Proceedings of ALGORITMY 2000
Conference on Scientific Computing, pp. 388-398

LIBRARY OF PARALLEL PCG SOLVERS
FOR PROBLEMS OF GEOMECHANICS

RADIM BLAHETA, ONDREJ JAKL AND JIRI STARY*

Abstract. The paper describes two ways of parallelization, based on the displacement decom-
position and domain decomposition, of the preconditioned conjugate gradient method, which is used
for the construction of solvers of the GEM32 finite element package. The crucial points of the algo-
rithms, especially the preconditioning operation, are exposed. The second part of the paper reports
the benefits of the parallelization for the solution of some real problems, including an example of
large scale mathematical modelling in geomechanics.

Key words. preconditioned conjugate gradient method, parallelization, displacement decompo-
sition, domain decomposition, incomplete factorization, Schwarz methods, large scale computations

AMS subject classifications. 65F10, 65N22, 65Y05

1. Introduction. Mining geomechanics is not an exception in extended appli-
cation of mathematical modelling. On the contrary, it is a rich source of complex
phenomena to be modeled, such as development of mine openings, effects caused by
inelastic and damage behaviour of geomaterials or actions of joints and supports, to
name some objects of practical interest. Deformation and stress fields are usually
expected as the result of the modelling, often in multiple variants for determining the
influence of uncertain input parameters. From the mathematical point of view, the
problems are formulated as two- and three-dimensional partial differential equations
as used in elasticity and plasticity. For their numerical solution, finite element (FE)
analysis is mostly applied, resulting in large linear or nonlinear algebraic systems.
Their handling is the crucial and most time-consuming part of the solution process,
for which efficient techniques, including parallel approach, are intensively studied.

The GEM32 software package, continuously developed at the Institute of Geonics
of the Czech Academy of Sciences both for research purposes and practical modelling,
is an example of a computer code addressing 3-D FE analysis of elasticity and plas-
ticity problems arising in geomechanics. Its characteristics include discretization of
the modeled domain using regular structured grids, which result from deformation of a
regular rectangular 3-D grid of nodes, and iterative solvers based on the preconditioned
conjugate gradient (PCG) method.

The growing demand for the solution of complex problems arising in the geome-
chanical practice accelerated the development of GEM32 towards large scale mod-
elling. Here especially, the critical issue is the solution of large systems of linear
systems, often of millions of unknowns. With increasing availability of the multipro-
cessor hardware, a promising direction towards the required performance of the PCG
solver could be seen, among other things, in its parallelization.

This article describes the work which the authors have done in this respect. It
presents the basic methods applied in that transition and resulting codes which in
fact form a collection or library of solvers based on the PCG method, displacement

*Academy of Science of the Czech Republic, Institute of Geonics, Studentskd 1768, 70800
Ostrava — Poruba and VSB-Technical University, 17. listopadu 15, 70833 Ostrava — Poruba
({plahetal jakl|stary}Qugn.cas.cz)

388

Library of parallel PCG solvers for problems of geomechanics 389

decomposition and overlapping domain decomposition.

2. Sequential PCG solver.
We shall restrict our attention to the solution of prob-
lems of 3-D linear elasticity by the FE method with @
linear tetrahedral finite elements, as it is practised Initialization

in GEM32. In the preprocessing stage of modelling, u=1d
GEM32 must be fed in with the (1) geometry of the w = Au
3-D domain of interest and its discretization by a reg- r=b-w
ular structured grid, (2) loading given by the weight v=P(r)
of the material and action of the surrounding rock S0 =<7,V >
massif and (3) specification of the material proper-
ties and material distribution. This data is used for +
assembling the FE system of linear equations
(2.1) Au=1> Iteration

w = Av
where A is symmetric, positive definite n x n stiffness s=<uv,w>
matriz, b € R" is the right-hand side given by the a=sofs
loading and v € R"™ is the n-dimensional vector of u=u+av
unknown nodal displacements. The linear system is =1 —aw
then forwarded to the GEM32 solver. w = P(r)

As mentioned above, GEM32 solvers make use 51 =<rw>
of the well-known PCG method. Its algorithm is B =s1/s5
outlined in Fig. 2.1. In this scheme (where S and 50 = 81
E respectively denote the start and end of the pro- v=w+Bv
cedure), 4 is an initial approximation, r € R™ the
residual, w,v € R™ auxiliary vectors, «, 3, sg,51 € R Q
scalars and P the preconditioning operator (discussed
below). The termination criterion TC has the form @
[|I7|| = £ |||, where € is the required relative accuracy
(usually 10=2 — 1075). FiG. 2.1. The PCG method

2.1. Preconditioning. In the PCG algorithm, preconditioning is a very impor-
tant step which, roughly speaking, improves the search directions for the solution.
GEM32 provides preconditioning based on the so-called displacement decomposition
(DiD), studied in [1] and [2]. DiD separates the three components of the nodal dis-
placement vector (in the z,y, z directions) by rearranging and decomposing the vector
u (and correspondingly the matrix A of the system (2.1)) as follows:

u = (u1,u2, us)
A:(Akl) k,l:1,2,3
Here, blocks wuy,us, us respectively represent nodal displacements in z,y, 2z directions.
Having this, GEM32 can offer two preconditioning techniques. The first one,

called incomplete factorization (DiD-IF), results from the incomplete factorization of
the matrix A defined as follows:

App = Agg k=1,2,3
Ay =0 kl1=1,2,3k#I

In [1], [2] it is shown that:

390 R. BLAHETA, O. JAKL AND J. STARY

1. Matrix A is spectrally equivalent to A.

2. Incomplete factorization of blocks A is stable in the case of linear tetra-
hedral finite elements and reasonable requirements on the division of the
domain into tetrahedrons. (These requirements are fulfilled by most of the
applications).

The preconditioning operation w = P(r) is then given by the (inexpensive) solution
of the system Cw = r, where the (block diagonal) preconditioning matrix C' has
diagonal blocks of the form Crr = (Xj + L) X~ (Xg 4+ Li)T. Here, Ly, is the strictly
lower triangular part of the matrix Ay, X is a diagonal matrix determined by the
condition of equal rowsums of the matrices Cyr and Ay + Dy, for an appropriate
diagonal perturbation matrix Dy. For details see [2].

DiD-IF is the traditional preconditioner for the GEM32 solvers. As we shall see
in the next section, it has favorable properties for parallelization.

Motivated also by the parallelization, an alternative to the incomplete factor-
ization preconditioning has been introduced recently. This variable preconditioning
(denoted DiD-VP) defines the w = P(r) operation as a low accuracy solution of the
system Aw = r by another, inner PCG iteration process, which can again use the
DiD-IF preconditioning. While being of limited benefit for the sequential solution, it
turned out to be very useful in the parallel case, because it migrates the computational
work to communication-free inner iterations (cf. Section 6.3). For more mathematical
issues see [5], [4].

3. Parallelization based on displacement decomposition. The decompo-
sition of the vector u into (in general m) equally sized blocks is also a natural step
towards the parallelization of the PCG algorithm. Following the common data de-
composition paradigm and “single program — multiple data” (SPMD) parallelization
model, the solution of the whole system (2.1) can be then assigned blockwise to m
tasks which then perform the PCG algorithm concurrently (with some data exchange)
on their portion of data: The i-th task processes the block u; of the displacement vec-
tor and the corresponding column block A; = {A4;;;7 = 1,...,m} of the stiffness
matrix. For synchronization and supervision purposes, it is practical to accompany
these worker tasks by a master task, which combines partial results to global values,
evaluates the termination criterion, etc. The scheme of such a parallel algorithm is
presented in Fig. 3.1.

There are two particular points, where this straightforward parallelization proce-
dure may bring difficulties. The first one (denoted M in Fig. 3.1), is the matrix-vector
product, which requires extensive intertask communication Cp¢. Namely: The i-th
worker computes the products w;; = Ajvi, j = 1,...,m, and transfers all but the
w;; value to other workers (w;; to the j-th worker). On the contrary, it must obtain
their wj;, j # 1, to be able to calculate the new value of w; = Zj Wys-

The second point (denoted P), even more subtle, is the preconditioning operation.
Here we can in general observe only that if the operation has the form of Cw = r,
an efficient parallelization seems to be possible provided that C is block diagonal. In
this situation, no task interaction Cp is necessary, but this is not a general case.

Note that the other master — worker communications/synchronizations in the it-
erative part of the parallel PCG algorithm can be reduced by one when applying the
Chronopoulos-Gear algorithm with a modified expression for the search parameter o
(see [7]). The same effect can be attained by using the standard formula for a, but a
block row-wise partitioning of the stiffness matrix, allowing some rearrangements of
the operations; see [6].

Library of parallel PCG solvers for problems of geomechanics 391

Master i-th worker
wi = Ui Crm
M:Mxwvop. | £z=z=z==-=3
T =b; —w; Cp
P: prec.op. | £==-=-=-==s
S04 80i =< Ti, Vi >
«-———2___
m
SO:ZSM
i=1
+ EN
Cm
M:Mxvop. | €3--==c=s
<<,,sf,k7 8; =< Vi, Wi >
m
S:Zsi
i=1
a=sg/s _do_e |y
Ui = Ui T OV;
i =T — 0w
i =15 i Cp
P : prec. op. f3I--=-z-Zsx
81, =< i, w; >
s1i
m <L
31=ZSM
i=1
B =s1/%0 B
/ 4T _ls | vi=wi+Pu
80 = 81

Fi1G. 3.1. Parallelized PCG algorithm — a general scheme

Let us now apply this general framework to the case of displacement decompo-
sition. From the nature of DiD it follows that m = 3 is fixed, i.e. there are exactly
three worker tasks cooperating on the solution. At the point M, these tasks have to
exchange six vectors, having n/3 real components each. For systems with e.g. one
million unknowns this means transfer of eight megabytes of data in every iteration.
That is why this operation requires a careful technical realization, to minimize the
overhead.

Preconditioning P is the point where DiD shows its advantage. As we could
see in the previous section, both DiD-IF and DiD-VP preconditioners construct the
preconditioning matrix C as a block diagonal matrix, which can be fully decomposed.
Thus, the workers can complete this operation independently, without need of any
communication, just as in the sequential case.

Although the DiD-based parallelization can considerably shorten processing time

392 R. BLAHETA, O. JAKL AND J. STARY

of some mathematical models (cf. Section 6.3), its general applicability is strongly
limited by the fixed (and low) number of parallel tasks inherent in its fundamentals,
which rules out scalability (i.e. the ability to utilize a greater number of processors).
For this reason, in the next phase we focused our attention on the domain decompo-
sition (DD) methods.

4. Parallelization based on domain decomposition. DD methods are based
on the geometrical partitioning of the domain of interest into subdomains. In princi-
ple, they do not limit the number, shape and size of subdomains, being thus highly
scalable. For a comprehensive treatment of these methods in the context of parallel
computing see for example [9].

The initial DD implementation in GEM32 considers a simple one-dimensional
partitioning of the domain (2, already discretized with a regular structured grid, in
the z direction to m disjunct subdomains €, ..., (,,, so that each grid node belongs
to exactly one subdomain. To improve the convergence however, we can make subdo-
mains partially overlap: Every Q; is extended to €; to share some “layers” of nodes
with the adjacent subdomain Q;; (let us call the number of shared layers overlapping
factor). Fig. 4.1 illustrates this setup for m = 3 and overlapping factor 1.

N 2
T |

[< B VR VR
.

B N e

N o oo

L I N I

o N o o s
-

7 7
8 8

9 9
Q2 10 Q3 10 Q3

[
o

F1G. 4.1. Domain decomposition of a reqular structured grid

Having this partition, it is possible to use iterative methods and preconditioners
referred to as Schwarz methods. The computation is decomposed by associating par-
allel tasks with subdomains. Each subdomain is processed by one of the m concurrent
tasks. Interactions are necessary only between “neighbours” in the 1-D decomposi-
tion.

From the point of view of the system (2.1), the i-th task processes the stiff-
ness matrix A;, loading vector b; and displacement vector u; (and related auxiliary
structures), which are associated with the subdomain €;. These blocks are extracted
from the original system by copying those rows that correspond to the nodes of the
subdomain ;.

The formal scheme of the DD algorithm is the same as in the DiD case, see
Fig. 3.1. Let us focus on the points M and P, where the differences are hidden.

In M, a standard matrix-by-vector multiplication w; = A;v; is performed (on the
non-overlapping part of A;). To keep the vectors w; updated for all rows of A4; and
consistent with the global operation w = Aw, pairs of neighbouring tasks (i,4— 1) have

Library of parallel PCG solvers for problems of geomechanics 393

to exchange calculated components related to the shared rows (Cxq communication).
The amount of this data transfers depends on the bandwidth of A and the density of
the discretization in the z and z directions.

To explain the preconditioning point P, we introduce the matrix R; representing
the restriction operation R; : u — u;, where u; is the vector of those components of
u that correspond to the nodes from the closure of the subdomain ;. The precondi-
tioning operation employs the so called additive Schwarz preconditioner and has the
following form:

(4.1) w=> RIA7'Rir

i=1

The workers solve their systems in analogy with Section 2.1 by replacing A; by its
incomplete factorization (in practice preferred) or by inner PCG iterations of the
variable preconditioning. Thereafter, the neighbours are required to exchange (and
sum) results for the shared rows (within the Cp» communication).

4.1. Application of the coarse grid. The Schwarz method can be made more
efficient if it can take advantage of a “global” information, represented by a solu-
tion of the same problem, but discretized by a coarser grid. The idea is that for the
coarse grids we assemble the stiffness matrix A. with regard to the principal bound-
ary conditions. Let R, is the matrix of linear interpolation transforming the values
from the fine to the coarse grid. Then we can define the two level additive Schwarz
preconditioner by the expression

(4.2) w=(P.+» RTA7'R)r

where P, = RTAZ1R, is the coarse grid part of the preconditioner.
An alternative to the additive approach is to include the coarse grid part of the
preconditioner in a multiplicative way. This can be achieved by the formula

(4.3) w=Por+ Y RIA;'Ri(r — APr)

(3

called two level hybrid non-symmetric Schwarz preconditioner. Note that this pre-
conditioner can be symmetrized, but good results have been obtained even with this
non-symmetric version.

It is natural to realize the coarse grid computation as a stand-alone worker task
which runs in parallel with other workers processing the subdomains. Whereas in the
additive case this task can run completely in parallel with the subdomain workers,
in the latter case the subdomain workers have to wait for the coarse grid worker to
send P.r, to be able to complete the preconditioning operation. Nevertheless with
sufficiently large grid, the benefits of the multiplicative approach to the convergence
may outweigh this drawback.

5. Computer realization. The parallel algorithms described in previous sec-
tions are implemented as experimental solver modules of the GEM32 package. Their
Fortran code has its origin in the sequential solver PCG-S [3] and wherever possible,
they make use of its data files, data structures and supporting utilities.

The parallel algorithms are designed to match the universal message passing
model, where task interaction is accomplished by exchanging messages, with no re-
quirements on shared memory. For the realization of message passing, we chose the

394 R. BLAHETA, O. JAKL AND J. STARY

Parallel Virtual Machine (PVM) [8] API, but some experiments with the Message
Passing Interface (MPI) implementations have been performed as well. Since these
message passing systems seem to be available on all parallel architectures, the solvers
should be portable to most platforms, from supercomputers to clusters of worksta-
tions.

Both the methods and the codes are continuously developed and experiments are
in progress. In the next section, we selected some examples to give an idea about the
achieved performance. The presented codes are characterized in Tab. 5.1.

| Solver name || Type | Decomposition | Preconditioning |

PCG-S seq. - incomplete factorization
PCG-P(DiD-IF) PVM | displacement incomplete factorization
PCG-P(DiD-VP) || PVM | displacement variable

PCG-P(DD) PVM | domain 2-lev. hybrid non-symm. Schwarz

TABLE 5.1
Main characteristics of the solvers

6. Experiments and results. This section informs about numerical experi-
ments performed with the parallel solvers. Particularly in the DD case the testing is
still in progress.

6.1. Benchmarks. One of the standard benchmarks that we use for evaluat-
ing the performance of solvers is the so called square footing problem (FOOT), a 3D
elasticity problem of soil mechanics (Fig. 6.1). It deals with the influence of flexi-
ble footing represented by localized pressure (on the top side of the domain) to the
stress development in a soil medium. Due to symmetry, the computational domain
Q is restricted to a quarter of the whole situation. The standard discretization is
accomplished by a rectangular grid of 40 x 40 x 40 nodes, with grid refinement under
the footing, providing a linear system of 192000 equations. Using a denser grid, this
relatively small benchmark (FOOT40) can be made larger (FOOTn).

| As an example of a large scale computa-
i tion, let us introduce a practical problem re-
lated to mining in the uranium ore deposit at
} Dolni RoZinka (DR) in the Bohemian-Moravian
} Highlands. This model considers a domain of
: 1430 x 550 x 600 meters, with the top side 700 m
under the surface. Three uranium ore veins,
where the mining process is concentrated, are
located in this domain. For both the basic ma-
Fic. 6.1. The FOOT benchmark terials (uranium ore and surrounding rocks) and
the goaf material filling the volume of the extracted ore, linear elastic behaviour is as-
sumed. The discretization of the domain by a regular structured grid has 124 x137x 76
bricks, see Fig. 6.2. This leads to a finite element system of 3873264 degrees of free-
dom.

Mathematical modelling aimed at the assessment of geomechanical effects of min-
ing, e.g. comparison of different mining methods from the point of view of stress
changes and possibility of dangerous rockbursts. The immediate task was to model
four selected stages of successive mining in the considered domain, represented by a
four-step sequence of problems with different material distribution.

Library of parallel PCG solvers for problems of geomechanics 395

=
Va7 77 /77725
s 7
Vs 7
W i 777 7 7 7 s

LAV
ALV A R

e
A

Fi1G. 6.2. The DR problem: the mesh

6.2. Computing resources. All the computations mentioned in this study were
performed on an entry-level installation of the well-known IBM SP multicomputer,
originally equipped with eight POWER2/66.7 MHz (Thin-2) processor nodes with
at least 128 MB of system memory. Each node had three network interfaces, Eth-
ernet 10Mbit/s, ATM 155 MBit/s and the proprietary SP High Performance Switch
(HPS) 40 MByte/s, allowing performance tests under various communication condi-
tions. Software environment included AIX 4, XL Fortran and Parallel Virtual Machine
(PVM) version 3.3.11.

Because of partial hardware and software upgrades, the testing conditions have
been changing slightly in the course of time. We tried to keep the consistency of the
experiments as much possible, using the processor node above with 128 MB memory
as the basic testing platform. The measurements were carried out in non-dedicated
mode, but in periods without other (non-system) applications, in case of doubts re-
peatedly. The best wall-clock times, most important from the practical point of view,
are presented.

6.3. Results. First, let us show some latest results of the DD-based solver. As
this code is still under development and the experiments are going on, we regard them
as preliminary.

Tab. 6.1 contains iteration counts and execution times (in seconds) achieved by the
PCG-P(DD) when solving the FOOT40 problem with relative accuracy 1073. They
differ in the application of the coarse grid (see Sect. 4.1). Whereas in the FOOT40
part of the table this technique is not used, in the FOOT40404 and FOOT40+12
respectively coarse grids 4 x 4 x 4 and 12 x 12 x 12 are applied. In the table, the
results are further parametrized by the overlapping factor (OF) and the number of
subdomains. The times were obtained for the PVM message passing using the HPS
communication subsystem of IBM SP in the IP mode (see above). Subdomain work-
ers as well as the coarse grid worker ran on separate processor nodes, whereas the
computationally modest master shared the processor with one of the workers.

As one can observe,

e there is a great variation in the execution time depending on the solution
parameters (e.g. the coarse grid size),
e the coarse grid dramatically improves performance,

396 R. BLAHETA, O. JAKL AND J. STARY

Overlap. fact. OF=0 OF=1 OF=2 OF=38 OF=}
Subdomains it tfs] | wt. t[s] | at. t[s]| it t[s]| it. t[s]
FOOT 40

2 88 793 69 638 64 611 | 67 660 | 67 666
3 126 778 93 581 87 569 | 8 573 | 82 580
4 133 603 | 105 505 | 100 508 | 98 520 | 95 527

FOOT 40+04
2 31 293 24 239 24 250 | 26 260 | 26 277
3 40 260 31 204 29 200 | 20 209 | 29 220
4 43 204 34 172 33 179 | 33 189 | 33 192
FOOT 40+12
2 17 171 14 186 13 145 | 14 157 | 15 170
3 21 158 16 126 15 121 | 15 122 | 15 123
4 21 108 17 90 17 99 | 17 102 | 17 103
TABLE 6.1

Results of PCG-P(DD) on FOOT40

e the execution time decreases with the number of parallel tasks (the code is
scalable).

Tab. 6.2 compares the best result from the Tab. 6.1 with the performance of the
other solvers under consideration on the FOOT40 problem. In addition to the run
times, relative speedup (S;) and efficiency (E,) with regard to the sequential version
were calculated. The gains of the parallelization are pregnant especially in the PCG-
P(DD) case, but recall that careful tuning of the run-time parameters of the parallel
solution was necessary.

| Solver | Time [s] | Iterations | Processors | Speedup | Efficiency |
PCG-S 420 49 1 - -
PCG-P(DiD-IF) 223 49 3 1.88 0.63
PCG-P(DiD-VP) 202 8 3 2.08 0.69
PCG-P(DD) 90 17 5 4.47 0.93
TABLE 6.2

Comparison of the solvers on FOOT40

In the second part of this section we shall concentrate on the DiD-based paral-
lel solvers. Fig. 6.3 shows the interpolated solution times for the PCG-P(DiD-IF)
(dashed) and PCG-P(DiD-VP) (solid) solvers on a sequence of the FOOT bench-
marks, ranging from FOOT40 (192000 equations) to FOOT105 (3472875 equations)
on Ethernet (left) and HPS (right) networks. The times for the DR problem (plus
and z-mark, cf. below) are also added as reference.

The graphs document the advantage of the variable preconditioning especially
with linear systems of more than 1 million equations. This is the critical size when in
our computing environment the DiD based parallel solvers begin to be retarded by the
disk operations, since the data does not fit into the main memory. PCG-P(DiD-VP)
shows greater data locality and due to the reduction of the expensive outer iterations
it lowers the communication/synchronization overhead. This aspect is even more
apparent on slow networks like Ethernet.

This observation has been confirmed by the solution of the DR problem. As
shown in [4], the procedure was not straightforward, since the task specification lead

Seconds

Library of parallel PCG solvers for problems of geomechanics

Ethernet
T

x10°

High Performance Switch
T T T

397

Seconds

1.8f

16

14r

1.2

Equations

Equations

Fi16. 6.3. PCG-P(DiD-IF) and PCG-P(DiD-VP) timings for the FOOT40 — FOOT105 se-
quence on Ethernet and HPS (details in the text)

| Solver\Step | St.o] St.1] St.2] St. 3] St. 4 | Total/it. | Speedup |
PCG-S 25:45 | 01:03 | 00:36 | 00:36 | 01:02 || 28:17/193 -
PCG-P(DiD-IF) 12:00 | 00:29 | 00:16 | 00:15 | 00:30 13:30/193 2.1
PCG-P(DiD-VP) || 02:12 | 00:19 | 00:12 | 00:12 | 00:14 03:09/19 9.0
TABLE 6.3

Solution times for the DR problem, in hours:minutes

to four pure Neumann boundary problems, which required some additional mathemat-
ical treatment and corresponding modification of the codes, to be able to cope with
slightly inconsistent systems. In its final stage, the modelling process comprised five
computational steps, each one solving a linear system of nearly four million unknowns.
Their duration for the DiD-based solvers' is presented in Tab. 6.3.

The solution od the DR problem clearly exposes one less reported beneficial aspect
of parallelization: Better hardware utilization due to partitioning to subproblems
more appropriate in size, leading to a superlinear speedup. Although perhaps not
so interesting from the theoretical point of view, it is extraordinary important for
practical computations.

7. Conclusions. In our contribution, we presented two approaches to the par-
allelization of the PCG method: the displacement decomposition and the domain
decomposition. The way how the preconditioning is realized (IF, VP, various Schwarz
preconditioners) as well as the choice of the parallel interface (PVM, MPI) further
multiply the possibilities how to design the computer code. In the framework of our
in-house GEM32 system we developed in this way a library of FE solvers appropri-
ate for large scale mathematical modelling in various conditions. Whereas the DiD
direction seems to resolved, the DD approach deserves further investigations and ex-
periments. In particular, we intend to combine DiD and DD methods to gain even
more efficiency and scalability.

Acknowledgments. Supporting contracts: Grant Agency of the Czech Republic
No. 109/99/1229, Czech Ministry of Education No. LB98273, LB98212 and VSB-TU
Ostrava CEZ:J17/98:2724019.

IDR has not been solved by a DD solver yet.

398

~

>

w

R. BLAHETA, O. JAKL AND J. STARY

REFERENCES

. AXELSSON AND I. GUSTAFSSON, Iterative Methods for the solution of the Navier equations of
elasticity, Computer Methods in Applied Mechanics and Engineering, 15 (1978), pp. 241—
258.

. BLAHETA Displacement decomposition — incomplete factorization preconditioning tech-
niques for linear elasticity problems, Numerical Linear Algebra with Applications, 1 (1994),
pp. 107-128.

. BLAHETA AND R. KonuT, PCG-1 iterative solver, Institute of Geonics Cz. Acad. Sci.,
Ostrava, CR, 1995.

. BLAHETA, R. ET AL., lterative displacement decomposition solvers for HPC in geomechanics,
Proc. Large Scale Scientific Computing LSSC’99 (S. Margenov, P. Vassilevski, P. Zalamov,
eds.), Vieweg, to appear.

. BLAHETA, CG with nonlinear variable preconditioning, technical report, Institute of Geonics
Cz. Acad. Sci., Ostrava, 1999.

. BLAHETA, Parallel iterative methods, lecture notes, VSB—Technical University, Ostrava,
2000.

. DONGARRA, 1. S. DUFF, D. C. SORENSEN AND H. VAN DER VORST, Numerical linear algebra

for high-performance computers, STAM, Philadelphia, 1998.

. GEIST ET AL., PVM: Parallel Virtual Machine — Users’ guide and tutorial for networked
parallel computing, MIT Press, Cambridge, 1994.

. SmIiTH, P. BJoRSTAD AND W. GROPP, Domain decomposition: Parallel multilevel methods
for elliptic partial differential equations, Cambridge University Press, New York, 1996.

