(∇XP, Y )− π(X)π(Y )

]
.

By contraction over X and Y we get,

(3.32) r̃B = r̃M − α− ∆f

f
+ π(P )−

n̄−1∑
i=1

g(ei,∇eiP ).

Again from the proposition of [10] we get

(3.33)
r̃M

n̄
= (n̄− 1)

Pf

f
− ∆f

f
.

From the last two equations we get

(3.34) (r̃B + α)f = n̄(n̄− 1)Pf − (n̄+ 1)∆f + fπ(P )−
n̄−1∑
i=1

fg(ei,∇eiP ).
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Hence we get

(3.35)
(r̃B + α)f

n̄(n̄− 1)
= Pf − (n̄+ 1)∆f

n̄(n̄− 1)
+

fπ(P )

n̄(n̄− 1)
−

n̄−1∑
i=1

fg(ei,∇eiP )

n̄(n̄− 1)
.

Since, the Hessian of f is proportional to metric tensor gB, then we have

(3.36) Hf (X,Y ) =

n̄

n̄− 1

[
−Pf +

(n̄+ 1)∆f

n̄(n̄− 1)
− fπ(P )

n̄(n̄− 1)
+

n̄−1∑
i=1

fg(ei,∇eiP )

n(n− 1)

]
gB(X, Y ).

Hence from the equations (3.35), (3.36) we get

(3.37) Hf (X,Y ) +
r̃B + α

(n̄− 1)2
fgB(X, Y ) = 0.

So, B is isometric to the (n̄−1)−dimensional sphere of radius n̄−1√
r̃B+α

[8]. Thus

the theorem is proved. □

4. Special Multiply Warped Product Manifolds with
Semi-Symmetric Non-Metric Connection

Let M = B×b1 F1 ×b2 F2 . . .×bm Fm be a multiply warped product with the
metric tensor −dt2 ⊕ b21gF1 ⊕ · · · ⊕ b2mgFm and I is an open interval in R and
bi ∈ C∞(I).

Now, we prove the following theorem for multiply generalized Robertson-
Walker space time.

Theorem 4.1. Let M = I×b1F1×b2F2 . . .×bmFm be a multiply warped product
with the metric tensor −dt2 ⊕ b21gF1 ⊕ · · · ⊕ b2mgFm and P = ∂

∂t
. Then (M, g) is

a quasi-Einstein manifold with respect to semi-symmetric non-metric connec-
tion ∇̃ with constant associated scalars α and β, if and only if the following
conditions are satisfied.

i) (Fi, gFi
) is quasi-Einstein manifold with scalar αFi

, βFi
, i ∈ {1, 2, . . . ,m},

ii)
m∑
i=1

li(1−
b′′i
bi
) = α− υ2β,

iii) αb2i −αFi
+ bib

′′
i +(li−1)b′i

2+ bib
′
i

∑
j ̸=i

lj
b′j
b′j

− b2i

m∑
j=1

lj
b′j
b′j

= 0 and β = βFi
.

Proof. By the proposition of [14] we have

(4.1) S̃(
∂

∂t
,
∂

∂t
) = −

m∑
i=1

li(1−
b′′i
bi
),

(4.2) S̃(
∂

∂t
, V ) = S̃(V,

∂

∂t
) = 0,
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(4.3) S̃(V,W ) =

SFi(V,W ) + gFi
(V,W ){−bib

′′
i − (li − 1)b′i

2 − bib
′
i

∑
j ̸=i

lj
b′j
bj

+ b2i

m∑
j=1

lj
b′j
b′j
.

Since, M is a quasi-Einstein manifold. So,

S̃(X, Y ) = αg(X, Y ) + βη(X)η(Y ).

Now,

S̃(
∂

∂t
,
∂

∂t
) = αg(

∂

∂t
,
∂

∂t
) + βη(

∂

∂t
)η(

∂

∂t
).

Decomposing the vector field U uniquely into its components UI and UF on I
and F , respectively, then we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t
which gives U = υ ∂

∂t
+ UF , where υ is a function on M . Then we

can write

(4.4) η(
∂

∂t
) = g(U,

∂

∂t
) = υ.

Hence, we get
m∑
i=1

li(1−
b′′i
bi
) = α− υ2β.

Again, S̃(V,W ) = αg(V,W ) + βη(V )η(W ).
From by the proposition of [14] and the equation (4.3) we get (Fi, gFi

) is
quasi-Einstein manifold.

Also, after some calculation we can show that

αb2i − αFi
+ bib

′′
i + (li − 1)b′i

2
+ bib

′
i

∑
j ̸=i

lj
b′j
b′j

− b2i

m∑
j=1

lj
b′j
b′j

= 0

and β = βFi
. □

Next, we have obtained the following theorem with some condition of fibre
and warping function with semi-symmetric non-metric connection.

Theorem 4.2. Let M = I ×b1 F1 ×b2 F2 . . . ×bm Fm be a multiply warped
product with the metric tensor −dt2 ⊕ b21gF1 ⊕ · · · ⊕ b2mgFm with P ∈ χ(Fr)
and gFr(P, P ) = 1 and n̄ ≥ 3. Then (M, g) is a quasi-Einstein manifold with

respect to semi-symmetric non-metric connection ∇̆ with constant associated
scalars α and β, if and only if the following conditions are satisfied.

i) (Fi, gFi
) (i ̸= r) is quasi-Einstein manifold with scalar αFi

, βFi
, i ∈

{1, 2, . . . ,m}.

ii)
m∑
i=1

li
b′′i
bi

= −α + υ2β.

iii) αFi
− bib

′′
i − (li − 1)b′i

2 − bib
′
i

∑
j ̸=i

lj
b′j
b′j

− αb2i = 0 and β = βFi
.
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iv)

SFi(V,W )− gFi
(V,W )[bib

′′
i + (li − 1)b′i

2
+ αb2i + bib

′
i

∑
j ̸=i

lj
b′j
b′j
] =

(n̄− 1)[π(V )π(W )− g(W,∇V P ) + g(V,∇WP )

2
],

for V,W ∈ Γ(TFr), r = i.

Proof. By the proposition of [14] and gFr(P, P ) = 1, we have that br is constant.
So, we have

S̃(
∂

∂t
,
∂

∂t
) =

m∑
i=1

li
b′′i
bi

= −α + υ2β.

By variables separation, we have

S̃(V,W ) = SFi(V,W ) + b2i gFi
(V,W )[−b′′i

bi
− (li − 1)

bi
′2

b2i
−
∑
j ̸=i

lj
b′ib

′
j

bibj
]

+ (n̄− 1)[g(W,∇V P )− π(V )π(W )].

When i ̸= r, then π(V ) = ∇V P = ∇WP = 0.

S̃(V,W ) = SFi(V,W ) + b2i gFi
(V,W )[−b′′i

bi
− (li − 1)

bi
′2

b2i
−
∑
j ̸=i

lj
b′ib

′
j

bibj
]

= αb2i gF (V,W ) + βη(V )η(W ).

By variables separation, we have (Fi, gFi
) (i ̸= r) is quasi-Einstein manifold

with scalar αFi
, βFi

, i ∈ {1, 2, . . . ,m}.
When i = r, we get

SFi(V,W )− gFi
(V,W )[bib

′′
i + (li − 1)b′i

2
+ αb2i + bib

′
i

∑
j ̸=i

lj
b′j
b′j
] =

(n̄− 1)[π(V )π(W )− g(W,∇V P ) + g(V,∇WP )

2
]. □

5. Acknowledgments

The authors wish to express their sincere thanks and gratitude to the editors
and referees.

References

[1] K. Amur and S. S. Pujar. On submanifolds of a Riemannian manifold admitting a
metric semisymmetric connection. Tensor (N.S.), 32(1):35–38, 1978.

[2] C. S. Bagewadi. On totally real submanifolds of a Kählerian manifold admitting
semisymmetric metric F -connection. Indian J. Pure Appl. Math., 13(5):528–536, 1982.

[3] R. L. Bishop and B. O’Neill. Manifolds of negative curvature. Trans. Amer. Math. Soc.,
145:1–49, 1969.



114 S. PAHAN, B. PAL, AND A. BHATTACHARYYA

[4] M. C. Chaki and R. K. Maity. On quasi Einstein manifolds. Publ. Math. Debrecen,
57(3-4):297–306, 2000.

[5] A. Friedmann and J. A. Schouten. über die Geometrie der halbsymmetrischen
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