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QUASI-CONFORMALLY FLAT AND PROJECTIVELY FLAT
TRANS-SASAKIAN MANIFOLDS

VIBHA SRIVASTAVA AND P. N. PANDEY

ABSTRACT. The object of the present paper is to study quasi-conformally
flat and projectively flat contact manifolds. We have also studied Quasi-
conformally flat and projectively flat trans-Sasakian manifolds. We ob-
tained condition for trans-Sasakian manifold to be quasi-conformally flat
and projectively flat. The value of scalar curvature has been obtained in
quasi-conformally flat and projectively flat trans-Sasakian manifolds.

1. INTRODUCTION

Oubina [11] introduced a manifold which generalizes both a-Sasakian and
f-Kenmotsu manifolds such manifold was called a trans-Sasakian manifold
of type (a, ). Sasakian, Kenmotsu, and cosympletic manifold are partic-
ular cases of trans-Sasakian manifolds. Trans-Sasakian manifolds of type
(0,0), («,0) and (0, ) are called cosympletic [2], a-Sasakian ([3], [14]) and
p-Kenmotsu ([3], [8]) respectively. Concept of nearly trans-Sasakian manifold
was introduced by C. Gherghe [7]. Marrero [9] constructed a three dimensional
trans-Sasakian manifold. Prasad and Srivastava [12] obtained certain results
on trans-Sasakian manifolds. Jeong- Sik kim et al. [7] studied a generalized
Ricci-recurrent trans-Sasakian manifolds. A quasi-conformal curvature tensor
C was defined by Yano and Sawaki [17] as follows:

(1.1) C(X,Y)Z
=aR(X,Y)Z+b[S(Y,2)X —S(X,2)Y +g(Y, Z2)QX — g(X, Z)QY]
r a
——(— 4209V, 2)X —g(X,2)Y
where a and b are constants and R, .S, ) and r are the Riemannian curvature-
tensor, the Ricci - tensor, the Ricci operator and the scalar curvature of the
manifold respectively. A (2n + 1)—dimensional Riemannian manifold (M, g)
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is quasi-Conformally flat if C' = 0. Various properties of the quasi-conformal
curvature tensor on contact metric manifolds have been studied by several
geometers [1,4,5,13] etc. If a = 1 and b = —5—, then C' becomes the
conformal curvature tensor C' which is given by

(12) C(X,Y)Z

1
= R(X.Y)Z 3

— (¥, 2)QX-g(X, 2)QY +5(Y,Z2) X -5 (X, 2) Y}

,

— {9 Y, D) X —g(X,Z2)Y}.
The Weyl projective curvature tensor P of type (1,3) on a (2n + 1) —dimensional
Riemannian manifold (M, g) is defined as

(1.3) P(X,Y)Z=R(X,Y)Z - % [S(Y,2)X — S(X, 2)Y],

for any X,Y,Z € TM. The manifold (M, g) is said to be projectively flat if P
vanishes identically on M. In this paper we study quasi-conformally flat and
projectively flat trans-Sasakian manifolds.

2. PRELIMINARIES

Let M be a (2n + 1)- dimensional almost contact metric manifold [1]
with almost contact metric structure (¢, &, 7, g), where ¢ is a (1, 1) tensor field,

¢ is a vector field, n is a 1-form and ¢ is a compatible Riemannian metric on
M such that

(2.1) ¢’ =—-T+n®E  nE=1, ¢=0,
(2.2) 9(9X,0Y) =g (X,Y) =n(X)n(Y),

forall X,Y € TM.
An almost contact metric manifold is said to be contact manifold if

(2.4) dn(X,Y) =2 (X,Y)=g(X,¢Y),
¢ (X,Y) is being called fundamental 2—form of M.

An almost contact metric manifold M is called trans-Sasakian manifold if
(25)  (Vxd)Y = afg(X.¥)€—n(¥) X} + Bg{(6X, V)€ — (V) 6X},

where V is Levi-Civita connection of Riemannian metric ¢ and « and [ are
smooth functions on M. From equation (2.5) and equations (2.1), (2.2) and
(2.3), we get

(2.6) (Vx¢)§ = —agX + B[X —n(X)£],

(2.7) (Vxn)Y = —ag (6X,Y) + Bg (¢X,¢Y).
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In a (2n + 1)- dimensional trans-Sasakian manifold, we have ([6], [3])

(2.8) R(X,Y)E= (o =) [n(Y) X —n(X)Y]

+2a8 (V) ¢X —n(X) ¢Y]
+(Ya)oX — (Xa)gY

+(YB)9°X — (XB) ¢*Y,

(2.9) R(EY)X = (=) [g(X,Y)E—n(X)Y]
+2a8[g (¢X,Y) € —n (X) Y]
+ (Xa) oY + g (0X,Y) (grada)

(

(
+(XB)[Y =n(Y)€] — g (¢X, ¢Y) (gradf),

(2.10) n(R(§Y)X)

=g(REY)X,8) = (o= = €B) [9(X,Y) = n(X)n(Y)]
and
(2.11) 208+ Ea = 0.

In a trans-Sasakian manifold, we also have [6]

(212)  S(X.&) = (2n(a® — 5%) — 8) n(X) — 2n - 1) X — ($X)a

and

(2.13) Q¢ = (2n (a2 — 52) fﬁ) £ —(2n —1)gradf + ¢ (grada) .

An almost contact metric manifold M is said to be n—Einstein if its Ricci-
tensor S is of the form

(2.14) S(X,)Y)=ag(X,Y)+bn(X)n(Y),

where a and b are smooth functions on M. An n—Einstein manifold becomes
Einstein manifold if b =0, i.e

(2.15) S(X,Y)=ag(X,Y).
If {e1,eq, ..., €00, €211 = £} be a local ortho-normal basis of tangent space in
a (2n 4+ 1)— dimensional almost contact manifold M, then we have

2n—+1

(2.16) Z glese)=(2n+1).

2n+1 2n+1

(2.17) Z g(enY)S (X, )= R(e, Y, X,e;) =S (X,Y).

i=1
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3. QUASI-CONFORMALLY FLAT AND PROJECTIVELY FLAT MANIFOLDS

Let M be a (2n + 1)- dimensional quasi-conformally flat manifold, then
from equation (1.1) we have

(3.1) R(X,Y)Z = S[S(X, 2)Y — S(Y, 2)X + g(X, 2)QY — g(Y, Z)QX]

+ m(— + 2b)[g(Y, Z)X — g(X, Z)Y].

2n

Let {eyea...62n, 2,41 = &} be a local ortho-normal basis of tangent space.
Putting Y = Z = ¢;, in equation (3.1), we get

(3.2) S(X,W):Qnilg(X,W) if a+(2n—1)b#0.

Hence from equation (3.2), we can state the following theorem:

Theorem 3.1. A quasi-conformally flat manifold is an Einstein manifold if
a+2n—-1)b#0. Ifa+ (2n—1)b =0, then C(X,Y)Z = aC(X,Y) Z, or

CX,)Y)Z=—-02n-1)bC (X,Y) Z.
This leads to:

Corollary 3.2. A quasi-conformally flat manifold is conformally flat if a +
(2n—1)b=0 and a # 0 (equivalently if a + (2n — 1) b =0 and b # 0).

Corollary 3.3. Ifa+(2n — 1) b = 0, then quasi-conformally curvature becomes
constant multiple of conformal curvature tensor.

If the manifold is projectively flat then from equation(1.3), we have

(3.3) R(X,Y)Z = 2i[s<y, 2)X — S(X, Z)Y].

n

Putting Y = Z = ¢; in equation (3.3), we get

(3.4) (X, W) = in g (X, W) — S (X, W),
(3.5) S(X,W) = 2n: —g (X,10).

Hence a projectively flat manifold is an Einstein manifold.
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4. QUASI-CONFORMALLY FLAT TRANS-SASAKIAN MANIFOLDS

If a trans-Sasakian manifold is quasi-conformally flat then from equation
(1.1) we have

(4.1)  R(X,Y,Z,W)=
—S(Y, Z)g (X, W)
—g(Y, Z)S (X’ W)]

[S(X, Z2)g (Y, W)
9(X,Z)S (Y, W)

+
G Tyatan 29 2)g (X W)

b
a

—g(X, Z)g (K W)]

On putting Z = ¢ in equation (4.1) and using equations (2.3) and (2.12), we
get

Y20 (0~ ) €8) n ()

— (20— 1) X0 — (6X) a}g (V; W)
—{(2n(a® = B%) =€) n(Y)
—@n—1)YB— (6Y)alg (X, W)
+n (X)S (Y, W) =n(Y)S (X, W)

o i 1 2 (g T 2 (V)9 (XW)

—n(X)g (Y, W)}
Again putting X = ¢ in equation (4.2) and using equations (2.1) , (2.3),(2.10), (2.11)
and (2.12), we get

(4.3) S(Y,W)=]

42) g(RX,Y)EW) =

B Talan T2~ 32 (0 =) —€lg (v.0)
+H2 (2o = ) — ¢8) + 5 (a* = 7 - 9)

~ a3t I ) )

~{(2n=1)Y8— (Y)a}n (W)

~{((2n =) WB = (W) )y (Y).

From equations (3.2) and (4.3), we get

(4.4) r=2n2n+1) (e - B> - £6),
and
(4.5) (2n — 1) grad 8 — ¢ (grad a) = (2n — 1) (£B) €.

This leads to:

Theorem 4.1. A trans-Sasakian manifold can not be quasi-conformally flat
unless (2n — 1) grad f — ¢ (grad ) — (2n — 1) (£6) € is zero.
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From the equations (4.4) and (4.5), we have the following:

Corollary 4.2. If a trans-Sasakian manifold is quasi-conformally flat then
scalar curvature tensor v = 2n(2n+ 1) (o® — 8> — £B), where o and B are

related by (2n — 1) grad f — ¢ (grada) = (2n — 1) (£5) €.

5. PROJECTIVELY FLAT TRANS-SASAKIAN MANIFOLDS

If a trans-Sasakian manifold is projectively flat then from equation (1.3),
we have

(5.1) R(X,Y,Z,W)=g(R(X,Y)ZW)
1
T o
On putting W = ¢ in equation (5.1) and using equations (2.3) and (2.12), we
get

- 1S(Y, 2)g (X, W) = 5(X, Z)g (Y, W)].

62 g(RX,Y)Z) = S (SO, 2)(X) ~ S(X, Z)n (V)]

Again putting X = ¢ in equation (5.2) and using equations (2.1), (2.3),(2.10), (2.11)
and (2.12), we get
S(Y,Z)=2n(a* = p*=¢£B) g (Y. Z) + (2n — 1) (§8) n (V) n (Z)
+((2n=1)(Z6) + (¢Z) a)n(Y).
From equation (3.5) and (5.3), we get

(5.3) r=2n2n+1) (e - p*> - £6),
and
(5.4) (2n — 1) (df — &£(B)n) + daod = 0.

This leads to:

Theorem 5.1. A trans-Sasakian manifold can not be projectively flat unless
(2n — 1) (dB — (£6) n) + daod is zero.

From the equations(5.4) and (5.5), we have the following:

Corollary 5.2. If a trans-Sasakian manifold is projectively flat than scalar
curvature tensor r = 2n (2n+ 1) (o — % — £B), where « and [ are related

(2n —1) (dB — £ (B)n) + dal¢ = 0.
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