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A NOTE ON ZERO DIVISOR GRAPH WITH RESPECT TO
ANNIHILATOR IDEALS OF A RING

VIJAY KUMAR BHAT

Abstract. The zero divisor graph has been investigated in general for a
commutative ring R. We consider a (not necessarily commutative) ring as
a right module over itself. We consider annihilators of right ideals of R and
define a graph related to these annihilators. Let R be a ring and I be an
ideal of R. We denote the annihilator of I (viewed as a right R-module) by
Ann(I). We define a graph with respect to Ann(I) as follows and denote it
by ΓA(I)(R):

ΓA(I)(R) = {E = (a, b) | a ∈ I, b ∈ Ann(I)}.
With this we prove that for a right ideal of a ring R if I∗ ∩ Ann(I)∗ = ϕ,
then ΓA(I)(R) is bipartite, where K∗ = K \ {0} for any subset K ⊆ R.

1. Introduction

The concept of zero divisor graph has been an active area of research since
the notion was introduced by Beck [5]. Different aspects of zero divisor graph
have been studied and investigations are on.

In most of the cases zero divisor graph of a commutative ring has been
investigated.

Let R be a commutative ring with identity 1 ̸= 0. Let Z(R) be the set of
zero divisors of R and Z(R)∗ = Z(R) \ {0}. Two elements a, b ∈ Z(R)∗ are
adjacent if and only if ab = 0 = ba. The zero divisor graph of R is denoted by
Γ(R).

For any graph G = (V,E), the set of vertices shall be denoted by V (G) and
the set of edges shall be denoted by E(G).

The zero divisor graph has been studied for the ring of continuous functions
by Azarpanah and Motamedi [4], for a semiprime Gifand ring by Samei [10].
A relation of Γ(R) for a reduced ring has been given with respect to the prime
radical of R (Samei [10, Theorem 3.1]).
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For more details and results the reader is referred to Anderson et al. [1, 2, 3].
Some more treatment could be found in Levy and Shepiro [6], Akbari et al.
[1], Maimani et al. [7] and Samei [10].

2. Zero divisor graph with respect to annihilators

We continue the above investigation. We relate zero divisor graph of a (not
necessarily commutative) ring to annihilator primes. Let R be a ring and I be
a right ideal of R. Let A = {a ∈ R | a is regular}, B = {b ∈ R | b is a zero
divisor}, and B∗ = B \ {0}. Furthermore, Ann(I) = {r ∈ R | ar = 0, for all
a ∈ I}. We know that Ann(I) is an ideal of R. Let Ann(I)∗ = Ann(I) \ {0}
and I∗ = I \ {0}. We introduce zero divisor graph with respect to I in the
following way. Let a ∈ I∗, b ∈ B∗. Then a, b are adjacent if and only if ab = 0.
We denote the graph by ΓA(I)(R). We note that ΓA(I)(R) is a directed graph
and V (ΓA(I)(R)) ⊆ B∗ and Ann(I)∗ ⊆ B∗. If b ∈ Ann(I)∗, then obviously
ab = 0 for all a ∈ I∗. With this we prove the following:

Theorem 1. Let R be a ring and I be a right ideal of R. If I∗ ∩Ann(I)∗ = ϕ
and we ignore isolated vertices, then ΓA(I)(R) is bipartite.

Proof. I∗ ∩ Ann(I)∗ = ϕ implies that if E = (a, b) ∈ ΓA(I)(R), then a ∈ I∗,
a /∈ Ann(I)∗ and b ∈ Ann(I)∗, b /∈ I∗. □

Figure 1

Example 2. Let R =

{(
a b
0 c

)
| a, b, c ∈ C

}
and I =

{(
0 0
0 c

)
| c ∈ C

}
.

Then I is a right ideal of R and Ann(I) =

{(
a b
0 0

)
| a, b ∈ C

}
. Now clearly

I∗ ∩ Ann(I)∗ = ϕ, therefore, ΓA(I)(R) is bipartite.

Example 3. Let R =

{(
a b
c d

)
| a, b, c, d ∈ Z

}
and J =

{(
a b
0 0

)
| a, b ∈ C

}
.

Then J is a right ideal of R and Ann(J) =

{(
0 0
0 0

)}
. We note that J is
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faithful as a right R-module. (Recall that a right module M over a ring R is
called faithful if Ann(M) = {0}). We note that here ΓA(I)(R) is the null graph.

Recall that Zn = {0, 1, 2, . . . , n− 1} (where n is a positive integer) is a ring
under addition modulo n and multiplication modulo n.

Example 4. Let R =

{(
a b
0 a

)
| a, b ∈ Zn where n is some positive integer

}
and

J =

{(
0 a
0 0

)
| a ∈ Zn

}
.

Then J is a right ideal of R and we see that

(
0 a
0 0

)2

=

(
0 0
0 0

)
, there-

fore, J∗ ∩ Ann(J)∗ ̸= ϕ which implies that ΓA(J)(R) is not bipartite. We also
note that the zero divisor graph of J as a ring (i.e. Γ(J)) is complete. Here
for all a, b ∈ J we have ab = 0 = ba.

Example 5. Let R = M2(Z2) and

I =

{
A =

(
1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
1 1
0 0

)}
.

Then I is a right ideal of R and

Ann(I)∗ =

{(
0 0
0 0

)}
.

Therefore, I is faithful as a right R-module and ΓA(I)(R) is the null graph.

Example 6. Let

R =

{(
a b
0 c

)
| a, b, c ∈ Z2

}
,

I =

{(
0 0
0 c

)
| c ∈ Z2

}
,

I∗ =

{
A =

(
0 0
0 1

)}
,

Ann(I)∗ =

{
B =

(
1 1
0 0

)
, C =

(
1 0
0 0

)
, D =

(
0 1
0 0

)}
,

AB =

(
0 0
0 1

)(
1 1
0 0

)
=

(
0 0
0 0

)
,

AC =

(
0 0
0 1

)(
1 0
0 0

)
=

(
0 0
0 0

)
,

AD =

(
0 0
0 1

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

We see that ΓA(I)(R) = K1,3 is complete bipartite.
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Figure 2

Example 7. Consider Z3 = {0, 1, 2}. Let R =

{(
a b
0 c

)
| a, b, c ∈ Z3

}
and

I =

{(
0 0
0 a

)
| a ∈ Z3

}
. Then I is a right ideal of R. Now

I∗ =

{
A =

(
0 0
0 1

)
, B =

(
0 0
0 2

)}
and

P = Ann(I)∗

=

{
C =

(
1 1
0 0

)
, D =

(
1 0
0 0

)
, E =

(
0 1
0 0

)
, F =

(
2 2
0 0

)
,

G =

(
2 0
0 0

)
, H =

(
0 2
0 0

)
, J =

(
1 2
0 0

)
, K =

(
2 1
0 0

)}
.

Now P ∩ I∗ = ϕ. Therefore, ΓA(I)(R) is bipartite.

Proposition 8. Let P be defined as in Example 7. Then P ∪ {0} is a prime
ideal of R.

Proof. Since

ARB ∈ P =

{(
a b
0 0

)
| a, b ∈ Z3

}
is valid, (

a b
0 a

)
R

(
u v
0 u

)
∈
{(

a b
0 0

)}
.

Therefore, (
aRu arv + bRu
0 aRu

)
∈
{(

a b
0 0

)}
.

Thus,
aRu = 0
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and hence

a = 0 or u = 0.

If a = 0, we have A =

(
0 b
0 0

)
∈ P .

If u = 0, we have B =

(
0 v
0 0

)
∈ P . Hence P is a prime ideal of R. □

3. Zero divisor graph with respect to ideals

The concept of zero divisor graph with respect to an ideal was introduced
by Redmond [9]. Let R be a commutative ring with identity 1 ̸= 0 and I an
ideal of R. The zero divisor graph with identity respect to I is denoted by
ΓI(R) and

ΓI(R) = {a ∈ R \ I such that ab ∈ I for some b ∈ R \ I}

with distinct vertices a and b adjacent if and only if ab ∈ I. Thus if I = {0},
then ΓI(R) = Γ(R). Redmond [9] found a relationship between ΓI(R) and
Γ(R/I), and proved that for a finite ideal of a commutative ring R, ΓI(R)
contains | I | distinct subgraphs isomorphic to Γ(R/I), where |I| denotes the
order of I.

Maimani et al. [7, Theorem 2.2] have proved the following concerning iso-
morphisms of zero divisor graphs. Let R and S be two rings. Let I be a finite
ideal of R and J be a finite ideal of S such that

√
I = I and

√
J = J . Then

the following hold.

(1) If |I| = |J | and Γ(R/I) ∼= Γ(S/J), then ΓI(R) ∼= ΓJ(S).
(2) If ΓI(R) ∼= ΓJ(S), then Γ(R/I) ∼= Γ(S/J).

Remark 9. Let P be a prime ideal of a commutative ring R. Then ΓP (R) is
the null graph.

We take the notion of zero divisor graph with respect to an ideal of a com-
mutative ring further in noncommutative set up in the following way.

Definition 10. Let R be a (not necessarily commutative) ring with identity
1 ̸= 0 and I be a right ideal of R. The zero divisor graph with respect to I is
denoted by ΓI(IR) and

ΓI(IR) = {a ∈ R \ I such that ab ∈ I, ba ∈ I for some b ∈ R \ I}

with distinct vertices a and b adjacent if and only if ab ∈ I and ba ∈ I.

Example 11. Let A = Z6 = {0, 1, 2, 3, 4, 5} and R = M2(A). Now I = {0, 3}

is an ideal of A and K = M2(I) is an ideal of R. Let U =

(
3 2
0 4

)
∈ R,

V =

(
1 3
0 0

)
∈ R, and W =

(
1 1
0 0

)
∈ R. Then U /∈ K, V /∈ K and
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W /∈ K. Now we see that UV =

(
3 0
0 0

)
∈ K, V U =

(
3 2
0 0

)
/∈ K,

UW =

(
3 3
0 0

)
∈ K, WU =

(
3 0
0 0

)
∈ K. Therefore, U,W ∈ ΓK(KR).

Example 12. Let S = Z2 = {0, 1} and R = M2(S). Now

I =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

)
,

(
0 0
0 0

)}
is a right ideal of R. Also

R \ I =

{
A =

(
0 0
1 0

)
, B =

(
0 0
0 1

)
, C =

(
0 1
1 0

)
, D =

(
0 0
1 1

)
,

E =

(
0 1
0 1

)
, F =

(
1 0
1 0

)
, G =

(
1 1
0 1

)
, H =

(
1 1
1 0

)
,

I =

(
1 0
0 1

)
, J =

(
0 1
1 1

)
, K =

(
1 0
1 1

)
, L =

(
1 1
1 1

)}
.

We see that ΓI(IR) = {F,D} as FD ∈ I and DF ∈ I.

Remark 13. Let P be a completely prime ideal of a ring R. Then ΓP (PR) is
the null graph.

Recall that an ideal P of a ring R is completely prime if R/P is a domain,
i.e., ab ∈ P implies a ∈ P or b ∈ P for a, b ∈ R (McCoy [8]).

Remark 14. Let R be a (not necessarily commutative) ring with identity 1 ̸= 0
and I be a right ideal of R. Then ΓI(IR)∪ {0} need not be a right ideal of R.

We saw in Example 12 that D + F =

(
1 0
0 1

)
/∈ ΓI(IR).

We note that in Example 11 there were vertices U /∈ I, V /∈ I such that
UV ∈ I but V U /∈ I. Similarly in Example 12 we had AB ∈ I, BA /∈ I,
AD ∈ I, DA /∈ I, CA ∈ I, AC /∈ I, . . . , LE ∈ I, EL /∈ I, LF ∈ I, FL /∈ I.

This motivates one to define the graph (directed) with respect to a right
ideal in the following way. Here we use the notation as in Redmond [9].

Definition 15. Let R be a (not necessarily commutative) ring with identity
1 ̸= 0 and I be a right ideal of R. The zero divisor graph (directed) with
respect to I is denoted by ΓI(R) and is defined as

ΓI(R) = {a ∈ R \ I such that ab ∈ I for some b ∈ R \ I}
with distinct vertices a and b adjacent if and only if ab ∈ I.

Remark 16. Let R and I be as in Example 12. Then

ΓI(R) = {A,C,D, F,H, J,K, L}.
We note that B /∈ ΓI(R) as there does not exist any element T ∈ R \ I such
that BT ∈ I.
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Remark 17. Let R be a (not necessarily commutative) ring with identity 1 ̸= 0
and I be a right ideal of R. Then ΓI(R) ∪ {0} need not be a right ideal of R.

We saw in Example 12 that A+ C =

(
0 1
0 0

)
/∈ ΓI(R).
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