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MATHEMATICAL DESCRIPTION OF SOFT TISSUE MECHANICS

JAROSLAV HRON*

Abstract. In this work we investigate a mathematical model for the description of the me-
chanical behavior of soft, hydrated tissues with significant perfusion. We set up and derive the
mathematical description and balance laws using the continuum mixture theory as the theoreti-
cal framework. The constitutive relations suitable to describe perfused soft tissue and appropriate
boundary conditions are discussed. We solve illustrative steady, one and two dimensional problems
of diffusion through finitely deformed slab, and develop an algorithm based on finite element method
for finding approximate solution to the continuous, nonlinear, steady, two dimensional problem.
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1. Introduction. The ability to model and predict the mechanical behavior of
biological tissues is very important in several areas of bio-engineering and medicine.
For example, a good mathematical model for biological tissue could be used in such
areas as early recognition or prediction of heart muscle failure, advanced design of
new treatments and operative procedures, and the understanding of atherosclerosis
and associated problems. Other possible applications include development of virtual
reality programs for training new surgeons or designing new operative procedures [9],
and last but not least the design of medical instruments or artificial replacements
with mechanical and other properties as close as possible to the original parts. These
are some of the areas where a good mathematical model of soft tissue is essential for
success.

Muscle tissue consists of muscle fibers and capillary blood vessels aligned in one
direction and amorphous extracellular matrix and interstitial fluid which fills the
voids and is limited in its movement. The size of the capillaries is of the order of the
diameter of the red blood cell and their distribution in the muscle tissue is regular.
This fact allows us to use some kind of homogenization to describe the material. The
uni-directional orientation of the muscle fibers also suggests that transversely isotropic
symmetry is appropriate. An overview of models for soft tissues including models of
active muscle contraction is presented in [4] and [7]. Since a mathematical description
of such materials on a microscopical level would be too complicated, other means of
description are used to describe mathematically the mechanics of such materials.

A typical experiment we would like to model is the biaxial stretching of a muscle
specimen, see figure 1.1, with simultaneous perfusion through the capillaries. Some
of the characteristic properties in such problem are:

e The tissue specimen in the experiment, and even in its natural environment,
is subjected to large deformation.
Muscle fibers in the specimen are oriented in one direction.
The perfusion takes place through parallel capillaries.
The perfusion flow can have significant velocity possibly varying in time.
The diameter of the capillary is comparable with the diameter of the red
blood cell. (= 5pum)
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F1G. 1.1. Schematic view of biazial stretching erperiment and muscle perfusion.

e The distribution of the capillaries is regular.

The continuum assumption has proven to be a very useful tool in fluid and solid
mechanics. It idealizes the body of interest, consisting of individual particles (atoms
or molecules), as a continuous region in space. There has to be certain conditions
in order to use this approach, namely the characteristic size of the body and the
disturbances imposed on the body have to be “much” greater than the size of the
individual particles.

Similar ideas support the mixture theory. In the mixture, each of the constituents
is treated as a continuum occupying the whole volume of the mixture. The connection
with the real mixture can be established through a homogenization procedure. Clearly,
the validity of such treatment can be expected only when the characteristic size of
the structural constitution of the mixture (i.e. atomic or molecular level mixture,
size of the particles of granular mixture, or size of the pores in porous media) is
“much” smaller than the characteristic size of the mixture body and the size of the
disturbances imposed on the body.

2. Binary mixture of a solid and a fluid. Let us now focus on the diffusion
of one fluid through an incompressible homogeneous elastic solid subjected to a finite
deformation, without external body forces. The motion of each constituent of the
mixture is described by mappings

x*(X?%,t):Q° x [0,T]—~ Q
X (X7,t):0F x [0,T] — Q (2.2)

where the superscripts s and f refer to quantities associated with the solid and fluid,
respectively, (2 is the domain occupied by the mixture and Q° and Q/ represents the
reference configuration of both components. At each time t € [0,7], the mappings
are one-to-one and sufficiently smooth to render the various mathematical operations
meaningful.

2.1. Balance equations. We denote by o and o/ the partial densities of the
solid and fluid, respectively. The total density of the mixture is given by o = 0° + o’.

The deformation gradient for the solid is given by F = g;ss where % = x*(X°,t) is
the current position of particle occupying position X? in the reference configuration,

and the velocity vector of the solid v® = 88—ﬁ8. In the absence of inter conversion
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between the constituents, the equation for the conservation of mass for the solid is

00°
ot

The conservation of mass (2.3) can also be expressed in the Lagrangian form

+ div(o*v®) =0. (2.3)

0® detF =pp, (2.4)

where g§ is the density of the solid in the undeformed state. Let o and o/ denote
the partial stresses associated with the solid and fluid constituents, respectively, and
b* and b’ denote the interactive forces acting on the solid and fluid. The balance of
linear momentum for the solid is given by

J(0°v?)

5 div(p’v® @ v°) =dive’ + b°. (2.5)

For the fluid constituent we define the velocity v/ = % and the conservation of
mass and the balance of linear momentum for this constituent are

oof
a—gt + div(o’v?) =0, (2.6)
Fof
% +div(e’v! @ vf) =dive’ + b7. (2.7)
By the action-reaction principle we have b = b/ = —b®. For the mixture, we define

the total stress ¢ = ° + 6/ which is symmetric as required by the balance of the
angular momentum.

The entropy inequality for the mixture is used to restrict the class of constitutive
forms for ¢°, of and b. The reduced entropy inequality for the isothermal binary
mixture can be written as

)
M%—div(gsqﬁvs + o/ W/v7) — tr (o gradv® + o7 gradv’) + b - (v —v') <0,

a1
(2.8)

where o¥ = p°U® + o/ ¥F. For a detailed discussion of the above derivations and
related issues we refer to [5], [8] and [10].

2.2. Kinematical constraints. The distribution of each constituent is described
by the quantities ¢* and ¢/ and can be interpreted as the volumetric amount of the
constituent per unit volume of the mixture, i.e. volumetric concentrations. The vol-
ume additivity constraint for binary mixture

¢+ =1, (2.9)

can be interpreted as requirement that the mixture consists only of these two com-

ponents, not allowing voids. The true density of each constituent, denoted by of and

Qtf satisfy

o°=¢'0;, o =¢7ol. (2.10)

So far the quantities o°, of, ¢*, @7 are independent unknown fields and we have to
add some more additional assumptions to be able to determine them. We assume
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that the true densities of both constituents are constant, and effectively eliminates for
example the densities 0%, o/ by (2.10), leaving us with the volume fractions ¢*, ¢¢ as
the unknowns. Then the volume additivity requirement (2.9) has to be considered as
an additional kinematical constraint. It implies together with equations (2.3), (2.6)
and (2.9) that

div(¢®v® + ¢fv’) = 0. (2.11)

2.3. Constitutive equations. We will restrict our considerations to isothermal,
non-reacting mixtures where the solid constituent is homogeneous and hyperelastic.
For such mixtures it can be shown, using the second law of thermodynamics and the
postulate of material frame indifference, that the Helmholtz potential can be expressed
as a function of the deformation tensor C = FTF and the fluid volume fraction ¢7,
ie.,

= ¥(C,¢"). (2.12)

Using techniques that are standard in continuum mechanics (see [10]) we obtain

an expression for the partial stresses 6° and ¢/ and the interaction force b such that

the entropy inequality is satisfied for all admissible processes. If we choose the partial
stresses to be given by

s f R
o0 =22 (% — TN — ¢°pl + 2QF6—FT +6° (2.13)
Y oC
f
T AL YR YRR L L Y 2.14
g( N —¢’pl Q¢6¢f+0 (2.14)
and the interaction force to have the form
sof o . o A
b= —V(QQQ (B* — qu)> —pVe® + gaT)quﬁf — o'V +b, (2.15)
where 67 ,0°, b are the parts of the partial stresses that depend only on the dynamical

variables, i.e. v° —vf, Vo*®, Vo/, then the entropy inequality reduces to

tr (6°D° +6/Df +6°(W?* —WY)) —b - (v* —vf) >0, (2.16)
where D*, W?, D/, W/ denote the symmetric and skew-symmetric part of the velocity
gradients.

For simplicity, let us set

6° =0, ¢/ =0, b=¢*¢’a(v® —v’)

where a is positive definite tensor and represents the drag coefficient between the
fluid and solid, which is the dominant interaction. We shall assume that ¥ =
U(Ip, o, ¢°), where I, Il are the first and second invariant of C. Substituting
these constitutive equations into the balance of linear momentum for the constituents,
we obtain

8(%: ) ¢ div(ev® ©v°) = —¢*Vp+ dive” + I VE — ' dla(’ —v?), (217)
fof ~
6(96 ) +d1V( f,Uf ®’Uf) ¢pr_ valp+¢s¢fa(/us —'Uf), (218)

with 0¥ = 29[ 'R 1 6 I (ICB B2)] - 09° 55 9% | These equations together with the
constraint (2.9), mass balance equations (2.4) and (2.6), suitable boundary conditions
and specific form for the function ¥ make complete problem to solve.
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F1G. 3.1. Undeformed and deformed configuration in two dimensional problem and the degrees
of freedom on the reference element.

3. Two dimensional problem. We formulate a solution algorithm for a steady
state, two-dimensional problem of stretched rectangular slab of solid-fluid mixture.
Some other formulations can be found in [1, 2, 3, 6, 11]. Let u denotes the solid
displacement, v denotes the fluid velocity, ¢ is the fluid volume fraction and p is
the Lagrange multiplier associated with the kinematical constraint (2.11). Let Q° =
[-L,L] x [-H,H] x [-L, L] be the reference domain occupied by the solid. The
deformed domain, shown in figure 3.1(a), is

Q={z=X+u(X),VX € Q°}. (3.1)
The deformation is assumed to be of a form
z1 = X1 +ui (X1, Xo), x2 = Xo + ua(X1, Xo), z3 = A3X3, (3.2)

where A3 is prescribed positive constant. The fluid velocity is assumed to be

v(z1) = (v1(21,72), v2(71,22),0). (33)

Let the symbol V stands for %, then F = | + Vu and our task is to find
(u,v,$,p) such that

#(gradv)v + gradp — dive? =0 (3.4)

(gradv)v + grad(p + ¥) + (1 — d)av =0 (3.5)

(1 — ¢)detF =¢§ (3.6)

div(¢v) =0 (3.7

holds in domain 2, where ¢g is the volume fraction of the solid in the reference state
and the Helmholtz potential ¥ is given by constitutive equation as a function of ¢
and F. The part of the Cauchy stress tensor ¢ is then given by

0" = (54 B(1 - 9) 2 F". 3.9

where 3 = % is the true mass ratio.
[

Let the boundary 992 be divided into three disjoint parts 9Q = U?:l ;. Let n
be the unit normal vector to the boundary 0. Then if ¢ is given traction on the
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boundary, up is given solid boundary displacement and vp is given fluid velocity at
the boundary the possible boundary conditions are

1
gtrang, u=up only, (3.9)
—pm+oPn=t, v=vp only, (3.10)

u=upg, v=vg onls. (3.11)

We avoid prescribing partial stresses on the boundary since it is not clear weather such
values can be obtained by measurements or how the total stress should be partitioned
into the partial stresses. Instead, we focus on the prescription of such quantities that
can be measured in experiments.

3.1. Weak formulation. In order to apply the finite element method we for-
mulate our problem in a weak sense. Let us define spaces U,V, M and P as follows

U={ue[W"Q%))*,u=0o0nT;UT3}, (3.12)
V={ve[W"2Q"*v=00nTyUT3}, (3.13)
M={peW"2(Q%),0< ¢ <1inQ}, (3.14)
P={pe L*(Q))}. (3.15)

Multiplying equations (3.4)—(3.7) by a test functions (¢, &, 7,7), integrating over the
domain 2 and using per-partes integration and transformation to the reference domain
of the solid Q2° we obtain

¢V'uc0fFT'u-Cda:—/ pcof F-V¢der + [ S¥-V(¢dx
Qs Qs Qs

(3.16)
—/ tcof FN - (da =0,
I'2
Vo cof Fv -§dx—/ (p+\Il)cofF-V§dx+/ (1-9¢)av -£detFdx
1 (3.17)
+ @B—gtra—i-lll)cofFN-gda:O,

I
/ (1= ¢) detF — ¢8) nda = 0, (3.18)
V(¢v) - cof Fydz =0, (3.19)

Qs

where cof F = detF F~7 and the inner product for two tensors is defined as F - G =
tr(FT'G). Then our task is to find (u, v, ¢, p) such that (u—up,v—vg,¢,p) € UxV x
M x P and equations (3.16)—(3.19) are satisfied for all (¢,&,7,7) € U xV x M x P.

3.2. Finite element discretization. The reference domain Q? is approximated
by a domain 2, with piecewise linear boundary. The interior is divided by regular
quadrilateral mesh into convex quadrilateral elements. Any two elements have in
common either whole side, vertex or are disjoint. Let the set of all quadrilaterals in
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—

. Let X™ be some starting guess.
. Set the residuum vector R = (X") and the tangent matrix A = g—§(X ™.
. Solve for the correction §X

W N

AéX = R.

N

. Update the solution X" = X" — wiX.

F1G. 3.2. One step of the Newton method.

Qy, be denoted by 75, and let T = (—1,1) be the reference quadrilateral. For each
element T' € T, there is a bilinear one to one mapping on to the reference element 7'.
The spaces U, V, M resp. P are approximated by finite element spaces

Up = {up € [C(W)]%, un|T € [Q2(T)> VYT € Thyup, =00nT; UT3},  (3.20)
Vi = {vn € [C(Q)], 1T € [Q2(T)]* VT € Th,vr, =0o0n T3 UT3}, (3.21)
My = {¢n € C(), ¢n|T € Qi(T) VT € Ty, 0 < ¢n <1}, (3:22)
Py ={pn € C(),pn|T € Q1(T) VT € Tp}. (3.23)

Where @Q,,(T) denotes the space of polynomial functions, defined on the quadrilateral
T, which transformed to the reference element 7" are polynomials of order at most n
in each reference coordinate. The location of local degrees of freedom on the reference
element is shown in figure 3.1(b). The resulting discrete problem is obtained by taking
usual nodal basis of the space Uy x V}, x My, x Pj, and using the elements of this basis
as test functions (¢, &,7n,7) in (3.16-3.19). This set of non-linear algebraic equations
can be written as

(X) =0, (3.24)

where X = (up, vp, ¢, pp) is the vector of unknown components. The corresponding
linearized problem is to find 6X such that

[Z—X(X)] 8X =0, (3.25)

where the Jacobian matrix [g—R(X )] has the typical structure of constraint system

Au,u Au,v Bu,¢
0 _ Av,u A'u,v Bv,d)
[3—X(X)] “{@=-9C" 0 By,
Ap,u ¢CT Bp,¢

3.3. Solution algorithm. The system (3.24) of nonlinear algebraic equations is
solved using damped Newton method as the basic iteration. One step of the Newton
iteration is described in scheme 3.2. The parameter w is adaptively found such,
that certain error measure decreases. One of the possible choices for the quantity to
decrease is

(3.26)

coNONO

flw)y= (X™+wdX)- oX. (3.27)
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Minimizing quadratic approximation of f(w)

f(LU) — f(WO) - f(g)(WO + 1)w2 + f(O)(w + 1)7 (328)
wo

yields optimal w € [—1,0] as

@ >0
_ 2 flwo) = 7
N @ _ 5wt 529
2 4 flwo) =7
where
o= O (3.30)

fwo) = f(0)(wo + 1)

This line search can be repeated with wg taken as the last w until, for example,
fw) < (w+$)£(0).

Additionally, the continuation method is employed in order to have the starting
approximation in the Newton iteration in the range of convergence. In the continua-
tion method the problem F(X) = 0 is replaced by

G(X,)) =0 (3.31)

where X is a parameter such that for G(X,0) = 0 we know the solution, while for
A =1 the original problem is recovered

G(X,1) = F(X). (3.32)

For example making the boundary conditions to depend on the parameter A in such
a way that for A = 0 we have the undeformed, stress free state, and for A = 1 we have
the original boundary conditions.

In the process of the continuation method, we follow the solution curve given by
the initial value problem

< G(X(9),A5) =0, (3.3
(X(0),A(0)) = (Xo,0), (3.34)

until the point A(s) = 1. The basic method used to solve this problem is the Euler-
Newton iteration, outlined in scheme 3.3, where the explicit Euler method is applied
to (3.33) as predictor and then the solution is corrected by the Newton method. This
step is repeated until A = 1. The parameter v in the update step can be fixed or
can be chosen adaptively, for example depending on the number of Newton iterations
in the correction step needed to correct the solution.

The jacobian matrix is computed via finite differences. To invert the matrices in
the most inner loops, BiCGStab or GMRES methods are used with suitable precondi-
tioning. The incomplete LU decomposition is used for preconditioning with suitable
ordering of unknowns and with allowed fill-in for certain pattern in the zero diagonal
block of the jacobian matrix.
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1. Let X™ be given starting approximation and A" the value of the continuation

parameter. . .
2. Predictor step. Solve for (X", A")
[8—X(X ;A )] X"+ [E(X ;A )] A =0, (3.35)

J(X™ Xm)] = 1. (3.36)

3. Update the solution (X"Jr%,)\"‘*l) = (X", A") 4+ y(X™, ).
4. Correction step. Solve for X" by Newton iteration with X "3 s starting
guess

G(X"H At =0, (3.37)

F1c. 3.3. One step of Euler-Newton algorithm.

F1G. 3.4. Finite element grid on the undeformed and deformed configuration of the solid.

3.4. Ilustrative example of perfusion. We take two dimensional crossection
of the slab along the direction of the perfusion and assume the constitutive relation
for the Helmholtz potential

U =¢(Ic — 3) + c2In(¢). (3.38)

The boundary conditions applied are u = upg, ¢v = vp at the left end of the
specimen, u; = 0,019 = 0,%‘51’0 = pp at right end of the specimen and on =
0, ¢v =1wvp at the top and bottom parts.

In figure 3.4(a) we shown the finite element grid on the reference configuration
of the solid. The initial solution is taken to be zero displacement and velocity, given
constant volume fraction and lagrange multiplier p such that the solution is stress
free. In figure 3.4(b) we show the finite element grid on the stretched configuration of
the solid. We can see that the slab becomes thicker in the X> direction at the left end,
and thinner at the fluid outflow end. This variation in the thickness is caused by the
gradual decrease in the pressure along the fluid flow. Figure 3.5 shows the velocity
field of the perfusion and the fluid volume fraction throughout the slab. The fluid
velocity increases toward the end of the slab while the volume fraction decreases. In
figure 3.6 the pressure field and the components of the stress tensor are depicted. We
can notice the presence of stress concentration around the corners of the slab where
the type of the boundary condition changes.
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F1G. 3.6. Isolines of the pressure and the stress components o11,012,022.
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