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THE GEOMETRY OF TANGENT BUNDLES AND ALMOST
COMPLEX STRUCTURES

SILAS LONGWAP AND FORTUNÉ MASSAMBA

Abstract. In this paper, we study the geometry of a tangent bundle of a
Riemannian manifold endowed with a Sasaki metric. Using O’Neill tensors
given in [7], we prove some characteristic theorems comparing the geome-
tries of a smooth manifold and its tangent bundle. We also show that
there exists an almost complex structure on a Riemannian manifold which
is not holomorphic to the canonical almost complex structure of its tangent
bundle.

1. Introduction

The differential geometric properties of tangent bundle of smooth manifolds
have been studied by different authors using different approaches with different
notations. Many authors found interest in this topic because of its applications
in many areas of Mathematics and Physics. The geometry of tangent bundle
was initiated by one of Sasaki’s papers [10] published in 1958. He used a
given Riemannian metric g to construct a metric gs called the Sasaki metric
on the tangent bundle TM of a smooth manifold M . In [2], Dombrowski gave
an explicit expression for the Lie bracket of the tangent bundle TM . Again,
the Levi-Civita connection of the Sasaki metric on TM and its Riemannian
curvature tensor are calculated by Kowalski in [6]. Sigmundur and Elias in
[5] have written a detailed and unified presentation of some of the best known
results on the geometry of tangent bundles of Riemannian manifolds.

After the study of the geometry of tangent bundle of a smooth manifold, it
is important to also have a look at the submersion between the tangent bundle
TM of M and the base manifold M itself.

Immersions and submersions are special tools in differential geometry, they
play an important role in Riemannian geometry and other aspects of the dif-
ferential geometry. The theory of Riemannian submersions was initiated by
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O’Neil [7] an Gray [4]. In [12], the Riemannian submersions were considered
between almost Hermitian manifolds by Watson under the name almost Her-
mitian submersions. Almost Hermitian submersion have been actively studied
between different kinds of subclasses of almost Hermitian manifolds, for ex-
ample [11]. Most of the studies related to Riemannian or almost Hermitian
submanifolds can be found in [3]. Note that Riemannian submersions are
related to physics and have their applications in the Yang-Mills theory, the
Kaluza-Klein theory, super-string theories, etc.

In this paper, we establish and extend some known results in [2] and [5] on
the geometry of the tangent bundle of Riemannian manifold endowed with the
Sasaki metric, together with a complex structure.

The paper is organized as follows. In Section 2, we recall some basic concepts
on the tangent bundle and present the Sasakian metric that is used throughout
the paper. In Section 3, we deal with the almost complex structure canonically
obtained from the geometric structure of the tangent bundle. We also investi-
gate the effect of the O’Neill tensors in the geometries of the tangent bundle
TM and the base space M . We prove some characterization theorems linking
the geometries of the tangent bundle to the one of the base space. Finally we
end the paper by proving in Section 4 that there exists an almost structure
complex on the base which makes the underlying Riemannian submersion a
non-holomorphic map.

2. Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and ∇ be the Levi-
Civita connection of g. Then, the tangent space of TM at any point (x, u) ∈
TM splits into the horizontal and vertical subspaces with respect to the Levi-
Civita connection ∇ in the Riemannian manifold (M, g) [2, 10]

(2.1) T(x,u)TM = H(x,u)(TM)⊕ V(x,u)(TM).

This decomposition is obtained using the two natural projections

TTM → TM

which stem from the Riemannian manifold (M, g). The projection map π :
TM → M induces a map π∗ : TTM → TM whose kernel can be interpreted
as those vectors b ∈ T(x,u)TM which lie tangentially to the fiber Tπ(x,u)M of
TM . Hence vectors b are vertical and set

(2.2) V(x,u)(TM) := ker(π∗|T(x,u)TM
).

The other projection is the connection map K : TTM → TM associated with
the Levi-Civita ∇ on (M, g). This map K is orthogonal to the projection π∗ in
the sense that it geometrically assigns to b ∈ T(x,u)TM its vertical component,
i.e., the component tangentially to the fiber Tπ(x,u)M . The projection K is
explicitly defined as follows.
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Let
K : TTM → TM, b 7→ Kb.

Let Z be a vector field in TM . Then, Z : M → TM induces a linear map
Z∗ : TM → TTM such that, for any u ∈ TxM with x ∈ M , Z∗u ∈ TZxTM .
The connection map K : TTM → TM is then defined by the property that if
b ∈ TTM is of the form b = Z∗w for some Z ∈ Γ(TM) and w ∈ TM , then [2]

(2.3) Kb := K(Z∗w) = (∇wZ)π(w).

This means that the Levi-Civita connection on (M, g) arises by first taking
the differential Z∗w of Z in the direction of w and then projecting it back
from TTM to the correct level TM via K in a way that extracts from Z∗w its
component tangentially to Tπ(w)M , yielding (∇wZ)π(w). Hence, we can call a
vector b ∈ T(x,u)TM ⊂ TTM with Kb = 0 horizontal and put

(2.4) H(x,u)(TM) := ker(K|T(x,u)TM
).

The horizontal and vertical lifts of tangent vectors TM on TM are defined as
follows.

Definition 2.1. [2] Let (x, u) ∈ TM be given and X ∈ TxM be a tangent
vector. Then, the the horizontal lift of X to a point (x, u) is the unique vector
Xh ∈ H(x,u)(TM) such that π∗X

h = X. The vertical lift of a vector X at
(x, u) ∈ TM is the unique vector Xv ∈ V(x,u)(TM) such that Xv(df) = X(f),
for all functions f on M . Here df is the function defined by (df)(x, u) = u(f).

This can now be extended from tangent vectors to vector fields.

Definition 2.2. The horizontal lift of a vector field X ∈ C∞(TM) on TM is
the vector field Xh ∈ C∞(TTM) whose value at a point (x, u) is the horizontal
lift of X(x) at (x, u). The vertical lift of a vector field is defined in the same
way. More precisely, if X ∈ C∞(TM), then there is exactly one vector field
Xh ∈ C∞(TTM) on TM called the horizontal lift of X such that for all
Z ∈ TM :

(2.5) π∗(X
h)Z = Xπ(Z) and KXh

Z = 0π(Z).

The vertical lift Xv is the unique vector field satisfying

(2.6) π∗(X
v)Z = 0π(Z) and KXv

Z = Xπ(Z).

Note that the mapping X → Xh and X → Xv are isomorphisms between the
vector spaces TxM and the subspacesH(x,u)(TM) and V(x,u)(TM), respectively.

Each tangent vector Z ∈ T(x,u)TM can be written as

Xh + Y v,

where X, Y ∈ Γ(TxM) are uniquely determined by X = π∗(Z) and Y = K(Z).
It should also be noted that if f : R → R is a smooth real-valued function on
M , then

(2.7) Xh(f ◦ π) = X(f) ◦ π and Xv(f ◦ π) = 0,
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for any vector field X on M .
Next, we present the Sasaki metric gs on the tangent bundle TM . This

metric was introduced by Sasaki in [10]. In [5], the authors calculated its
Levi-Civita connection ∇s, its Riemannian curvature tensor, and obtained in-
teresting connections between the geometric properties of the manifold (M, g)
and its tangent bundle (TM, gs) equipped with the Sasaki metric.

Definition 2.3. Let (M, g) be a Riemannian manifold. Then, the Sasaki
metric gs on the tangent bundle TM of M is given by

(i) gs(x,u)(X
h, Y h) = g(X, Y ),

(ii) gs(x,u)(X
v, Y h) = 0,

(iii) gs(x,u)(X
v, Y v) = g(X, Y ),

for all vector fields X, Y ∈ C∞(TM) and (x, u) ∈ TM .

Let ∇ be the Levi-Civita connection on (M, g) and R be its Riemannian
curvature. These geometric objects are related to its analogous in (TM, gs),
namely, ∇s and Rs, by the following results due to Gudmundsson and Kappos
in [5].

Proposition 2.4 (Gudmundsson, Kappos [5]). Let (M, g) be a Riemannian

manifold and ∇̂ be the Levi-Civita connection of the tangent bundle (TM, gs)
equipped with the Sasaki metric. Then

(∇s
XvY v)(x,u) = 0,(2.8)

(∇s
XvY h)(x,u) =

1

2
(R(u,X)Y )h,(2.9)

(∇s
XhY

h)(x,u) = (∇XY )h(x,u) −
1

2
(R(X, Y )u)v,(2.10)

(∇s
XhY

v)(x,u) = (∇XY )v(x,u) +
1

2
(R(u, Y )X)h,(2.11)

for all vector fields X, Y ∈ C∞(TM) and (x, u) ∈ TM .

As known, the Sasaki metric is a particular class of the class of natural
metrics. Since a natural metric is constructed in such a way that the vertical
and horizontal subbundles are orthogonal and the bundle map

π : (TM, gs)→ (M, g),

is a Riemannian submersion, we need the following result.

Proposition 2.5 (See [3]). Let π : (M ′, gs) → (M, g) be a Riemannian sub-
mersion, and denote by ∇s and ∇ are the Levi-Civita connections of M ′ and
M , respectively. One has:

(1) gs(X ′, Y ′) = g(X, Y ).
(2) π∗(∇s

X′Y
′)h = ∇XY ,

for all vector fields X ′,Y ′ ∈ Γ(TM ′) and X, Y ∈ Γ(TM) such that π∗(X
′) = X

and π∗(Y
′) = Y .
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3. Almost complex structures and O’Neill tensors on the
tangent bundle

Let (M, g) be an m-dimensional Riemannian manifold and ∇ be the Levi-
Civita connection of g. It is well-known that the tangent bundle TM of M
has a structure of almost complex Kählerian manifold with an almost complex
structure determined by the isomorphism vertical and horizontal distributions
V (TM) and H(TM) on TM (see [2], [8] for more details and any references
therein) and the Sasaki metric on TM [10]. This almost complex structure
which is naturally associated with the metric g is based on the decomposition
(2.1) of the tangent bundle of TM into the horizontal and vertical subbundles
at the point (x, u) ∈ TM , i.e.,

T(x,u)TM = H(x,u)(TM)⊕ V(x,u)(TM).

We have isomorphisms

H(x,u)(TM) ∼= TxM ∼= V(x,u)(TM).

Now, taking into account the properties of the two projections π∗ and K, the

map J̃ : TTM → TTM , given by A 7→ J̃A, is therefore an almost complex
structure for TM characterized by [2]

(3.1) π∗ ◦ J̃ = K, K ◦ J̃ = −π∗.

If the tangent bundle TM is endowed with the Sasaki metric, then

(3.2) gs(J̃ Z1, J̃ Z2) = gs(Z1, Z2),

for any tangent vectors Z1, Z2 ∈ T(x,u)TM . This means that the Sasaki metric

gs is J̃-invariant, and the triple (TM, J̃, gs) is called an almost Hermitian
manifold (see [3] for more details).

Let us now introduce the local coordinate representations of TM . Let
(U,ϕ) = (U, (x1, . . . , xm)) be a coordinate chart on M . The bundle chart
of TM associated with (x1, . . . , xm) is (π−1(U), ϕ̃) = (π−1(U), (x1, . . . , x2m)),
where ϕ̃ : π−1(U)→ Rm × Rm is defined by

ϕ̃(v) =
(
(x1 ◦ π)(v), . . . , (xm ◦ π)(v), v(x1), . . . , v(xm)

)
,

for any v ∈ π−1(U). Thus xi = xi ◦ π and xm+j = v(xj), for 1 ≤ i, j ≤ m. De-
note by Γkij the Christoffel symbols of g. The two complementary distributions
on TTM in (2.2) and (2.4) are defined by

V(x,u)(TM) = {ai ∂

∂xm+i |(x,u) : ai ∈ R},(3.3)

H(x,u)(TM) = {ai ∂
∂xi
|(x,u) + aiujΓkij

∂

∂xm+k
|(x,u) : ai ∈ R},(3.4)

where (x, u) ∈ TM .
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It is easy to see that

π∗((
∂

∂xi
)Z) = (

∂

∂xi
)π(Z) and π∗(

∂

∂xm+i )Z = 0,

for any Z ∈ TM and i = 1, 2, . . . ,m, since

π∗(
∂

∂xi
)(f) =

∂

∂xi
(f ◦ π) =

∂

∂xi
(f),

and π∗(
∂

∂xm+i )(f) =
∂

∂xm+i (f ◦ π) = 0,

for any smooth function f defined on M . This leads to the following result for
the horizontal and vertical lifts of a vector field on M .

Let X, Z ∈ C∞(TM) be vector vectors on M which locally are represented
by

X =
m∑
i=1

ξi
∂

∂xi
and Z =

m∑
i=1

ηi
∂

∂xi
.

In local coordinates the map Z : M → TM is given by

Z : M → TM, (x1, . . . , xn) 7→ (x1, . . . , xm, η1, . . . , ηm).

We have

Z∗X =
2m∑
k=1

X(xk ◦ Z)
∂

∂xk
.

Since xk ◦ Z = xk ◦ π ◦ Z = xk and xm+k ◦ Z = Z(xk) = ηk, for 1 ≤ k ≤ m,
one obtains

Z∗X =
m∑
i=1

X(xi ◦ Z)
∂

∂xi
+

m∑
i=1

X(xm+i ◦ Z)
∂

∂xm+i

=
m∑
i=1

ξi
∂

∂xi
+

m∑
i,j=1

ξj
∂ηi

∂xj
∂

∂xm+i .(3.5)

On the other hand, using the properties of a linear connection, we get

∇XZ =
m∑
i=1

∇X(ηi
∂

∂xi
)

=
m∑
i=1

m∑
j=1

ξj{ ∂η
i

∂xj
+

m∑
k=1

ηkΓijk}
∂

∂xi
.(3.6)

Now, by (2.3), we have

(3.7) K(Z∗X) =
m∑
i=1

m∑
j=1

ξj{ ∂η
i

∂xj
+

m∑
k=1

ηkΓijk}
∂

∂xi
.
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This relation implies that K(Y∗v) = 0, if and only if
m∑
j=1

ξj
∂ηi

∂xj
= −

m∑
j,k=1

ξjηkΓijk.

This means that K(Y∗v) = 0 if and only if Z∗X is in the kernel of K and
therefore Z∗X is of the form

Z∗X =
m∑
i=1

ξi
∂

∂xi
−

m∑
i=1

m∑
j,k=1

ξjηkΓijk
∂

∂xm+i .

Hence, we have

Xh
|Z =

m∑
i=1

ξi
∂

∂xi
−

m∑
i=1

m∑
j,k=1

ξjηkΓijk
∂

∂xm+i ,(3.8)

and Xv
|Z =

m∑
i=1

ξi
∂

∂xm+i .(3.9)

Consequently, we have

(
∂

∂xi
)H =

∂

∂xi
−

m∑
j,k=1

ηkΓjik
∂

∂xm+j ,(3.10)

and (
∂

∂xi
)V =

∂

∂xm+i .(3.11)

Using the relations in (3.1), it follows that

(3.12) J̃Xh = Xv, and J̃Xv = −Xh.

Now, let w ∈ T(x,u)TM . Then

(3.13) w =
m∑
i=1

wi
∂

∂xi
+

m∑
j=1

wm+j ∂

∂xm+j .

Assume that Kw = 0. Then w ∈ H(x,u)(TM) and

(3.14)
m∑
i=1

wiK(
∂

∂xi
) = −

m∑
j=1

wm+jK(
∂

∂xm+j ).

Using (3.10) and (3.11), one has

(3.15) K(
∂

∂xm+i ) =
∂

∂xi
and K(

∂

∂xi
) =

m∑
j,k=1

ηkΓjik
∂

∂xj
.

Putting the pieces (3.15) into (3.14), we have

(3.16) wm+j = −
m∑

i,k=1

wiηkΓjik.
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It follows that w can be written as a sum

w = wH + wV ,

where

wH =
m∑
i=1

wi
∂

∂xi
−

m∑
j=1

(
m∑

i,k=1

wiηkΓjik

)
∂

∂xm+j ,(3.17)

and wV =
m∑
j=1

(
wm+j +

m∑
i,k=1

wiηkΓjik

)
∂

∂xm+j .(3.18)

Next, we define anti-invariant Riemannian submersions from an almost Her-
mitian manifold onto a Riemannian manifold.

Definition 3.1 ([9]). Let N be a complex 2m-dimensional almost Hermitian

manifold with Hermitian metric gN and almost complex structure J̃ and N ′

be a Riemannian manifold with Riemannian metric gN ′ . Suppose that there
exists a Riemannian submersion F : N → N ′ such that kerF∗ is anti-invariant
with respect to J̃ , i.e., J̃(kerF∗) ⊆ (kerF∗)

⊥. Then, we say that F is an anti-

invariant Riemannian submersion. Moreover, if J̃(kerF∗) = (kerF∗)
⊥, we say

that F is a Lagrangian submersion.

Next, applying J̃ to (3.17) and (3.18), one has,

J̃wH =
m∑
i=1

wiJ̃(
∂

∂xi
)−

m∑
j=1

(
m∑

i,k=1

wiηkΓjik)J̃(
∂

∂xm+j )

=
m∑
i=1

wi
∂

∂xm+i ,(3.19)

and

J̃wV =
m∑
j=1

(
wm+j +

m∑
i,k=1

wiηkΓjik

)
J̃(

∂

∂xm+j )

= −
m∑
j=1

(
wm+j +

m∑
i,k=1

wiηkΓjik

)(
∂

∂xj
−

m∑
l,k=1

ηkΓljk
∂

∂xm+l

)
.

Letting

w̃j = wm+j +
m∑

i,k=1

wiηkΓjik,

we have

J̃wV = −
m∑
j=1

w̃j
∂

∂xj
+

m∑
l,j,k=1

w̃jηkΓljk
∂

∂xm+l
.(3.20)
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Using the relations (3.8), (3.9), (3.19) and (3.20), we conclude that

(3.21) J̃V(x,u)(TM) = H(x,u)(TM).

We have the following lemma.

Lemma 3.2. The Riemannian submersion π : (TM, J̃, gs) → (M, g) is La-
grangian.

As an example, we have the following.

Example 3.3. Let π : R4 → R2 be a submersion defined by

π(x1, x2, x3, x4) =

(
x1 − x4√

2
,
x2 − x3√

2

)
.

Then, by a straightforward calculation, we have

V(R4) = ker π∗ = Span{Z1 = ∂x1 + ∂x4, Z2 = ∂x2 + ∂x3}

and

H(R4) = (ker π∗)
⊥ = Span{X1 = ∂x1 − ∂x4, X2 = ∂x2 − ∂x3}.

It is easy to see that π is a Riemannian submersion. Moreover, J̃Z1 = X2

and J̃Z2 = −X1 imply that J̃V(R4) = H(R4). As a result, π is a Lagrangian
Riemannian submersion.

The next two theorems confirm the results on the tangent bundle endowed
with a Sasakian metric given in [3, Example 1.3]. They shall be proved using
the O’Neill’s tensors.

In general, the geometry of Riemannian submersions is characterized by
O’Neil’s tensors T and A defined

TZW = (∇s
Z

vW
v
)h + (∇s

Z
vW

h
)v,(3.22)

and AZW = (∇s

Z
hW

v
)h + (∇s

Z
hW

h
)v,(3.23)

for any vector fields Z and W on TM at (x, u).
For any Z ∈ Γ(T(x,u)TM), TZ and AZ are skew-symmetric operators on

(TTM, gs) reversing the horizontal and the vertical distributions. It is also
easy to see that T is vertical, TZ = TZv and A is horizontal, AZ = A

Z
h . We

note that the tensor fields T and A satisfy

TZvW
v

= TW vZ
v
,(3.24)

and A
Z

hW
h

= −A
W

hZ
h

=
1

2
[Z

h
,W

h
]v.(3.25)
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Using (3.24) and (3.25), one obtains

∇s
Z

vW
v

= TZvW
v

+ (∇s
Z

vW
v
)v,(3.26)

∇s
Z

vW
h

= TZvW
h

+ (∇s
Z

vW
h
)h,(3.27)

∇s

Z
hW

v
= A

Z
hW

v
+ (∇s

Z
hW

v
)v,(3.28)

∇s

Z
hW

h
= A

Z
hW

h
+ (∇s

Z
hW

h
)h.(3.29)

Now, for any Z, W ∈ Γ(T(x,u)TM), we have Z = Xh
1 + Y v

1 with X1 = π∗(Z)

and Y1 = K(Z), and W = Xh
2 + Y v

2 with X2 = π∗(W ) and Y2 = K(W ). Using
this, (2.10) and (2.11), one has,

(AZW )(x,u) = (∇s

Z
hW

v
)h(x,u) + (∇s

Z
hW

h
)v(x,u)

= (∇s
Xh

1
Y v
2 )h(x,u) + (∇s

Xh
1
Xh

2 )v(x,u).(3.30)

Since

(∇s
Xh

1
Y v
2 )(x,u) = (∇X1Y2)

v
(x,u) +

1

2
(R(u, Y2)X1)

h,(3.31)

and ∇s
Xh

1
Xh

2 )(x,u) = (∇X1X2)
h
(x,u) −

1

2
(R(X1, X2)u)v.(3.32)

The relation (3.30) becomes

(AZW )(x,u) =
1

2
(R(u, Y2)X1)

h − 1

2
(R(X1, X2)u)v.(3.33)

This implies that

π∗(AZW )(x,u) =
1

2
R(u, Y2)X1, and K(AZW )(x,u) = −1

2
R(X1, X2)u.

(3.34)

We have the following theorem.

Theorem 3.4. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from an almost Kähler manifold (TM, J̃, gs) onto a Riemannian manifold
(M, g). Then the following assertions are equivalent:

(i) H(TM) = kerK is integrable.
(ii) M is flat.

(iii) The almost complex structure J̃ is Kähler.

Proof. The equivalence of (i) and (ii) follows from (3.33) and (3.34). The one
between (ii) and (iii) is given in [2]. �

Theorem 3.4 can be extended to more comparisons between the geometries
of the manifold (M, g) and its tangent bundle TM equipped with the Sasaki

metric gs and the almost complex structure J̃ . Therefore, we have the following
theorem.
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Theorem 3.5. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from a Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g). Then
the following assertions hold:

(i) (TM, gs, J̃) is flat.

(ii) (TM, gs, J̃) is Einstein.

(iii) (TM, gs, J̃) is locally symmetric.

(iv) (TM, gs, J̃) is locally homogeneous.

(v) (TM, gs, J̃) has constant scalar curvature.

Likewise (2.8) and (2.9), we have

TZW = (∇s
Z

vW
v
)h + (∇s

Z
vW

h
)v

= (∇s
Y v
1
Y v
2 )h + (∇s

Y v
1
Xh

2 )v

= 0.(3.35)

Therefore, we have the following theorem.

Theorem 3.6. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from an almost Kähler manifold (TM, J̃, gs) onto a Riemannian manifold
(M, g). Then, the distribution V(TM) = ker π∗ defines a totally geodesic foli-
ation on TM .

Finally, let us recall the notion of harmonic maps between Riemannian man-
ifolds TM and M (see [1] for more details). Then, the differential π∗ of π can
be viewed as a section of the bundle Hom(TTM, π−1TM) → TM , where
π−1TM is the pullback bundle which has fibres (π−1TM)x = Tπ(x)M , x ∈M .
Hom(TTM, π−1TM) has a connection ∇s induced from the Levi-Civita con-
nection ∇ on M and the pullback connection ∇π. Then, the second funda-
mental form of π is given by

(3.36) (∇sπ∗)(Z,W ) = ∇π
Z
π∗W − π∗(∇s

Z
W ),

for any Z, W ∈ Γ(T(x,u)TM).
Note that a differentiable map F Riemannian manifolds is called totally

geodesic if ∇sF∗ = 0.

Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion from an almost

Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g). We know
that the second fundamental form of a Riemannian submersion satisfies

(3.37) (∇sπ∗)(Z
h
,W

h
) = 0,
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for any Z, W ∈ Γ(T(x,u)TM) and using (3.27) and (3.36), we have

(∇sπ∗)(Z
v
,W

v
) = ∇π

Z
vπ∗W

v − π∗(∇s
Z

vW
v
)

= −π∗(∇s
Z

vW
v
)

= π∗(J̃(J̃∇s
Z

vW
v
))

= π∗(J̃(TZv J̃W
v − (∇s

Z
v J̃)W

v
)).(3.38)

On the other hand, for any X ∈ Γ(T(x,u)TM), using (3.29) and (3.36), we get

(∇sπ∗)(X
h
,W

v
) = ∇π

X
hπ∗W

v − π∗(∇s

X
hW

v
)

= π∗(J̃(J̃∇s

X
hW

v
))

= π∗(J̃(A
X

h J̃W
v − (∇s

X
h J̃)W

v
)).(3.39)

Therefore, we have the following theorem.

Theorem 3.7. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from an almost Kähler manifold (TM, J̃, gs) onto a Riemannian manifold

(M, g). If the structure J̃ is Kähler, then the Riemannian submersion π is
a totally geodesic map.

Proof. Assume that the structure J̃ is Kähler. Then ∇sJ̃ = 0 on TM and
using the Theorem 3.6, the relations (3.38) and (3.39)

(∇sπ∗)(Z
v
,W

v
) = π∗(J̃(∇s

Z
v J̃)W

v
) = 0,

and (∇sπ∗)(X
h
,W

v
) =π∗(J̃(A

X
h J̃W

v − (∇s

X
h J̃)W

v
)) = 0,

which completes the proof. �

Now, for any X, Z, W ∈ Γ(T(x,u)TM),

gs(∇s

X
hW

h
, Z

v
) = gs(∇s

X
h J̃W

h − (∇s

X
h J̃)W

h
, J̃Z

v
)

= gs(A
X

h J̃W
h − (∇s

X
h J̃)W

h
, J̃Z

v
).(3.40)

But

gs(A
X

h J̃W
h
, J̃Z

v
) = −gs((∇sπ∗(X

h
, J̃W

h
), J̃Z

v
).(3.41)

Therefore we have the following theorem.

Theorem 3.8. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from an almost Kähler manifold (TM, J̃, gs) onto a Riemannian manifold
(M, g). Then the following assertions are equivalent:

(i) H(TM) = kerK defines a totally geodesic foliation on TM .

(ii) A
X

h J̃W
h

= 0.

(iii) ∇sπ∗(X
h
, J̃W

h
) = 0,

for any X, W ∈ Γ(T(x,u)TM).
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If π is a Riemannian submersion from a Kähler manifold (TM, J̃, gs) onto a
Riemannian manifold (M, g), then we have the following corollary.

Corollary 3.9. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from a Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g). Then
H(TM) = kerK defines a totally geodesic foliation on TM .

Now, we obtain some decomposition theorems for the Riemannian submer-

sion π from a Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g).

Definition 3.10 ([9]). Let G be metric be a Riemannian metric tensor on the
manifold N = M × B and assume that the canonical foliations DM and DB
intersect perpendicularly everywhere. Then G is a metric tensor of

(i) a usual product of Riemannian manifolds if and only if DM and DB are
totally geodesic foliations.

(ii) a twisted product if and only if DM is a totally geodesic foliation and
DB is a totally umbilical foliation.

We have the following decomposition theorem for the Riemannian submer-
sion π which follows from Theorem 3.6 and Theorem 3.8.

Theorem 3.11. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from an almost Kähler manifold (TM, J̃, gs) onto a Riemannian manifold
(M, g). Then the tangent bundle TM is a locally product manifold if and

only if A
X

h J̃W
h

= 0, for any X, W ∈ Γ(T(x,u)TM).

If π is a Riemannian submersion from a Kähler manifold (TM, J̃, gs) onto a
Riemannian manifold (M, g), then we have the following corollary.

Corollary 3.12. Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion

from a Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g). Then
the tangent bundle TM is a locally product manifold.

Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion from an almost

Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g). Let α be the
second fundamental form of H(TM). Then we have

gs(∇s

Z
hW

h
, X

v
) = gs((∇s

Z
hW

h
)h + (∇s

Z
hW

h
)v, X

v
)

= gs(α(Z
h
,W

h
), X

v
),(3.42)

for any X, W ∈ Γ(T(x,u)TM). If H(TM) is a totally umbilical foliation, we
have

(3.43) gs(∇s

Z
hW

h
, X

v
) = gs(H,X

v
)gs(Z

h
,W

h
),

where H is the mean curvature vector field of H(TM).
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On the other hand, we have

gs(∇s

Z
hW

h
, X

v
) = −gs(J̃W h

, J̃∇s

Z
hX

v
)

= −gs(J̃W h
,A

Z
h J̃X

v − (∇s

Z
h J̃)X

v
).(3.44)

Thus from (3.42) and (3.44), we have

−gs(H,Xv
)J̃Z

h
= A

Z
h J̃X

v − (∇s

Z
h J̃)X

v
,

which implies, using (3.25), that

gs(H,X
v
)||J̃Zh||2 = gs(X

v
,A

Z
hZ

h
) = 0.

Since gs is a Riemannian metric and H ∈ V(TM), we obtain H = 0, that is,
H(TM) is totally geodesic. Therefore, we have the following theorem.

Theorem 3.13. There exist no Riemannian submersions from an almost

Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g) such that TM
is a locally proper twisted product manifold of the form TMV(TM)×f TMH(TM).

4. An almost complex structure in the base space

Let π : (TM, J̃, gs) → (M, g) be a Riemannian submersion from an almost

Kähler manifold (TM, J̃, gs) onto a Riemannian manifold (M, g).
Let J : TM → TM be a smooth tensor field of (1,1)-type on M defined by

(4.1) J = π∗ ◦ J̃ ◦ π−1∗ .

Let X ∈ Γ(TxM). Then, there exists a tangent vector Z ∈ T(x,u)TM such that

X = π∗(Z) or X = K(Z). Now, if X = π∗(Z), we have

(4.2) J2X = (π∗ ◦ J̃) ◦ J̃(Z) = −X.
Likewise, if X = K(Z), using relations in (3.1), one obtains

(4.3) J2X = (π∗ ◦ J̃ ◦ π−1∗ ) ◦ (π∗ ◦ J̃ ◦ π−1∗ )(K(Z)) = −X.
From (4.2) and (4.3), we conclude that,

J2X = −X,
for any X ∈ Γ(TxM).

Next we investigate whether the metric g on M is Hermitian with respect
to the structure J defined in (4.1).

Let TM be the tangent bundle of (M, g) endowed with the Sasaki metric gs.
For any X, Y ∈ Γ(TxM), there are tangent vectors Z1, Z2 ∈ T(x,u)TM such

that X = π∗(Z1) or X = K(Z1), and Y = π∗(Z2) or Y = K(Z2). Then, for
X = π∗(Z1) and Y = π∗(Z2), using (3.2), (4.1) and Proposition 2.5, we have

g(JX, JY ) = g(J ◦ π∗(Z1), J ◦ π∗(Z2))

= g(π∗(Z1), π∗(Z2)) = g(X, Y ).(4.4)
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For X = π∗(Z1) and Y = K(Z2), using Proposition 2.5, one has,

g(JX, JY ) = g((J ◦ π∗)(Z1), (J ◦K)(Z2))

= g(π∗(Z1), π∗ ◦ J̃(Z2)) = g(X, Y ).(4.5)

For X = K(Z1) and Y = π∗(Z2), we similarly obtain

(4.6) g(JX, JY ) = g(X, Y ).

Now, for X = K(Z1) and Y = K(Z2), using (3.2), (4.1) and Proposition 2.5,
we have

g(JX, JY ) = g(J ◦K(Z1), J ◦K(Z2))

= g(π∗ ◦ J̃ ◦ π−1∗ ◦K(Z1), π∗ ◦ J̃ ◦ π−1∗ ◦K(Z2))

= g(K(Z1), K(Z2)) = g(X, Y ).(4.7)

From the pieces (4.4), (4.5), (4.6) and (4.7), we conclude that

(4.8) g(JX, JY ) = g(X, Y ),

for any X, Y ∈ Γ(TxM) with x ∈ M . Therefore, we have the following
theorem.

Theorem 4.1. Let (TM, J̃, gs) be a tangent bundle, over an m-dimensional
smooth Riemannian manifold (M, g), endowed with am Sasakian metric and

an almost complex structure J̃ . Then, the tensor field of (1,1)-type J : TM −→
TM defined by

J = π∗ ◦ J̃ ◦ π−1∗ ,

is an almost complex structure on the smooth manifold M . Moreover, the
dimension of M is even.

Note that, since (TM, J̃, gs) and (M,J, g) with J defined in (4.1) are almost

Hermitian manifolds, the Riemannian submersion π : (TM, J̃, gs) → (M,J, g)
does not satisfy, in general, the following equality

(4.9) J ◦ π∗ = π∗ ◦ J̃ .

Any Riemannian submersions satisfy the relation (4.9) is called an almost
complex map. The details of the latter can be found in [3] and references
therein, in which characterizations are given for P -manifolds are given.

The non satisfaction of the structure under study can obviously be observed
through the following two evaluations. For any X ∈ Γ(TM), using (2.5), (2.6)
and (3.12), one obtains

J ◦ π∗(Xv) = J(π∗X
v) = 0,

and π∗ ◦ J̃(Xv) = π∗(J̃X
v) = −π∗Xh = −X.(4.10)

Therefore, we have the following proposition.



288 SILAS LONGWAP AND FORTUNÉ MASSAMBA

Proposition 4.2. The Riemannian submersion π : (TM, J̃, gs)→ (M,J, g) is
not an almost complex map.

Now, we want to introduce the integrability condition on the almost complex

structure J̃ on the tangent bundle (TM, gs) over (M, g), endowed with the
Sasaki metric gs, and its effect of the almost complex structure J on M .

Definition 4.3. An almost Hermitian manifold (TM, J̃, gs) (respectively, (M,J, g))

is called Kähler manifold if J̃ is parallel with respect to the Levi-Civita con-
nection ∇s on TM (respectively, if J is parallel with respect to the Levi-Civita
connection ∇ on M).

Now assume that (TM, J̃, gs) is a Kähler manifold. Then

(4.11) ∇sJ̃ = 0.

Using Proposition 2.5 and for any Z, W ∈ Γ(T(x,u)TM), one has Z = Xh
1 +Y v

1 ,

W = Xh
2 + Y v

2 with X1 = π∗(Z), Y1 = K(Z), X2 = π∗(W ) and Y2 = K(W ),

(4.12) ∇s
Z
W = ∇s

Xh
1
Xh

2 +∇s
Xh

1
Y v
2 +∇s

Y v
1
Xh

2 +∇s
Y v
1
Y v
2 .

For any X, Y ∈ Γ(TM), there exist Z and W ∈ Γ(T(x,u)TM) such that

X = π∗(Z) or X = K(Z) and Y = π∗(W ) or Y = K(W ).
Now, if X = π∗(Z) and Y = π∗(W ), by Proposition 2.5, (2.5) and (4.1), we

have,

(∇XJ)Y = ∇XJY − J(∇XY )

= ∇π∗(Z)
J ◦ π∗(W )− J(∇π∗(Z)

π∗(W ))

= ∇π∗(Z)
π∗ ◦ J̃(W )− π∗ ◦ J̃ ◦ π−1∗ (∇π∗(Z)

π∗(W ))

= (∇s
Z
J̃)W = 0.(4.13)

If X = π∗(Z) and Y = K(W ), then in this case K(Z) = 0 and π∗(W ) = 0,
and we have

(∇XJ)Y = ∇XJY − J(∇XY )

= ∇π∗(Z)
J ◦K(W )− J(∇π∗(Z)

K(W ))

= −∇π∗(Z)
π∗(W ) = 0.(4.14)

If X = K(Z) and Y = π∗(W ), then π∗(Z) = K(W ) = 0, and we have

(∇XJ)Y = ∇XJY − J(∇XY )

= ∇K(Z)J ◦ π∗(W )− J(∇K(Z)π∗(W ))

= ∇K(Z)K(W )−K(∇s
J̃Z
W )h = 0.(4.15)
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Lastly, if X = K(Z) and Y = K(W ), then π∗(Z) = π∗(W ) = 0, we have

(∇XJ)Y = ∇XJY − J(∇XY )

= −∇π∗◦J̃(Z)π∗(W )− J(∇π∗◦J̃(Z)π∗ ◦ J̃(W ))

= −∇π∗◦J̃(Z)π∗(W )−K(∇s
J̃(Z)

J̃W )h = 0.(4.16)

From (4.13), (4.14), (4.15) and (4.16), we have the following theorem.

Theorem 4.4. Let (TM, J̃, gs) be a tangent bundle endowed with a Sasakian

metric and an almost complex structure J̃ over an even-dimensional smooth
Riemannian manifold (M,J, g) with J an almost complex structure defined in

(4.1). If the almost structure J̃ is complex, so is J .
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