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SEMI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS FROM
INDEFINITE ALMOST CONTACT 3-STRUCTURE
MANIFOLDS ONTO PSEUDO-RIEMANNIAN MANIFOLDS

S. S. SHUKLA AND UMA SHANKAR VERMA

ABSTRACT. In this paper, we introduce the notion of a semi-slant pseudo-
Riemannian submersion from an indefinite almost contact 3-structure man-
ifold onto a pseudo-Riemannian manifold. We investigate the geometry of
foliations determined by horizontal and vertical distributions and provide
a non-trivial example. We also find a necessary and sufficient condition
for a semi-slant submersion to be totally geodesic. Moreover, we check the
harmonicity of such submersions.

1. INTRODUCTION

The theory of Riemannian submersions was introduced by O’ Neill [14] in
1966 and Gray [9] in 1967. Several geometers studied Riemannian submersions
between Riemannian manifolds equipped with some additional structures such
as almost complex, almost contact etc. [7, 8, 14, 15]. It is well known that
Riemannian submersions are related with physics and have their applications
in Kaluza-Klein theory [4, 10, 11], Yang-Mills theory [5, 22], the theory of
robotics [1], supergravity and superstring theories [11, 13].

In 1976, B. Watson defined almost Hermitian submersions between almost
Hermitian manifolds and gave some differential geometric properties among
fibres, base manifolds and total manifolds [23]. In 2010, Sahin introduced
anti-invariant and semi-invariant Riemannian submersions from almost Her-
mitian manifolds onto Riemannian manifolds [18, 20]. He also gave the notion
of a slant submersion from an almost Hermitian manifold onto a Riemannian
manifold as a generalization of Hermitian submersions and anti-invariant sub-
mersions [19]. K. S. Park also studied slant and semi-slant submersions and
obtained several interesting results [16, 17].
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In the present paper, our aim is to study semi-slant pseudo-Riemannian
submersions from indefinite almost contact 3-structure manifolds onto pseudo-
Riemannian manifolds. The composition of the paper is as follows. In section
2, we collect some basic definitions, results on indefinite almost contact 3-
structure manifolds and pseudo-Riemannian submersions. In section 3, we
define semi-slant pseudo-Riemannian submersions from indefinite almost con-
tact 3-structure manifolds onto pseudo-Riemannian manifolds giving an ex-
ample. We investigate the geometry of foliations which arise from the defi-
nition of above submersions and find a necessary and sufficient condition for
submersions to be totally geodesic. We also check the harmonicity of such
submersions.

2. PRELIMINARIES:

2.1. Indefinite Almost Contact 3-structure Manifolds: Let M be a
(4n + 3)-dimensional Riemannian manifold and for ¢ = 1,2,3, ¢; be (1,1)-type
tensor fields, & vector fields, called characteristic vector fields and 7; 1-forms

on M. Then (¢;,&,m:), i = 1,2,3, is called an almost contact 3-structure on
M if it satisfies [2, 3, 12]

(2.1) 0k = —0i& = &,

(2:2) Gi0Q; =N @& = —¢;0 ¢ + 1 @& = O,
(2.3) (&) =0,

(24) 771'((253') = —773‘((251') = Mk,

for any triad (i, 7, k) of cyclic permutation in symmetric group Ss.

M is said to be an almost contact 3-structure manifold, if it is equipped with
an almost contact 3-structure. Again, M is called an indefinite almost contact
3-structure manifold, if it is endowed with a pseudo-Riemannian metric g such
that

(2.5) 9(0iX, 0:Y) = g(X,Y) — i (X)mi(Y),
(2.6) 9(&i, &) = €,

(2.7) 9(&i, X) = emi(X),

(2.8) 9(¢:i X, Y) = —g(X, :Y),

for any X, Y € '(T'M) and Vi = 1,2, 3.
An indefinite almost contact 3-structure manifold is called

(a) cosymplectic 3-structure manifold if V¢; = 0,
(b) Sasakian 3-structure manifold if

(2.9) (Vxo)Y =g(X, Y)& —n(Y)X, and
(2.10) Vx§=—¢; X
for any X, Y e I'(T'M);i=1,2,3.
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2.2. Pseudo-Riemannian Submersions: Let (M™, g) and (M", g) be two
connected pseudo-Riemannian manifolds of indices 3 (0 < 3 < m) and s
(0 < s < n) respectively, where m > n and 5 > s.

A pseudo-Riemannian submersion is a smooth surjective map f: M™ — M™"
which satisfies the following conditions [7, 8, 9, 14]:

(i) the derivative map f., : T,M — Ty, M is surjective at each point
peM;
(ii) the fibres f~(q) of f over ¢ € M are pseudo-Riemannian submanifolds
of M:;
(iii) f. preserves the length of horizontal vectors.

A vector field on M is called vertical if it is always tangent to fibres and it
is called horizontal if it is always orthogonal to fibres. We denote by V the
vertical distribution and by H the horizontal distribution. Also, we denote
vertical and horizontal projections of a vector field E on M by vE and by
hE respectively. A horizontal vector field X on M is said to be basic if X is
f-related to a vector field X on M ie. f,X = X o f. Thus, every vector field
X on M has a unique horizontal lift X on M.

We recall the following lemma for later use:

Lemma 2.1 ([7, 15]). If f: M — M is a pseudo-Riemannian submersion and
XY are basic vector fields on M that are f-related to the vector fields X,Y
on M respectively, then we have the following properties
() g(X,Y) =g(X,Y)o f, o
(i) h[X,Y] is a vector field and f.h[X,Y]=[X,Y]o f,
(iii) W(VxY) is a basic vector field f-related to VxY, where V and ¥V are
the Levi-Civita connections on M and M respectively,

(iv) [E,U] €V, for any U € V and for any vector field E € T'(TM).

A pseudo-Riemannian submersion f: M — M determines tensor fields T
and A of type (1,2) on M defined by formulas [7, 14, 15]

for any E,F € T(TM).

Let X,Y be horizontal vector fields and U, V be vertical vector fields on M.
Then, we have

(2.13) ToX = v(VyX),

(2.14) ToV = h(VyV),

(2.15) VX =ToX + h(VyX),
(2.16) TxF =0,

(2.17) TeF = T.5F,

(2.18) VoV =TV +0(VyV),
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(2.19) AxY =0(VzY),

(2.20) AxU = h(VU),

(2.21) ViU = AzU +0(VxU),
(2.22) Ay F =0,

(2.23) AgF = AygF,

(2.24) VY = AgY +h(VgY),
(2.25) h(VyX) = h(ViU) = AxU,
(2.26) AgY = %U[X,Y],

(2.27) AzY = —Ay X,

(2.28) ToV = TyU,

VEFel(TM).

It can be easily shown that a Riemannian submersion f: M — M has
totally geodesic fibres if and only if 7 vanishes identically. By lemma (2.1),
the horizontal distribution # is integrable if and only if 4 = 0. Also, in view
of equations (2.27) and (2.28), A is alternating on the horizontal distribution
and 7 is symmetric on the vertical distribution.

Now, we recall the notion of harmonic maps between pseudo-Riemannian
manifolds. Let (M,g) and (M, g) be pseudo-Riemannain manifolds and let
f: M — M be a smooth map. Then the second fundamental form of the map
f is given by

(2.29) (VL)X Y) = (Vi fY) o f = f(VxY)

for all X,Y € T'(TM), where V/ denotes the pullback connection of V with
respect to f and the tension field 7 of f is defined by

(2:30) 7(f) = trace(V£,) = Y (V£.) (e, e),
i=1
where {e;, ey, €,,} is an orthonormal frame on M.

It is known that f is harmonic if and only if 7(f) = 0 [6].

In this paper, we study pseudo Riemannian submersions f: M — M such
that fibres f~!(q) over ¢ € M be pseudo-Riemannian submanifolds admitting
non-lightlike vector fields.

3. SEMI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS

Definition 3.1. Let (M*"*3 ¢;,&,7;,g) be an indefinite almost contact 3-
structure manifold and (M™, g) be a pseudo-Riemannian manifold. A pseudo-
Riemannian submersion f: M — M is called a semi-slant pseudo-Riemannian
submersion if structure vector fields &; ¢ = 1,2,3 are horizontal and there
exists a distribution D C ker f« such that

(i) ker f. = D & D+;
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(ii) ¢s(D) C D; and B B o
(iii) for any non-zero vector field X, € sz, the angle 6; between ¢; X, and
the space D is constant.

We observe that if dimension D = 0, then a semi-slant pseudo-Riemannian
submersion f: M — M is a slant pseudo-Riemannian submersion [19].
For any vector field U € V, we put
(3.1) U=PU+QU,
where PU € D and QU € D*.
Also, for any vector field U € D+, we set
(3.2) o:iU = ;U + w;U,
where ¢;U and w;U are horizontal and vertical components of &;U respectively.
For any vector field X € H, we put
where t; X and n; X are horizontal and vertical components of ggiX respectively.

Ezample 3.2. Let (R, ¢, &, i, 3,7 = 1,2,3) be an indefinite almost contact
3-structure manifold such that for any (ay,as,as, - ,a15)" € RE,

&l (((1/1, a2, - aa'15)t) =

t
(_a?n aq, @1, —Qg, —ar, ag, as, —g, —a11, Ad12, @49, —Aa10, 07 —AQ15, CLléL) P

b2 ((@1, Ao, - - ,a15)t) —

t
(—CL4, —as, as, ai, —ag, —ay, g, ds, —Q12, —a11, 19, Ay, d1s, 0, —als) )

¢3 ((ah Ay, ,a15)t) —

t
(_a2; ay, —a4,as, —ag, as, —as, ar, —aip, @y, —aA12, @411, —A14, A13, O) 9

& = 3%3, & = 3%4; & = 3%57 M = drys, N2 = dr1y, 73 = days, signature of
g=(——++——++ -, —,+,+,+,+ +) and let (R?, g) be a pseudo-
Riemannian manifold.

Define a submersion f: {RE>; (z1, 2o, ..., 715)" ) = {RE; (y1, 92, ..., y7)'} by
f ((xl, To, -+ ,x15)t) —(x58in v — 7 cos @, Tgsina + xg cos a,
TgSin @—xq1 COSQ, X1pSIin @ + T2 COSQ, T13, T14, :1:15)t,

where « is a real number.
The vertical distribution V is

Span 9 4 g 9 cos ai + sin ai — cos ai + sin ai
P 81'1’ 81’27 81'3’ 82747 81'5 81177 (3956 81187

. 0
cos aa—wg -+ sin aaxn , D D1s } .
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zx1’ Ox2’ dxs’ Oxa

Wehave@:Span{ o 9 9 i}CVand

Dt = Span {cos a—— +sina——, —cosa—— +sina——

8x5 3(1377 8x6 3(1387

cosa—— + sin « — Ccos & + sin «

0
a{L‘g 6x11 ' 8x10 8ZE12 } )

Then, D is invariant with respect to ¢;,7 = 1,2,3 and semi-slant angles §; =
cos”!(tan2a), Oy = 03 = Z.

Proposition 3.3. Let f: M — M be a semi-slant pseudo-Riemannian sub-
mersion from an indefinite almost contact 3-structure manifold (M, ¢;, &, i, §)
onto a pseudo-Riemannian manifold (M,g). If U,V are vertical and X,Y are
horizontal vector fields on M, then we have

(3.6) §(v:QU, X) = —g(U, n;X); 1 =1,2,3.

Proof. Using equations (2.8), (3.1) and (3.2), for any vector fields U,V € V,
we have

§(6iPU + ¥iQU +wiQU, V) = =g(U, ¢:PV +hiQV + wiQV'),
which gives
Similarly, for any vector fields U,V € V and X,Y € H, we have equations
(3.5) and (3.6). O

Theorem 3.4. Let f: M — M be a pseudo-Riemannian submersion from an
indefinite almost contact 3-structure manifold (M, ¢;, &, i, §) onto a pseudo-
Riemannian manifold (M, g). Then, f is a semi-slant Riemannian submersion
if and only if there exists A € [0,1] such that

(3.7) (Qui)* = A7
Moreover, if 0; is semi-slant angle of the submersion, then A = cos?0;;i =
1,2,3.

Proof. Let Z be any non-zero vector field in the distribution D*. Then, we
have

§(0iZ, Qu; Z
(3.8) cosb; = M
|6:Z] |Qu; Z|
Again, we have
|Q_¢%’Z|

(3.9) cosf; =
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Now, from equations (2.8), (3.2) and (3.8) we have
9z, Q%‘QMZ)

QuiZl |¢:Z|
In view of equations (3.9) and (3.10), we have

g(Z7 (Qﬁwi)QZ)
9(Z.(9:)*2)
Now, equation (3.11) implies that cos® §; = constant if and only if (Quw;)? and
¢? are conformally parallel.
Hence, (Quw;)? = \¢?, for some \ € [0, o).
Again, from equations (3.7) and (3.11), we have A = cos?6;. Consequently,
we have A € [0, 1]. O

(3.10) cosb; =

(3.11) cos? 0; =

Corollary 3.5. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite almost contact 3-structure manifold (M, ¢;, &, 7, G)
onto a pseudo-Riemannian manifold (M, g). If 0; is a semi-slant angle of the
submersion, then for U,V € DY;i=1,2,3, we have

(3.12) g(QuiU, QuiV) = (§(U, V) = &iii(U)is(V')) cos® ;,
(3.13)  g(U, V) = (g(U, V) — gii(U)iji(V)) sin® 0; — §(Pw;U, Pw;V).
Proof. For any U,V € D+, using equations (3.1) and (3.2), we have
g(Qwan V) = _Q(Uv szv)
On replacing V' by Qw;V and using equation (3.7), above equation implies
§(QuiU, QuiV) = =Ag(U, (:)°V).

Now, in view of equation (2.5), we have equation (3.12).
Similarly, we can obtain equation (3.13). O

Lemma 3.6. Let f: M — M be a semi-slant pseudo-Riemannian submersion
from an indefinite almost contact 3-structure manifold (M, ¢;,&;, 7, g) onto a
pseudo-Riemannian manifold (M, g). Then, we have

(314) Q_Sz@L g H @Ortho (d)i@l)Ly

(315) (ZE%DJ_ g tzwl@L Dortho nﬂ/}l,[)J_ Dortho wiwi,[)J_ Dortho P2 (wi,[)J_)
@ortth2 (wil_)J_> @ortho Q(szl_)l) ®0rtho p(szﬁl)y

fori=1,2 3.

Proof. The first result is obvious as ¢ D+ C H.
From equations (3.1), (3.2) and (3.3), we have

6D+ C D" ® PuiD* © QuD*.
Now, by using equations (3.1), (3.2) and (3.3), we get (3.15). O
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Theorem 3.7. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite almost contact 3-structure manifold (M, ¢;, &, 7, G)
onto a pseudo-Riemannian manifold (M, g). Then, (¥;D)* is invariant with
respect to gEZ,Z =1,2,3.

Proof. Let X € (1;D*)*,i =1,2,3. Then, for any U € D+, we have

9(0: X, QuiU) = —g(X, ¢:(Qu;U))
—g(X, Pw;i(QwiU) + (Quw:)*U + 1i(Qu;U))

e

Again, for any U € D+,
=0.

Thus, ¢;X € (¢;D)*. Hence, ¢; (D)= C (v, D) O
Lemma 3.8. Let f: M — M be a semi-slant pseudo-Riemannian submersion
from an indefinite almost contact 3-structure manifold (M, ¢;,&;,7i,g) onto a
pseudo-Riemannian manifold (M, g). Then, for any U,V €V, X, Y € H and
1 =1,2,3, we have
(3.16) h(Vpu(6:iPV)) +v(Vpu(¢:PV)) + h(Vou(d:iPV)) + v(Vou(¢:PV))

+ W(Vpu(0iQV)) + Tpu (ViQV) 4 Tpu (wiQV) + v(V py (w;QV))

+ h(Vou(¥:QV)) + Tou(¥:iQV) 4+ h(Vou (wiQV)) + Tou(w:QV)

= (Vudi)V +t(ToV) + ni(ToV) + ¢:i(P(vVy V)
+4:(Q(wVyV)) +wi(Q(uVyV)),

b

(3.18) Ax(6:PU) +v(Vx(¢:PU)) + h(Vx (%QU )
+ A5 (hiQU) + Ax (w;QU) + v(V
= (Vo)U + t;(AgU) + ni(AgU
+:(Q(vV gU)) +wi(Q(vV U)),

(3.19) h(Vy (X)) + To(t: X) + To(niX) + v(Vy(n: X))
(V $:i)X 4+ t;(hVuX) + ni(hWuX) + ¢:(P(Ty X))
Li(Q(Tu X)) + wi(Q(Tu X)).



SEMI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS 125

Proof. For U,V € V., we have
(Vug)V + 6i(VoV) = Veuiqu(i(PV +QV)),
which gives equation (3.16). Similarly, we can obtain other equations. O

Lemma 3.9. Let f: M — M be a semi-slant pseudo-Riemannian submersion
from an indefinite cosymplectic 3-structure manifold (M, ¢;,&;,7;,G) onto a
pseudo-Riemannian manifold (M, g). Then, for any U,V € V X,Y € H and
1 =1,2,3, we have

(3.20) Tru(0:PV) + h(NVqu(0:PV)) + h(V pu (1:QV))
+ Tro (WiQV) + h(Vou (¥iQV)) + h(Voy (w;QV)
=1,(ToV) + ¥:(Q(VyV));
(3.21) v(Vpu(9:PV)) +0(Vou(9:iPV)) + Tpu (:QV)

+v(Vpr(wiQV)) + Tov(ViQV) + Tou(wiQV)
=ni(ToV) + ¢ P(0Vy V) + wi(Q(vVyV)).

(3.23) Aj((tﬁ_/) + U(vg (nZY)) = nz(h?;()_/) + wZ(Q(.AX}_/)) + &ZP(.A)*(Y)

(3.24) Ax(¢:PU) + h(Vx(¥:QU)) + Ag(w;QU) = t;(AxU)
+ i (Q(uVU));

(3.25) v(Vx(6:PU)) + Az (¥:QU) + v(Vx (wiQU))
=n;(AxU) + ¢ P(vVgU) + w;Q(vV gU).
(3.26) h(Vy (X)) + To(niX) = t;(hVyX) + ¢ (QTu X);
(3.27)  To(t:X)+o(Vy(niX)) = ni(hVuX) + ¢:i(PToX) + wiQ(Tu X).
Proof. For U,V € V, we have
(Vuoi)V 4 0i(VuV) = Vpurou(¢i( PV +QV)),
which gives
t(ToV) + ni(ToV) + 6:i(P(vVy V) + i(Q(uViyV)) + wi(Q(v Vi V)
= Teu(9:PV) + h(Vqu(6:PV)) + h(V pu (1:QV))
+ Tru (WiQV) + h(Vou (¥:QV)) + M(Vov (w:iQV)
+u(Vpu(¢iPV)) +0(Vau(9iPV)) + Teu ($:QV)
+ 0(Vpr(wiQV)) + Tou (:QV) + Tou(wiQV).
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On equating horizontal and vertical components in above equation, we get
equations (3.20) and (3.21).
Similarly, we can obtain other equations. [l

By using similar steps as in Lemma 3.9, we have

Lemma 3.10. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite Sasakian 3-structure manifold (M, gbz,& i, G) onto a
pseudo-Riemannian manifold (M, g). Then, for any U,V € V X,Y € H and
1 =1,2,3, we have

(3.28) G(U, V)& +t(TuV) + ni(hVyV) + ¢ P(v(Vy V)
+:Q(vVy V) + w;Q(vVy V)
= W(Vpu(¢iPV)) + v(Vpy (¢ PV))
+ h(Vou(o:PV)) 4+ v(Vou(p: PV))
+ WV pu(:QV)) + Teu (:iQV) + Tpu (wiQV) + v(V py (w;QV))
h(Vau(hiQV)) + Tou(1iQV) + h(Vau(wi:QV)) + Tou (wiQV),

(3.29) MVx(tY)) + Az (t:Y) + Az (nY) + v(Vg(nY))
=g9(X, V)& —emni(V)X +t:(hVgY) +ni(hVgY)
+ ¢ P(AxY) + 1iQ(AgY) + wiQ(AxY),
(3.30) Az (6:PU) +v(Vx(9:PU)) + h(V 5 (4;,QU))

+ Az (0;QU) + Ax (wiQU) 4+ v(Vx (w;QU))
= g(X, U)& + ti(AxU) + ni(AgU)
+ ¢ P(vVU) +9pQ(vVU) + Qv xU),

(3.31) h(Vu(tiX)) + To(tiX) + To(niX) + v(Vy (niX))

= g(U, X)& —eny(X)U +t;(hVyX) +ni(hVyX)

+ 0 P(ToX) + :Q(Tu X) + wiQ(vVyX).
Theorem 3.11. Let f: M — M be a semi-slant pseudo-Riemannian sub-
mersion from an indefinite cosymplectic 3-structure manifold (M, ¢;, &, 7, G)

onto a pseudo-Riemannian manifold (M, g). Then, the fibres of f are totally
geodesic if and only if

(3.32) Vu(o:V) = ¢;(vVi V),

forany U,V €V andi=1,2,3.

Proof. Let U,V € V. For i = 1,2, 3, using equation (3.1), we have
Vul(dV) = (Vud)V + ¢(VpuPV + VpyQV + Vou PV + VouQV).
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Again, using equations (2.14) and (3.1), above equation gives
Vu(diV) = (Vud)V + ¢l(ToV) + ¢i(vVi V).

As the manifold (M, ¢;, &, 1, g) is cosymplectic, from above equation, we have

(3.33) Vu(@iV) = oi(ToV) + ¢i(vVV).
Now, fibres are totally geodesic if and only if 75V = 0. So the proof follows
from equation (3.33). O

Theorem 3.12. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite almost contact S-structure manifold (M, ¢y, &, 7, G)
onto a pseudo-Riemannian manifold (M, g). Then, the horizontal distribution
H defines a totally geodesic foliation if and only if

(3.34)  g(t:i(hVgY) + %’Q(?jv)‘(?)a 1:QU)
+3(ni(hVY) + ¢ P(0VxY) + w,Q(vVY), :PU)
+9(ni(hVY) + ¢:P(vVxY) +w,Q(vVxY), wiQU) =0,

forany X, Y € H, U€V andi=1,2,3.

Proof. Let X,Y € H. Then, for any U € V, from equation (2.5), we have

By splitting horizontal and vertical components and using equations (3.1),

(3.2), and (3.3), we have

9(VxY, U) = g(t;
+9

), GiPU) + (9 Y). 4:QU)
>, wiQU) + g(m(hVxY), 6:PU)
$iQU) + 5(m(hV5Y), wiQU)
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Corollary 3.13. Let f: M — M be a semi-slant pseudo-Riemannian sub-
mersion from an indefinite almost contact 3-structure manifold (M, ¢;, &, 7, §)
onto a pseudo-Riemannian manifold (M,g). Then, following statements are
equivalent:

(a) The horizontal distribution H defines a totally geodesic foliation,

(b)

g(ti(h XY) wiQ(UvXY)7 ;QU)
+ G((hV V) + BP0V xY) + wiQ(uV ), ¢:PU)
+ g(ni(hV £Y) + ¢ P(uVxY) + wiQ(vV YY), w;QU) = 0,
(c) _
I(VxY, t:;QU + ¢;Qu;QU) = 0,
(d

)

G(nitiy(hV YY) + ¢ Pny(hV YY) 4+ w;Qni(hV 3 Y) + ¢2P(vV Y)
+ i Q(vVgY) + ¢ Pw,Q(vVY) + wiQu;Q(vVxY), U) =

forall X,Y ¢ H,UEV andi=1,2,3.

Proof. In theorem (3.12), we have proved (a) <= (b). Similarly, we can prove
(b) < (¢), (¢) <= (d) and (d) <= (a). O

Theorem 3.14. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite cosymplectic 3-structure manifold (M, ¢;, &, 7, g) onto
a pseudo-Riemannian manifold (M, g). Then, the horizontal distribution H
defines a totally geodesic foliation if and only if

(3.35) g(hVx(LY)+hVg(nY), 4:QU) + g(v Vx(t:Y), 6:iPU +w,QU)
+g(wVx(nY), ¢:PU +w,QU) = 0,
forall X, Y € H and i =1,2,3.
Proof. Let X,Y € H,U € V. Then, we have
9(VzY, U)=g(Vg(6:Y), ¢:U).
By using equations (3.2) and (3.3), above equation implies
(3.36) g(VxY, U)=g(hVx(t;Y)+ hV(nY), 1;QU)
+g(vVg(tY), ¢:;PU + w;QU) + g(vV(n;Y), ¢;PU + w;QU).

The distribution # defines a totally geodesic foliation if and only if V¢Y € H.
So the proof follows from equation (3.36). O

Theorem 3.15. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite almost contact S-structure manifold (M, ¢y, &\, )
onto a pseudo-Riemannian manifold (M, g). Then, the vertical distribution V
defines a totally geodesic foliation if and only if
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(3.37) §(ti(hVuV) +0:QVyV), t:.X) + g(ni(hVyV) + g: P(vVy V)
+wiQ(vVyV), n;X) =0,
for alUV eV, X €eH andi=1,2,3.
Proof. Let U,V € V, X € H. Using equation (2.5), we have
9(VuV, X) = g(6:(VoV), 6:iX) +elii(Vo V)i (X).

By splitting vertical and horizontal components in above equation and using
equations (3.2) and (3.3), we get
(3.38) g(VuV, X) = g(ts(hVuV) + 1iQ(VyV), £, X)

+ g(ni(hVyV) + ¢ P(oVyV) + w;Q(uVy V), n;X) + (Ve V)i (X).

The vertical distribution V defines a totally geodesic foliation if and only if
VyV € V. This completes the proof. 0

Theorem 3.16. Let f: M — M be a semi-slant pseudo-Riemannian sub-
mersion from an indefinite cosymplectic 3-structure manifold (M, ¢;, &, i, )
onto a pseudo-Riemannian manifold (M, g). Then, the vertical distribution V
defines a totally geodesic foliation if and only if

(339) g(hVu(¢:iPV) + hVy(:QV) + hVy(wQV), t:X)
+ Q(U?U(@PV) + UvU(dszV) -+ U?U(wiQV), TLZX) = O,
foralUV €V, X € H,i=1,2,3.

Proof. Let U,V € V and X € H.
Using equation (2.5), we have

g(VuV, X)=g(¢i(VuV), ¢:X) + (Vo V)ii(X).
As the manifold M is cosymplectic, we have (Vy¢;)V = 0. So, by using
equations (3.2) and (3.3), we get

(3.40) g(VuV, X) = g(hVu(e:PV) + Wu(wiQV) +hVu(wiQV), t:iX)
+ g(UVU(¢1PV) + UVU(wzQV) + UVU(WZQV) ) + Eznz(vUv>ﬁ (X)
(3.39

The equation (3.40) implies that ViV € V if and only if equation ) is
satisfied. 0J

Now, using similar steps as in theorem 22 and theorem 24 of [21], we have

Theorem 3.17. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from indefinite cosymplectic 3-structure manifold (M, ¢;, &, 7, G) onto a
pseudo-Riemannian manifold (M, g). Then, the submersion f is an affine map
on H;1=1,2,3.

Theorem 3.18. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from indefinite cosymplectic 3-structure manifold (M, ¢;, &, 7, g) onto
a pseudo-Riemannian manifold (M, g). Then, the submersion f is an affine
map if and only if h(VghF) + AypvF + TopvF is f-related to VxY, for any
E,Fel(TM);i=1,2,3.
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Theorem 3.19. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from an indefinite almost contact 3-structure manifold (M, ¢;, &, 7, G)
onto a pseudo-Riemannian manifold (M, g). Then, the submersion map f is
totally geodesic if and only if

(3.41) ToV + AV +hVyY =0,
for any U,V e V,X,)Y € H andV i=1,2,3.
Proof. Let E=X+U, F=Y +V € I'(TM). In view of equation (2.29) and

theorem (3.17), by splitting F, F' in horizontal and vertical components, we
have

(VINE, F) = (VLE)UV) + (VL)X V) +(VLE)UY)
= —f.(h(VyV + VgV +VyY)),
which gives
(3.42) (VINE, F)=—f.(TyV + A5V +hVyY).

The submersion map f is totally geodesic if and only if V f, = 0. So the proof
follows from equation (3.42). O

Theorem 3.20. Let f: M — M be a semi-slant pseudo-Riemannian submer-
sion from indefinite almost contact 3-structure manifold (M*™3 ¢y, &, 7, G)
onto a pseudo-Riemannian manifold (M",g). If the fibres f~'(q) of f over
q € Mare totally geodesic, then fis a harmonic map.

Proof. The tension field 7(f) of the map f: M — M is defined as
(3.43) 7(f) = trace(V f.).

Let {e1, €2, ..., €4mi3-n; Cami3-nt1 = €1,E2,... €amy3 = €, be an orthonormal
basis of I'(T'M), where {ey, e, ..., €4mi3-n} is an orthonormal basis of V and
{€1,€9,...,€4mr3 = €,} is an orthonormal basis of #. Then, we have

4m+3—n n

(344) 7(1) = Y glen (Vs e+ (e G)TLIE, ).

For any vertical vector fields U,V € V. using equation (2.14), we have
(345) (VLU V) = (VH(FV))of = (Vo) = = £ (hVuV) = = f(TuV),

where V7 is the pullback connection of V with respect to f. For any horizontal
vector fields X,Y € H, which are f-related to X,Y € I'(T'M) respectively,
Lemma 2.1 and Theorem 3.17 imply
(3.46) (VENX.Y) = (VE(£Y)) o f = f(VxY)

= (Vex(fY))o f = fi(hVzY) =0.
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In view of equations (3.44), (3.45), (3.46) and Theorem 3.18, we get

dm~+3—n
(3.47) T(f)== > dles e)fu(Teer).
i=1
Now, if the fibres f~1(q) of f over ¢ € M are totally geodesic, then 7 = 0. So
the proof of the theorem follows from equation (3.47). O
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