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VERIFICATION OF MH-MODEL IN VARIOUS UNDERGROUND
FLOW PROBLEMS *

MILAN HOKR AND OTTO SEVERYN'?

Abstract. The contribution describes the results of the analysis of the porous media flow model
by applying it on basic problems. The model is based on mixed-hybrid FEM with prismatic elements.

The first tests confirm the correctness of numerical algorithm. The next tests test the whole
model. For steady saturated flow (linear problem), the model gives correct results if the discretisation
mesh is chosen appropriately, i.e. elements have only slightly slanted bases. For non-linear problems
of steady and unsteady unsaturated flow, the model gives correct results under the condition, that
the parameters of the model are suitable and fineness of dicretisation is chosen according to the
retention curve. The determined extent of usability of the model covers the majority of practical
flow problems.
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1. Introduction. This paper deals with a model of porous media flow in several
levels. The numerical algorithms for MH-FEM are tested, the linear problems of
steady flow in saturated media are solved and the non-linear problems of both steady
and unsteady flow with phreatic surface are solved.

The mathematical model of steady saturated flow and its computer implementa-
tion were developed during the years 1996-1998 in cooperation of TU Liberec, DTAMO
Straz pod Ralskem and FJFI CVUT Praha. Later, the model was extended for un-
steady flow and phreatic surface, which means that we consider a domain with fully
saturated part, transient layer, and unsaturated part.

The models were successfully used for solution of practical problems and the
solution was compared with direct measurement. In spite of that, the presented
tests are useful for the following reasons: We need to find the extent of usability of
the model, for example for using the model for solving another physical problems;
next, some standardisation of the model is needed for integration of the model into a
compact software package for solving porous medial flow problems.

2. Description of the model. We will present only short summary of equations
describing the model. For detailed theoretical derivation and description of imple-
mentation see contribution “Mathematical Modelling of the Underground Transport
of Contaminants” in these Proceedings. The basic governing equations are Darcy Law
and continuity equation

9p
(1) u=K(Vp+Vz), a—}-V-u:q,
where u is specific discharge, p is pressure head, ¢ is density of sources, K is per-
mealility, ¢ is density, 2z is vertical coordinate and ¢ is time. The mixed-hybrid finite
element method is used for solution. Discretisation to prismatic elements and linear
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and constant base functions are considered. Calculating the scalar products, we get
the linear algebraic system. The matrix of this system is sparse and it is solved by
iterative solver.

In the unsaturated part of space domain, additional equations are considered: the
relation between negative pressuse and effective water content 8 and the expression
for relative permeability k, or relative resistance R,.. Van Genuchten formula and
Irmay formula are used:

B 1 1 _(0-6\°
N =S o~ 0= (28

where 6y is residual watr content, n is porosity and « and m describe the statistical
distribution of size of grains. The modified Darcy Law u = —k,.(0)K(Vp + k,Vz) is
used, with a calibration constant k, which is described in section 3.3.1. The non-linear
algebraic system has the following form:

RT(A")A un, + Bp, + CA = ql,n(ﬁn) )
(3) BTy, + k(P,)VPn = q2,n(P,)
CcTu, + SA = a3

It differs from the linear case in the non-linear terms R..()\,) (relative resistance) and
k(P,,) (water capacity). The compoments of unknown vectors u,, pn, A, are fluxes
through element sides, pressures in centres of elements and pressures in centres of
sides.

3. The results of performed tests.

3.1. Testing of base functions and local matrices. The first test should
verify the correctness of the algorithm for generating the base functions from RT?
space, which is described in [4]. The computed values are compared with values
calculated analytically. Several tests were performed to cover all the properties and
situations, which can influence the results: the shape of element, bases declination
and element size. The tests are specified in [7]. These tests have proved correctness
and reliability of algorithm; magnitude of errors equals to accuracy of computer.

The next basic algorithm of the MH-FEM model is the computation of local
matrices. In our case, this is an analytical integration of quadratic functions on the
element volume. Three different methods were compared: Zienkiewicz [8], Ciarlet
[1] and the method derived at TU Liberec (see [5]). The difference corresponds to
accuracy of computer aritmetics.

Globally, we can indicate the tests as successful. The parts of the program work
correctly and we can now test the whole program.

3.2. Testing of 1D problems, influence of element shape. In this section,
we consider steady flow in saturated porous media. This is a linear problem and we
can solve it analytically for 1D case. The tests are performed for flow in horizontal and
vertical direction. We will call the first case “canal” and the second case “column”.
The mesh “canal” is shown on figure 4. Here, Dirichlet conditions p = pg1 and p = pga
are prescribed on the sides b-h and homogeneous Neumann condition is prescribed
on the sides [-b and I-h. Dimensions are [ = 10m, b = h = 1lm, permeability K
is a unitary tensor and values of pressure pg; = 110m and pge = 10m. The mesh
“column” is exactly the same as “canal” but placed vertically. Dirichlet conditions on
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the top and bottom side (pg; = 200m and pgo = 100m respectively) and homogeneous
Neumann condition on the vertical sides are prescribed.

Relative error was calculated as a difference between the results of the model and
the values of analytical solution. Distribution of the relative error in the places of
the mesh was examined. The piezometric head is computed in the centres of sides
and centres of elements. The errors in vertical sides are in order of 10~ and in
horizontal sides and centres of elements they are 1075 (this difference is interesting).
The maximum value of errors of flux through sides is 6.8-1071%. All values correspond
to accuracy of solver and double aritmetics. The parameters and the results of the
problem “column” are analogical with the problem “canal”. This test is successful,
the accuracy for 1D linear problems is sufficient.

Next, the influence of “non-standard” elements in the mesh is examined. Par-
ticularly, we consider elements with non-parallel bases and pyramidal and simplex
elements. In the tests, the same 1D problem is solved and the meshes are derived
from the mesh in previous test.

The global shape of the domain was kept. The mesh has now 2 layers to be
possible to change the shapes of elements. There were used prismatic elements with
one non-horizontal base and degenerated elements — pyramid and simplex. Various
meshes were constructed using only some of them and using various ordering. For
example see the right part of figure 4. The following set of tests was preformed:

e Comparison among mesh types: The errors of piezometric head in elements
and sides and of flux values were examined. The accuracy of results on
reference regular double-layer mesh (with only non-slanted sides) corresponds
to the results on single-layer mesh. If some deformated elements are in the
mesh, the error grows to the order of 10~2, which is insufficient for simple
linear problem.

e The same comparison for “flat” meshes (x,y coordinates multiplied by 100):
The results are very similar to the previous.

e Observing of dependence of error on bases declination: The graphs of relative
error values can be seen on figures 1, 2, 3. The error rises with rising of the
angle of the base. We obtain sufficient accuracy for value of angle less than 1
degree. It can be seen that the results of two variants of the mesh “column”
differ. In the first case, only the error of piezometric head rises, while in the
second case the errors of both piezometric head and flux rise. It shows that
geometrical properties of the mesh influence the results.

3.3. Testing of phreatic surface problems. Now we consider a more complex
model derived from the model of steady saturated flow. The solved equations are non-
linear and the solution is performed by an iteration cycle. The iterations are stopped
when the maximum difference in location of phreatic surface between two steps does
not exceed given value (accuracy).

An analysis of the results was performed in a quite different way. Since the correct
solution is not known, we review the results by comparison with physical knowledge
and by comparison of values computed in different ways. Because of non-linearity and
chosen accuracy of iteration cycle 0.5m, the error in the order of tenths of percent is
still acceptable.

3.3.1. Problem of steady flow. We consider a 2D problem, which models
the steady phreatic surface when only a gradient of piezometric head is prescribed.
Domain is vertically placed layer with dimensions 500 x 50 x 200m discretised with
prismatic elements with right-triangle bases, 50 x 50m, 10m height.
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Homogeneous Neumann conditions on the large vertical sides and the bottom side are
prescribed. Dirichlet conditions on smaller vertical sides are prescribed: 140m and
30m (these are the positions of phreatic surface). Neumann condition on the upper
side is prescribed, which expresses precipitation (standard value 600mm per year —
2m3 per day in 1 element).

The model computes correctly the shape of phreatic surface and the flow in sat-
urated zone. In the unsaturated zone, only vertical flow is expected, but the results
are different (see figure 5 left). The calibration constant k, in the term with Vz is
used to repair this defect caused by nonregularity of precipitation flow — rain is falling
only in short periods and in the rest time, the ground is dry. The computations
were performed for values k, = 1, 0.5, 0.3, 0.1 and precipitation 10m?/d, 2m®/d and
0.05m3/d. The criteria for correctness are horizontal isolines of piezometric head and
values of pressure not less than -10m in unsaturated zone.

Results: The smaller is k,, and larger is rain flow (up to about 20m?3/d), the better
are results. The value k, = 0.1 is applicable for all reasonable values of precipitation.
The precipitation flow must not exceed about 50m®/d — this causes unstability.

3.3.2. Problem of unsteady flow. The domain and the mesh are the same
as in problem “column” in the case of saturated flow. The dimensions of bases are
50x50m, the height of column is 200m. All sides are impermeable except of the
bottom, where a Dirichlet condition is prescribed: 20m in the beginning, 150m after
that. We expect the surface would rise from the initial value 20m to the limit value
150m.

Computations were performed for following set of values:

retention curve (m,a): | (3,0.002) (3,0.001) (3,0.03)
element height (dz): | 20m 10m 5m 2m
time step (dt): | 10d 3d 1d 0.5d

Necessary requirements on the results are: regular shape of time dependence
graph and independence of results on selected discretisation. These were satisfied for
suitable combinations of the values presented above.

For more steep retention curve, the smaller dz is needed. Also dt must be selected
in dependence to dz: in one time step, the surface must not pass through larger number
of elements, it means that the value of dt is bounded from above (the smaller dz is,
the smaller dt must be). Values in larger extent are presented in the report [2]. For
typical cases of correct and incorrect results see figure 6.

4. Conclusion. The tests checked the model in several levels. The implementa-
tion of numerical algorithms is correct. The model as a whole has some restrictions of
usability. In the case of saturated flow, the limitation of angles between sides of ele-
ment was observed. In the case of unsaturated flow the parameters and discretisation
must be suitably selected. The reason is in the physical model and in non-linearity.
The accuracy of the model is fully sufficient for common hydrogeological applications.
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Fi1G. 1. Dependence of relative error (vertical azis) on base slant in degrees (horizontal azis)

for the modified mesh “canal”.
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F1G. 2. Dependence of relative error on base slant in degrees for the first variant of modified

mesh “column” (four elements have non-parallel bases).
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F1G. 3. Dependence of relative error on base slant in degrees for the second variant of modified
mesh “column” (two elements have non-parallel bases).
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F1G. 4. The mesh “canal”. The basic type in the left and the modified double-layer version with
slanted bases of elements in the right. The reference double-layer mesh is drawn with dotted line.

F1G. 5. Results of the steady flow problem. Isolines of piezometric head with a step 10m and a
line of water surface are displayed. The model without without calibration in the left and the model
with ky,=0.1 in the right.
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F1G. 6. Results of the unsteady flow problem - dependence of water height on time for various
values of time step. Parameters m = 3, a = 0.002 and dz=20m in the left and dz=5m in the right
were used.



