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QUASI-CONFORMALLY FLAT AND PROJECTIVELY FLAT
TRANS-SASAKIAN MANIFOLDS

VIBHA SRIVASTAVA AND P. N. PANDEY

Abstract. The object of the present paper is to study quasi-conformally
flat and projectively flat contact manifolds. We have also studied Quasi-
conformally flat and projectively flat trans-Sasakian manifolds. We ob-
tained condition for trans-Sasakian manifold to be quasi-conformally flat
and projectively flat. The value of scalar curvature has been obtained in
quasi-conformally flat and projectively flat trans-Sasakian manifolds.

1. Introduction

Oubina [11] introduced a manifold which generalizes both α-Sasakian and
β-Kenmotsu manifolds such manifold was called a trans-Sasakian manifold
of type (α, β). Sasakian, Kenmotsu, and cosympletic manifold are partic-
ular cases of trans-Sasakian manifolds. Trans-Sasakian manifolds of type
(0, 0), (α, 0) and (0, β) are called cosympletic [2], α-Sasakian ([3], [14]) and
β-Kenmotsu ([3], [8]) respectively. Concept of nearly trans-Sasakian manifold
was introduced by C. Gherghe [7]. Marrero [9] constructed a three dimensional
trans-Sasakian manifold. Prasad and Srivastava [12] obtained certain results
on trans-Sasakian manifolds. Jeong- Sik kim et al. [7] studied a generalized
Ricci-recurrent trans-Sasakian manifolds. A quasi-conformal curvature tensor
Č was defined by Yano and Sawaki [17] as follows:

(1.1) Č(X, Y )Z

= aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r

(2n+ 1)
(
a

2n
+ 2b)[g(Y, Z)X − g(X,Z)Y ],

where a and b are constants and R, S,Q and r are the Riemannian curvature-
tensor, the Ricci - tensor, the Ricci operator and the scalar curvature of the
manifold respectively. A (2n + 1)−dimensional Riemannian manifold (M, g)
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is quasi-Conformally flat if Č = 0. Various properties of the quasi-conformal
curvature tensor on contact metric manifolds have been studied by several
geometers [1, 4, 5, 13] etc. If a = 1 and b = − 1

2n−1
, then Č becomes the

conformal curvature tensor C which is given by

(1.2) C (X, Y )Z

= R (X, Y )Z− 1

2n− 1
{g (Y, Z)QX−g (X,Z)QY +S (Y, Z)X−S (X,Z)Y }

+
r

2n (2n− 1)
{g (Y, Z)X − g (X,Z)Y }.

The Weyl projective curvature tensor P of type (1, 3) on a (2n+ 1)−dimensional
Riemannian manifold (M, g) is defined as

(1.3) P (X, Y )Z = R (X, Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ] ,

for any X, Y, Z ∈ TM . The manifold (M, g) is said to be projectively flat if P
vanishes identically on M . In this paper we study quasi-conformally flat and
projectively flat trans-Sasakian manifolds.

2. Preliminaries

Let M be a (2n+ 1)- dimensional almost contact metric manifold [1]
with almost contact metric structure (φ, ξ, η, g), where φ is a (1, 1) tensor field,
ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric on
M such that

(2.1) φ2 = −I + η ⊗ ξ, η (ξ) = 1, φξ = 0,

(2.2) g (φX, φY ) = g (X, Y )− η (X) η (Y ) ,

(2.3) g (φX, Y ) = −g (X,φY ) , g (X, ξ) = η (X) ,

for all X, Y ∈ TM .
An almost contact metric manifold is said to be contact manifold if

(2.4) dη (X, Y ) = Φ (X, Y ) = g (X,φY ) ,

Φ (X, Y ) is being called fundamental 2−form of M .
An almost contact metric manifold M is called trans-Sasakian manifold if

(2.5) (∇Xφ)Y = α{g (X, Y ) ξ − η (Y )X}+ βg{(φX, Y ) ξ − η (Y )φX},
where ∇ is Levi-Civita connection of Riemannian metric g and α and β are
smooth functions on M . From equation (2.5) and equations (2.1), (2.2) and
(2.3), we get

(2.6) (∇Xφ) ξ = −αφX + β [X − η (X) ξ] ,

(2.7) (∇Xη)Y = −αg (φX, Y ) + βg (φX, φY ) .
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In a (2n+ 1)- dimensional trans-Sasakian manifold, we have ([6] , [3])

R (X, Y ) ξ =
(
α2 − β2

)
[η (Y )X − η (X)Y ](2.8)

+2αβ [η (Y )φX − η (X)φY ]

+ (Y α)φX − (Xα)φY

+ (Y β)φ2X − (Xβ)φ2Y,

R (ξ, Y )X =
(
α2 − β2

)
[g (X, Y ) ξ − η (X)Y ](2.9)

+2αβ [g (φX, Y ) ξ − η (X)φY ]

+ (Xα)φY + g (φX, Y ) (gradα)

+ (Xβ) [Y − η (Y ) ξ]− g (φX, φY ) (gradβ) ,

(2.10) η (R (ξ, Y )X)

= g (R (ξ, Y )X, ξ) =
(
α2 − β2 − ξβ

)
[g (X, Y )− η (X) η (Y )]

and

(2.11) 2αβ + ξα = 0.

In a trans-Sasakian manifold, we also have [6]

(2.12) S (X, ξ) =
(
2n
(
α2 − β2

)
− ξβ

)
η (X)− (2n− 1)Xβ − (φX)α

and

(2.13) Qξ =
(
2n
(
α2 − β2

)
− ξβ

)
ξ − (2n− 1) gradβ + φ (gradα) .

An almost contact metric manifold M is said to be η−Einstein if its Ricci-
tensor S is of the form

(2.14) S (X, Y ) = ag (X, Y ) + bη (X) η (Y ) ,

where a and b are smooth functions on M . An η−Einstein manifold becomes
Einstein manifold if b = 0, i.e

(2.15) S (X, Y ) = ag (X, Y ) .

If {e1, e2, ..., e2n, e2n+1 = ξ} be a local ortho-normal basis of tangent space in
a (2n+ 1)− dimensional almost contact manifold M, then we have

2n+1∑
i=1

g (ei, ei) = (2n+ 1) .(2.16)

2n+1∑
i=1

g (ei, Y )S (X, ei) =
2n+1∑
i=1

R (ei, Y,X, ei) = S (X, Y ) .(2.17)
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3. quasi-conformally flat and projectively flat manifolds

Let M be a (2n+ 1)- dimensional quasi-conformally flat manifold, then
from equation (1.1) we have

(3.1) R(X, Y )Z =
b

a
[S(X,Z)Y − S(Y, Z)X + g(X,Z)QY − g(Y, Z)QX]

+
r

(2n+ 1) a
(
a

2n
+ 2b)[g(Y, Z)X − g(X,Z)Y ].

Let {e1,e2,...e2n, e2n+1 = ξ} be a local ortho-normal basis of tangent space.
Putting Y = Z = ei, in equation (3.1), we get

(3.2) S (X,W ) =
r

2n+ 1
g (X,W ) if a+ (2n− 1) b 6= 0.

Hence from equation (3.2), we can state the following theorem:

Theorem 3.1. A quasi-conformally flat manifold is an Einstein manifold if
a + (2n− 1) b 6= 0. If a + (2n− 1) b = 0, then Č(X, Y )Z = aC (X, Y )Z, or
Č(X, Y )Z = − (2n− 1) bC (X, Y )Z.

This leads to:

Corollary 3.2. A quasi-conformally flat manifold is conformally flat if a +
(2n− 1) b = 0 and a 6= 0 (equivalently if a+ (2n− 1) b = 0 and b 6= 0).

Corollary 3.3. If a+(2n− 1) b = 0, then quasi-conformally curvature becomes
constant multiple of conformal curvature tensor.

If the manifold is projectively flat then from equation(1.3), we have

(3.3) R(X, Y )Z =
1

2n
[S(Y, Z)X − S(X,Z)Y ].

Putting Y = Z = ei in equation (3.3), we get

(3.4) S (X,W ) =
1

2n
[rg (X,W )− S (X,W )] ,

(3.5) S (X,W ) =
r

2n+ 1
g (X,W ) .

Hence a projectively flat manifold is an Einstein manifold.
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4. Quasi-conformally flat trans-Sasakian manifolds

If a trans-Sasakian manifold is quasi-conformally flat then from equation
(1.1) we have

R(X, Y, Z,W ) =
b

a
[S(X,Z)g (Y,W )(4.1)

−S(Y, Z)g (X,W ) + g(X,Z)S (Y,W )

−g(Y, Z)S (X,W )] +
r

(2n+ 1) a
(
a

2n
+ 2b)[g(Y, Z)g (X,W )

−g(X,Z)g (Y,W )].

On putting Z = ξ in equation (4.1) and using equations (2.3) and (2.12), we
get

g (R(X, Y ) ξ,W ) =
b

a
[{
(
2n
(
α2 − β2

)
− ξβ

)
η (X)(4.2)

− (2n− 1)Xβ − (φX)α}g (Y,W )

−{
(
2n
(
α2 − β2

)
− ξβ

)
η (Y )

− (2n− 1)Y β − (φY )α}g (X,W )

+η (X)S (Y,W )− η (Y )S (X,W )]

+
r

(2n+ 1) a
(
a

2n
+ 2b){η (Y ) g (X,W )

−η (X) g (Y,W )}
Again puttingX = ξ in equation (4.2) and using equations (2.1) , (2.3) , (2.10) , (2.11)
and (2.12), we get

S (Y,W ) = [
r

(2n+ 1) a
(
a

2n
+ 2b)− a

b
(2n

(
α2 − β2

)
− ξβ)]g (Y,W )(4.3)

+[2
(
2n
(
α2 − β2

)
− ξβ

)
+
a

b

(
α2 − β2 − ξβ

)
− r

(2n+ 1) b
(
a

2n
+ 2b)]η (Y ) η (W )

−{(2n− 1)Y β − (φY )α}η (W )

−{((2n− 1)Wβ − (φW )α)}η (Y ) .

From equations (3.2) and (4.3), we get

(4.4) r = 2n (2n+ 1)
(
α2 − β2 − ξβ

)
,

and

(4.5) (2n− 1) grad β − φ (gradα) = (2n− 1) (ξβ) ξ.

This leads to:

Theorem 4.1. A trans-Sasakian manifold can not be quasi-conformally flat
unless (2n− 1) grad β − φ (gradα)− (2n− 1) (ξβ) ξ is zero.
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From the equations (4.4) and (4.5), we have the following:

Corollary 4.2. If a trans-Sasakian manifold is quasi-conformally flat then
scalar curvature tensor r = 2n (2n+ 1) (α2 − β2 − ξβ), where α and β are
related by (2n− 1) grad β − φ (gradα) = (2n− 1) (ξβ) ξ.

5. Projectively flat trans-Sasakian manifolds

If a trans-Sasakian manifold is projectively flat then from equation (1.3),
we have

(5.1) R(X, Y, Z,W ) = g (R(X, Y )Z,W )

=
1

2n
[S(Y, Z)g (X,W )− S(X,Z)g (Y,W )].

On putting W = ξ in equation (5.1) and using equations (2.3) and (2.12), we
get

(5.2) η ((R(X, Y )Z) =
1

2n
[S(Y, Z)η (X)− S(X,Z)η (Y )].

Again puttingX = ξ in equation (5.2) and using equations (2.1) , (2.3) , (2.10) , (2.11)
and (2.12), we get

S (Y, Z) = 2n
(
α2 − β2 − ξβ

)
g (Y, Z) + (2n− 1) (ξβ) η (Y ) η (Z)

+ ((2n− 1) (Zβ) + (φZ)α) η (Y ) .

From equation (3.5) and (5.3), we get

(5.3) r = 2n (2n+ 1)
(
α2 − β2 − ξβ

)
,

and

(5.4) (2n− 1) (dβ − ξ (β) η) + dαoφ = 0.

This leads to:

Theorem 5.1. A trans-Sasakian manifold can not be projectively flat unless
(2n− 1) (dβ − (ξβ) η) + dαoφ is zero.

From the equations(5.4) and (5.5), we have the following:

Corollary 5.2. If a trans-Sasakian manifold is projectively flat than scalar
curvature tensor r = 2n (2n+ 1) (α2 − β2 − ξβ), where α and β are related
(2n− 1) (dβ − ξ (β) η) + dα0φ = 0.
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