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ON A HYPERBOLIC KAEHLERIAN SPACE

B. B. CHATURVEDI AND B. K. GUPTA

Abstract. The object of the present paper is to study some curvature
properties in a hyperbolic Kaehlerian manifold equipped with quarter-symmetric
metric connection.

1. Introduction

Hyperbolic Kaehlerian manifold has been studied by different differential
geometer through different approaches. Nevena Pus̆ić [5] studied hyperbolic
Kaehlerian space equipped with quarter-symmetric metric connection. In 1985,
G. Ganchev and A. Borisov [3] discussed the isotropic sections and curvature
properties of hyperbolic Kaehlerian manifolds. Nevena Pus̆ić [6] discussed HB-
parallel hyperbolic Kaehlerian spaces. In 2013, Arif Salimov and S. Turanli [1]
has been discussed some curvature properties of anti-Kaehler-codazzi manifold.
Recently, hyperbolic Kaehlerian manifold equipped with a quarter-symmetric
metric connection has been studied by B.B. Chaturvedi and B.K. Gupta [2]
in 2015. In the consequences of these studies, in this paper we have studied
some curvature properties of a hyperbolic Kaehlerian manifold equipped with
a quarter-symmetric metric connection.

If F h
i satisfies the relation

(1.1) F i
j F

h
i = δhj ,

(1.2) Fi j = −Fj i, (Fi j = gj k F
k
i ),

and

(1.3) F h
i,j = 0,

then the manifold is called hyperbolic Kaehlerian (space) manifold.
Where F h

i is a tensor field of type (1,1) and F h
i,j is a covariant derivative of

F h
i with respect to Riemannian connection.
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In 1975 S. Global [7] defined

Definition 1.1. A linear connection ∇ on a n-dimensional Riemannian man-
ifold (Mn, g) is said to be a quarter-symmetric connection if the torsion tensor
T , defined by

(1.4) T (X, Y ) = ∇X Y −∇Y X − [X, Y ],

of the connection ∇, satisfies

(1.5) T (X, Y ) = η(X)φY − η(Y )φX,

where η is a 1-form and φ is a tensor field of type (1,1) .
A quarter-symmetric connection ∇ is said to be a quarter-symmetric metric

connection if the covariant derivative of metric g vanishes otherwise it is called
a quarter-symmetric non-metric connection.

Yano and Imai [4] considered a quarter-symmetric metric connection ∇ and
Riemannian connection D with coefficients Γh

i j and { h
i j} respectively. Accord-

ing to them if the torsion tensor T of the connection ∇ on (Mn, g), (n > 2),
satisfies

(1.6) T i
j k = pjA

i
k − pk Ai

j,

then the relation between the coefficients of quarter-symmetric metric connec-
tion ∇ and Riemannian connection D is given by

(1.7) Γi
j k = { i

j k} − pk U i
j + pj V

i
k − pi Vj k,

where

(1.8) Ui j =
1

2
(Ai j − Aj i), Vi j =

1

2
(Ai j + Aj i),

where ∇g = 0 and pi are the components of 1-form . Also Ai
j denotes the

components of a tensor of type (1,1). Ui j and Vi j are covariant skew symmetric
and symmetric tensors respectively.

Equation (1.8) implies

(1.9) Ai j = Ui j + Vi j.

Nevena Pus̆ić [6] found a relation between Γh
i j and { h

i j} by putting Vi j = gi j
and Ui j = Fi j in (1.7), given by

(1.10) Γi
j k = { i

j k} − pk F i
j + pj δ

i
k − pi gj k.

where ωh = ωtg
t h , ωh is a contravariant components of generating vector wh.

Also, Nevena Pus̆ić [6] found a relation between curvature tensor with re-
spect to a quarter-symmetric metric connection ∇ and a Riemannian connec-
tion D given by

Ri j k h =Ri j k h − gi hpk j + gi k ph j − gj k ph i + gh j pk i

+ pj ph Fi k + pi pk Fj h − pj pk Fi h − pi ph Fj k,
(1.11)
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where

(1.12) pj k = ∇jpk − pj pk + pk qj +
1

2
ps p

s gj k.

Taking covariant derivative of F h
i with respect to quarter-symmetric metric

connection ∇ and Riemannian connection D, we have

(1.13) ∇k F
h
i = ∂k F

h
i + F r

i Γh
r k − F h

r Γr
i k,

and

(1.14) Dk F
h
i = ∂k F

h
i + F r

i { h
r k} − F h

r { r
i k}.

Subtracting (1.14) from (1.13), we have

(1.15) ∇k F
h
i −Dk F

h
i = F r

i (Γh
r k − { h

r k})− F h
r (Γr

i k − { r
i k}).

Using (1.10) in (1.15), we have

(1.16) ∇k F
h
i −Dk F

h
i = F r

i (−pkF h
r +prδ

h
k−phgr k)−F h

r (−pkF r
i +piδ

r
k−prgi k).

Using (1.1) and (1.2) in (1.16), we have

(1.17) ∇k F
h
i = Dk F

h
i .

Again taking covariant derivative of (1.13) with respect to quarter-symmetric
metric connection, we get

∇j∇k F
h
i =∂j∂k F

h
i − ∂r F h

i Γr
j k − ∂k F h

r Γr
i j

+ ∂k F
r
i Γh

r j + (∂j F
r
i + Fm

i Γr
m j − F r

mΓm
i j )Γh

r k

+ F r
i ∇jΓ

h
r k − (∂j F

h
r + Fm

r Γh
mj − F h

mΓm
r j )Γr

i k − F h
r ∇jΓ

r
i k.

(1.18)

Interchanging j and k in equation (1.18), we get

∇k∇j F
h
i =∂k∂j F

h
i − ∂r F h

i Γr
j k − ∂j F h

r Γr
i k

+ ∂j F
r
i Γh

r k + (∂k F
r
i + Fm

i Γr
mk − F r

mΓm
ik )Γh

r j

+ F r
i ∇kΓh

r j − (∂k F
h
r + Fm

r Γh
mk − F h

mΓm
r k )Γr

i j − F h
r ∇kΓr

i j.

(1.19)

Subtracting (1.18) from (1.19), we get

∇k∇j F
h
i −∇j∇k F

h
i =Fm

i (Γr
mkΓh

r j − Γr
m jΓ

h
r k +∇kΓh

mj −∇jΓ
h
mk)

− F h
r (Γr

mk Γm
i j − Γr

m j Γm
ik +∇jΓ

r
i k −∇kΓr

i j).
(1.20)

Equation (1.20) implies

(1.21) ∇k∇j F
h
i −∇j∇k F

h
i = R

h

k j m F
m
i −R

r

k j i F
h
r .
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2. Twin anti-Hermitian metric

A skew symmetric tensor ω defined by

(2.1) ω(Y, Z) = g(FY, Z),

is said to be a killing-yano tensor if

(2.2) (DXω)(Y, Z) + (DY ω)(X,Z) = 0.

The twin anti-Hermitian metric G defined by

(2.3) G(Y, Z) = g(FY, Z),

where G(Y, Z) = G(Z, Y ).
Since G is symmetric but 2-form ω is not symmetric so the killing-yano equa-

tion (2.2) has no immediate meaning. Therefore, we can change the killing-
yano equation by Codazzi equation

(2.4) (DX G)(Y, Z)− (DY G)(X,Z) = 0.

Equation (2.4) equivalent to

(2.5) (DX F )Y − (DY F )X = 0.

3. Curvature properties

We know that for Riemannian connection D

(3.1) DkDj F
h
i −DjDk F

h
i = Rh

k j m F
m
i −Rr

k j i F
h
r .

Now subtracting (1.21) from (3.1), we get

(DkDj F
h
i −∇k∇j F

h
i )− (DjDk F

h
i −∇j∇k F

h
i ) =Rh

k j m F
m
i −Rr

k j i F
h
r

−Rh

k j m F
m
i +R

r

k j i F
h
r .

(3.2)

After contracting (3.2) by h and k and using (1.3) and (1.17), we get

(3.3) (DhDj F
h
i −∇h∇j F

h
i ) = Sj m F

m
i −Rr

h j i F
h
r − Sj m F

m
i +R

r

h j i F
h
r .

Equation (3.3) can be written as

(3.4) (DhDj F
h
i −∇h∇j F

h
i ) = Sj m F

m
i −Rh j i l g

r l F h
r −Sj m F

m
i +Rh j i l g

r l F h
r .

Using gr l F h
r = Gh l in (3.4), we get

(3.5) (DhDj F
h
i −∇h∇j F

h
i ) = Sj m F

m
i −Rh j i lG

h l − Sj m F
m
i +Rh j i lG

h l .

In 2013, Arif Salimov and S. Turanli [6] defined

(3.6) Hj i = Rh j i lG
h l.

Now we are taking

(3.7) Hj i = Rh j i lG
h l,
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using (3.6) and (3.7) in (3.5), we have

(3.8) (DhDj F
h
i −∇h∇j F

h
i ) = Sj m F

m
i −Hj i − Sj m F

m
i +Hj i,

where Sj m and Sj m are Ricci tensors with respect to Riemannian connection
and quarter-symmetric metric connection respectively and Gh l is twin anti-
Hermitian metric.

We know that the curvature tensor of type (0,4) with respect to Riemannian
connection D satisfies the following relations

(3.9) (i) R(h j) i l = 0 and (ii) Rh j (i l) = 0.

Now, equation (3.6) can be written as

(3.10) Hj i =
1

2
(Rh j i l +Rl j i h)Gl h.

Interchanging i and j in (3.10), we get

(3.11) Hi j =
1

2
(Rh i j l +Rl i j h)Gl h.

Subtracting (3.11) from (3.10), we have

(3.12) Hj i −Hi j =
1

2
(Rh j i l +Rl j i h −Rh i j l −Rl i j h)Gl h = 0.

Equation (3.12) implies that

(3.13) Hj i = Hi j.

If we take

(i) ph i F
h
i = pi h F

h
j ,

(ii) pj Fh i = pi Fj h

(iii) pri gh j = prj gh j,

(3.14)

then from (1.11) and (3.7) we can say that Rh j i l will be symmetric in first
and last indices.

Therefore we can write

(3.15) Hj i =
1

2
(Rh j i l +Rl j i h)Gl h.

Interchanging i and j in (3.15), we get

(3.16) H i j =
1

2
(Rh i j l +Rl i j h)Gl h.

Subtracting (3.16) from (3.15), we get

(3.17) Hj i −H i j =
1

2
(Rh j i l +Rl j i h −Rh i j l −Rl i j h)Gl h = 0,

equation (3.17) implies that

(3.18) Hj i = H i j.

Thus we conclude
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Theorem 3.1. In a hyperbolic Kaehlerian manifold equipped with a quarter-
symmetric metric connection Hi j is symmetric with respect to quarter-symmetric
metric connection ∇ if equation (3.14) holds.

Now equation (3.8) can be written as

Dh(Dj F
h
i −Di F

h
j )−∇h(∇j F

h
i −∇i F

h
j ) = (Sj m F

m
i −Hj i)

− (Sim F
m
j −Hi j ) + (Sim F

m
j −H i j)− (Sj m F

m
i −Hj i),

(3.19)

using (1.17) and (2.5) in equation (3.19), we have

(3.20) Sj m F
m
i − Sim F

m
j = Sj m F

m
i − Sim F

m
j .

Thus we conclude

Theorem 3.2. In a hyperbolic Kaehlerian manifold equipped with a quarter-
symmetric metric connection if the Ricci tensor is pure with respect to Rie-
mannian connection then it is also pure with respect quarter-symmetric metric
connection if the equation (3.14) holds.

In 2013, Arif Salimov and S. Turanli [6] defined

(3.21) S∗
j i = −Hj r F

r
i = −Rh j r lG

l hF r
i ,

where S∗
j r is ∗Ricci tensor with respect to Riemannian connection.

Now we are taking

(3.22) S∗
j i = −Hj r F

r
i = −Rh j r lG

l h F r
i ,

where S∗
j i is ∗Ricci tensor with respect to quarter-symmetric metric connec-

tion.
With the help of equation (1.1), equation (3.21) and (3.22) can be written

as

S∗
j r F

r
i = −Hj i and S∗

j rF
r
i = −Hj i,(3.23)

using equation (3.23) in (3.8), we have

(3.24) (DhDj F
h
i −∇h∇j F

h
i ) = (Sj r F

r
i + S∗

j r F
r
i )− (Sj m F

m
i + S

∗
j m F

m
i ),

from (3.24), if

(3.25) DhDj F
h
i = ∇h∇j F

h
i ,

then, we have

(3.26) Sj r F
r
i − Sj m F

m
i = S∗

j r F
r
i − S

∗
j m F

m
i ,

which implies Sj r F
r
i = Sj m F

m
i , if only if S

∗
j m F

m
i = S∗

j r F
r
i .

Thus we conclude:
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Theorem 3.3. In a hyperbolic Kaehlerian manifold equipped with a quarter-
symmetric metric connection the Ricci tensor with respect to Riemannian con-
nection will be equal to Ricci tensor with respect to quarter-symmetric metrc
connection if only if ∗Ricci tensor with respect to Riemannian connection be
equal to ∗Ricci tensor with respect to quarter symmetric metric connection if
equations (3.14) and (3.25) hold.

4. Conclusions

In this paper we have found that in a hyperbolic Kaehlerian manifold the
Ricci tensor is pure with respect to quarter-symmetric metric connection if
only if it is pure with respect to Riemannian connection with some conditions.
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