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MIC(0) DD PRECONDITIONING OF FEM ELASTICITY
PROBLEMS ON NON-STRUCTURED MESHES*

SVETOZAR MARGENOV' AND PETER POPOV #

Abstract. Two preconditioning techniques for PCG iterative solution of 2D elasticity problems
are described and studied. Linear and quadratic Lagrangian finite elements are applied for discretiza-
tion of the elliptic system of partial differential equations. Non-structured meshes, including a local
refinement, are used for triangulation of the computational domain. The obtained coupled stiffness
matrix has a two-by-two block structure corresponding to a simple separable displacement ordering
of the unknowns. Then, two displacement decomposition (D D) algorithms are considered whereas
MIC(0) incomplete factorization is used to approximate the related diagonal blocks. A set of nu-
merical experiments are presented to illustrate the PCG convergence rate of the related MIC(0) DD
preconditioners.
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1. Introduction. The performance of two displacement decomposition (DD)
preconditioners that exploit modified incomplete Cholesky factorization MIC(0) is
studied in the case of finite element (FEM) matrices arising from the discretization
of the two-dimensional (2D) equations of elasticity. There is a lot of work dealing
with preconditioning iterative solution methods for the Navier equations of elasticity.
Here we will briefly comment on some of the approaches used. Multigrid, multilevel,
domain decomposition, and patched local refinement are directly applicable in a very
general setting to the coupled stiffness matrix. Another example of this first approach
is the block-ILU factorization based on block-size reduction ([6], see also in [7, 8]).
In this paper we focus our attention on a different preconditioning strategy based on
a first step block-diagonal approximation of the stiffness matrix written in a separable
displacement two-by-two block form. In an earlier paper, Axelsson and Gustafsson
[3] have implemented modified point-ILU factorization to this problem. As the cou-
pled system does not lead to an M-matrix, they construct their preconditioners based
on the point-ILU factorization of the displacement decoupled (displacement decom-
position) block-diagonal part of the original matrix. This approach is based on the
second Korn’s inequality, providing good convergence of the resulting preconditioned
conjugate gradient (PCG) algorithm for elasticity problems with moderate Poisson
ratio v € [0, ) (relatively far from the incompressible limit v = ).
The displacement decomposition remains up to now one of the most robust approaches
for preconditioning of FEM elasticity systems (see also, e.g., [5, 13]). The most often
studied case is when the mesh is (topo)logically equivalent to uniform one in the
unit squire/cube (see, e.g., [3, 5, 10, 6, 12, 10]), or more generally, when a patched
local refinement is additionally applied [7]. The problem considered here is in a
general setting. The computational domain is arbitrary where the triangulation is
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automatically generated including subdomains with local refinement. Discretization
by linear and quadratic Lagrangian triangle finite elements is considered. As the
diagonal blocks of the displacement decomposed matrix are not M-matrices in the
case of quadratic elements, the M IC(0) preconditioner is applied to the related linear
FEM stiffness matrices defined on an auxiliary globally refined mesh.

The aim of the presented numerical tests is to analyze the performance of the stud-
ied algorithms. Our consideration is focussed on the scalability of the PCG con-
vergence rate where the mutually interacted impacts of the higher order FEM, the
non-structured grids including local refinement, the different kinds of singularities of
the solution and the coefficients jumps are compared.

The reminder of the paper is organized as follows: In section 2 we survey some major
results about the Navier equations of elasticity ant their FFEM approximation. The
needed background results related to the DD MIC(0) preconditioner are presented
in section 3. Section 4 contains a rich set of numerical experiments organized in
two subsections. The first of them is dedicated to the asymptotic behaviour of the
studied iterative solvers based on a model test problem. The second one contains real-
life benchmark problems on non-structured meshes including local mesh refinement.
Short concluding remarks are given in the last section.

2. FEM approximation of the Navier equations of elasticity. Let us
consider the weak formulation of the linear elasticity problem in the form: find
ueVp=[Hp( )]’ ={ve[H' ()] :vg, =us} such that

(1) /Q [2ue(u) : e(@) + A div u div v]dQ = /nydﬂ + /GN g’;de,

Yo € Vo = [Hy ()] = {v € [H' (Y] : v, = 0}, with the positive parameters A and
v of Lamé, the symmetric strains

e(u) == %(Vg + (Vw)h),

the volume forces f, and the boundary tractions g. Usually one introduces Young’s
modulus E > 0 and Poisson’s ratio v € [0,1). The relations between these and the
material parameters A, u are
vE E
A= — i —, n=—-———.
1+v)(1-2v) 21+v)

Assume that Q) is a polygonal domain, 7 is a a triangulation of 2, and let for simplicity
E and v be piecewise constants with respect to the elements of 7. Now we denote
by Véh’k) C Vg and V})(h’k) C Vb the FEM spaces of conforming piecewise linear and
pieswise quadratic (k € {1,2}) functions with nodal Lagrangian basis corresponding
to the triangulation 7 with a mesh parameter h. Applying FEM discretization to (1)
we get the linear algebraic system

(2) K(h,k)uh = ih

where K (":F) is the related symmetric and positive definite stiffness matrix and w, is
the vector of nodal unknowns. Let us assume that K ("*) is written in a two-by-two
block form

3) K — < Kyt K )
= h.k hk )
Kt K
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where the block structure corresponds to a separable displacement component or-
dering of the vector of nodal unknowns. The aim of our study is to develop robust
preconditioning solution methods for the system (3) suitable for large-scale problems.
For a block-approximation of K% we use two displacement decomposition ap-
proaches, see e.g. [3, 5], referred as separable displacement preconditioner Cé%’cc)

and isotropic preconditioner C}g’(l;) defined as follows

(hk)
hk K
@) OéD(,3=( " Kég,k))
and
Mk K (k)
6 o8 = ( .

where K0 = (KM% 4 g{k)y /9 Such preconditioning strategies of the coupled
matrix K are theoretically motivated by the second Korn’s inequality. More precisely,
the next lemma holds.

LEMMA 2.1. The displacement decomposition preconditioners (4, 5) are of opti-
mal order, that is,

1
1-— 2Vmaz

1

cond((CEpe) T KR = O ——

), cond(Cis) TR M) = O )
where Ve, = maxq V.

The above estimates straightforwardly follow from second Korn’s [5, 11] inequality for
the continuous elasticity problem, and from the inclusion Vo(h’k) C Vo. The constants

in the estimates depend on the Poisson’s ratio.

REMARK 1. In the model case of pure displacement problem of homogeneous
material the exact estimates read as flows [3]:
2

347
cond((C’ng’lg)_lK(h’k)) <{—» Cond((cggg))_lK(h’k)) <7 __F ;’

where ¥ = % € [0,1). Some interesting generalizations of these estimates are pre-
sented in the more recent paper [10].

3. DD MIC(0) preconditioning. In this section we first recall some facts
about the modified incomplete Cholesky factorization MIC(0) preconditioning algo-
rithm. Our presentation at this point follows those from [5]; see also [13] for an
alternative approach. Let us rewrite the real N x N symmetric matrix A = (a;;) in
the form

(6) A=D-L-I!

where D is the diagonal and (—L) is the strictly lower triangular part of A. Then we
consider the following approximate factorization of A:

Cmicoy = (X - L)X (X - L)

where X = diag(z1,---,zN) is a diagonal matrix determined by the condition of
equal rowsums, i.e.,

Cumiciye=Ae, e=(1,---,1)! e RN
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For the purpose of preconditioning, we are interested in the case when X > 0 and thus
Cumrc(o) is positive definite. If this holds, we speak about stable M IC(0) factorization.
Concerning stability of the MIC(0) factorization, we have the following theorem.

THEOREM 3.1. Let A = (a;;) be a symmetric real N x N matriz and let A =
D — L — L be the splitting (6) of A. Let us assume that

L > 0
Ae > 0
Ae+Lte > 0 e=(1,---,1)! € RV,

i.e. that A is a weakly diagonally dominant matriz with nonpositive offdiagonal entries
and that A+ L* = D — L is strictly diagonally dominant.
Then the relation

i—1 N
_ Qik
Ti = Qi — e Akj
k=1 "k

j=k+1

gives the positive values x; and the diagonal matriz X = diag(xzy,---,zN) defines
stable MIC(0) factorization of A.

The conditions of the theorem are obviously not always satisfied for FEM stiffness
matrices. Now we introduce the displacement decomposition preconditioners for the
case of linear FEM (k = 1) in the form

(h,1)
(7) Cspe mrc)(K™Y) = ( Cmicq)(Ery)

Y

CMIC(O)(Kz(g’l)) )
(8) Cspc 150(0)

c (K1)
KhD)y — ( MIC(0) B ‘
( ) Curcoy(K")

Here Cprc(0)(A) stands for the MIC(0) preconditioner of A. A local elementwise

analysis of the M IC(0) stability is applicable in this case. Since the blocks K 1('11’1) and

Kég’l) correspond to elliptic bilinear forms they can be assembled by element stiffness
matrices written in a general form (see for more details in [1, 4])

. br + cr —cr —br
9) Ag«’ ) =rp —er  ar+4cr  —ar
—br —ar ar + br

where ar = cot ar, by = cot Br, cr = cotyr, (ar,Br,yr) can be viewed as angles
of some triangle, and r7 is a constant, all generally depending on both the shape of
T € T and on the Poisson’s ratio v. The next lemma follows from (9).

LEMMA 3.2. If the corresponding angles (ar, Br,yr) satisfy the condition
T
10 , Br, < -
(10) max max{ar, fr,yr} < 2

then MIC(0) factorization of the blocks K"V KD and KD is stable.

The condition (10) is easily controlled in the case of moderate Poisson’s ratio by a
proper choice of the minimal angle of the triangulation which is one of the options of
the used general purpose mesh generator.
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In the case of quadratic FEM discretization the diagonal blocks do not belong to the
class of M-matrices even for the model problem —Awu = f. To get a stable MIC(0)
factorization, in this case, we first globally refine the triangulation 7 by connecting
the midpoints of the triangles sides nd denote by Kl(?/zl), K§§/2’1> and K("/21) the
related blocks corresponding to linear F'EM implemented on the refined mesh. Then
the MIC(0) displacement decomposition preconditioners are defined as follows:

Cumrc(o) (K1(}11/2’1))
(11)  Cspc mrc(o (K(h’z)) =
(©) Cumrc(o) (Kég/z’l))

C (K (h/2:1))
12 C K(h,?) :< MIC(0) _ .
(12) spc 150(0)( ) Cric) (R (h/2,1))
The next lemma provides the theoretical background of the above preconditioning
approach.

LEMMA 3.3. The following spectral equivalence estimates hold

-1
cond((K"*y kMY = 0(1),  ie{1,2}.

The proof of the lemma can be done by a local element by element analysis similarly
as for the model elliptic problem presented, e.g., in [1].

REMARK 2. The numerical tests discussed in the last section are performed using
the perturbed version of MIC(0) algorithm, where the incomplete factorization is ap-
plied to the matriz A = A+D. The diagonal perturbation D = D(¢) = diag(dy, . .. dn)
is defined as follows:

g = €ai if ai > 2w;
YT e if  an < 2w

where 0 < £ < 1 is a constant of order O(h?) and w; = 2 isi —ij-

REMARK 3. It is well known that the convergence of the incomplete factorization
preconditioning algorithms strongly depends on the ordering of the unknowns. The
results presented in this paper correspond to o coordinatewise ordering of the nodes.

4. Numerical experiments. Two types of numerical experiments are reported
in this section. In both cases, the number of iterations is used as a measure for the
robustness of the iterative solvers.

4.1. Model problem. Consider the model pure displacement (Gp = 9) prob-
lem with homogeneous material (A = 1, and p = 1.5), and right hand side corre-
sponding to the given solution u; = z? + cos(z + ), uy = = + y* + sin(y — z).
A uniform mesh with n mesh points along each of the coordinate directions is used
where the discretization parameter n € {4, 8,16, 32,64} is varied. In Table 1 are pre-
sented number of iterations for five methods: the well known Gauss-Seidel (G — S),
Steepest Decent (SD), and Conjugate Gradient (C'G), and the studied in this paper
two displacement decomposition MIC(0) PCG methods. The stopping criteria here
is ||ul¥*) — uy|lo < 1071||uy|lo. The advantages of SDC MIC(0) and ISO MIC(0)
are well expressed even for relatively small discrete problems. For the model problem
SDC MIC(0) converges a little bit faster, but as will be shown in the next subsection,
this is not a general conclusion. The asymptotic of the number of iterations of both
DD MIC(0) preconditioners is O(y/n).



250 S. MARGENOV AND P. POPOV

TABLE 1
Model problem. Linear FEM. Performance analysis of iterative solvers.

n | G-S SD CG | SDC | I1SO
4 171 387 58 21 24
8 643 1455 96 26 30
16 2391 5393 190 33 39
32 8822 19841 368 44 54

64 | 32299 | ;50000 | 725 60 73

4.2. Real-life problems. Three real-life engineering problems are considered
as benchmarks in this subsection. The computational tests are performed by the
developed FEM integrated program system where the general purpose mesh generator
TRIANGLE [14] has been incorporated. The numerical tests are presented in a table
form where the number of iterations of CG, and PCG with the studied SDC MIC(0)
and ISO MIC(0) preconditioners are listed for both linear and quadratic FEM with

a relative stopping criteria in a form ||Ku{**) — Iullo <1078[I£, [lo-

F=3000 KN/m

F=3000 KN/m

Fi1Gc. 1. Benchmark 1. Concrete body with a crack.

TABLE 2
Benchmark 1. Concrete body with a crack. Performance analysis of DD PCG solvers.

Mesh | Number of nodes cG SDC MIC(0) | ISO MIC(0)
Linear/Quadratic 1 2 1 2 1 2
1 1609/6242 495 | 1254 | 107 215 97 160
2 2784/10833 729 | 1876 | 147 302 113 189
3 6221/24492 986 | 2538 | 163 415 137 229

Each of the tables contains three rows corresponding to: (1) regular coarser mesh; (2)
mesh with local refinement in subdomains (hatched in the figures) of some singularities
of the solution; (3) globally refined mesh (2) with a given reduction factor(R; = 4 in
the first two test problems, and Ry = 6 for the last one) with respect of the maximal
area of the triangles. Homogeneous Dirichlet boundary conditions are assumed along
the the Gp parts of boundaries.
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BENCHMARK 1. A rectangular concrete console block of a size 5 x 8 m with an
artificial crack is stretched along its 8 m sides (see Fig.(1)). The material is homo-
geneous with E = 2.1 x 10'°Pa and v = 0.17. Local refinement around the crack is
applied to get the second mesh. The results presented in Table 2 very well illustrate
the convergence properties of the proposed DD preconditioners in a relatively simple
local refinement case.

2 m

.

7

Fi1G. 2. Benchmark 2. Two-layer slope problem.

TABLE 3
Benchmark 2. Two-layer slope problem. Performance analysis of DD PCG solvers.

Mesh | Number of nodes CG SDC MIC(0) | ISO MIC(0)
Linear/Quadratic 1 2 1 2 1 2
1 1594/6224 417 | 1077 | 57 95 63 101
2 2186/8571 562 | 1491 | 62 107 71 114
3 6248/24826 877 | 2282 | 84 149 94 153

BENCHMARK 2. A two-layer soil body illustrating a slope stability computer sim-
ulation is considered (see Fig. 2) where the material characteristics are as follows:
sandy clay layer L, with Er,, = 8 x 10°Pa and vy, = 0.35; and clay layer L, with
Er, = 22 x 105Pa and v, = 0.18. The first layer is loaded by the absorbed water
(35% of the layer volume). There is also an external vertical load modelling a railway
passing over the slope. The local refinement is applied in a strip along the interface
boundary between the different layers, and under the seal of the external load. This
problem is somehow more complicated as a moderate jump of the coefficients appears.
From other point of view the solution is more regular, and as we see in Table 3, the
convergence of the iterative methods is even faster then for the first benchmark. Note
that the number of the nodes of the finest meshes are almost the same for the first
two benchmark problems.

BENCHMARK 3. The interaction between a vertical concrete wall and a weak mul-
tilayer soil media is studied (see Fig. 3). The characteristics of the problem are as
follows: concrete wall with coefficients Ec = 3.15 x 10'°Pqa and v¢ = 0.2; and soil
layers with: Er, = 5.2 x 10%Pa and vr, = 0.4; Er, = 9.4 x 10°Pa and v, = 0.35:
EL, = 14.0 x 10Pa and v, = 0.25; Er,, = 21.4 x 10°Pa and v, = 0.2. The scheme
of the loading is presented in the figure where the external forces are assumed uni-
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formly distributed across the top side of the wall. The zone of local refinement covers
the wall.

F,= 43403N/m
F, =52083 Nim

G
D

Fi1G. 3. Benchmark 3. Foundation wall in multi-layer soil media.

{From computational point of view, this problem is the hardest one, due to the strong
jump of the elasticity modules between the concrete and the surrounding weak soil.
There is also a strongly expressed zone with stresses concentration under the bottom
of the wall. The increased number of iterations presented in Table 4 well illustrate
the influence of these factors on the convergence rate of the iterative methods.

TABLE 4
Benchmark 8. Foundation wall problem. Performance analysis of DD PCG solvers.

Mesh | Number of nodes CcG SDC MIC(0) | ISO MIC(0)
Linear/Quadratic 1 2 1 2 1 2
1 1574/6047 5697 | 26718 269 645 164 300
2 3413/13481 16127 | 59260 | 470 1830 221 375
3 9195/36386 26616 | 95952 | 1355 | 10768 | 295 424

5. Concluding remarks. Two displacenment decomposition preconditioning
techniques for PCG iterative solution of 2D elasticity problems are considered in this
paper where linear and quadratic Lagrangian finite elements are applied for discretiza-
tion of the Navier system of partial differential equations. The proposed approach is
implemented in the developed general purpose FEM package. The modified incom-
plete Cholesky factorization MIC(0) is used to approximate the obtained diagonal
blocks where the stability of the factorization is controlled by the parameters of the
incorporated mesh generator TRIANGLE. The robustness of the studied algorithms
for non-structured meshes, including local refinement in a very general setting, is
confirmed by the presented numerical tests. We would like especially to stress the
attention of the reader on the efficiency of the algorithms when quadratic finite el-
ements are used. Another important conclusion is that the ISO MIC(0) precondi-
tioner demonstrated some advantages for the real-life problems which is particularly
strongly expressed for the most complicated last benchmark problem. We have also



MIC(0) DD PRECONDITIONING 253

observed that the number of the SO M IC(0) iterations have a behaviour very near
to O(N®/%) for all of the test problems.

Our final conclusion is that the positive experience with the developed 2D FEM
package is a good starting point for the next step research devoted to the more com-
plicated, but definitely more important, 3D case.

o O 00O
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