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THE SEGMENT PROJECTION METHOD APPLIED TO
MULTIPHASE FLOW SIMULATIONS

A.-K. TORNBERG AND B. ENGQUIST

Abstract. Propagating interfaces are present in many different processes, and include wave
fronts and different phase and material boundaries. The numerical tracking of interfaces is therefore
an important part of the simulation of many physical phenomena.

The segment projection method is a new method for interface tracking. Each curve is represented
as a union of overlapping curve segments that are discretized on one-dimensional Eulerian grids.
Hence, the curve is explicitly discretized with points on the curve, but the discretization is Eulerian,
in difference to commonly used Lagrangian techniques.

The method has been applied to simulations of immiscible incompressible multiphase flow. In
this application, the dynamics is strongly influenced by the location of the interfaces separating the
different fluid phases. The interfaces indicate discontinuity in density and viscosity and determine
the surface tension forces.

1. Introduction. Interfaces or internal boundaries are present in many different
applications, such as high frequency wave propagation, solidification and multiphase
flows. Interface tracking methods are developed to numerically describe and track such
interfaces when they move and deform as determined by the underlying physics. The
rules of interface motion and interaction depend on the application. If the interfaces
represent wave fronts, one interface might pass over another without interaction. In
in the case of merging bubbles however, two interacting interfaces will reconnect and
create one single interface.

In interface tracking methods, the interfaces are represented by continuously up-
dated discretizations. These discretizations can be Lagrangian or Eulerian in nature,
depending on the interface tracking technique that is used.

In the Lagrangian approach, marker particles are used to define the interfaces.
This approach was used by Peskin [4], and more recent immersed boundary methods
as well as front-tracking methods are also based on Lagrangian markers, [1, 5, 9].
Each interface has a separate representation and interface interactions that do not
include merging are natural. If merging of two interfaces is wanted, the two separate
discretizations must be merged into one, which requires appropriate modifications.
This is rather complicated, since there is no restriction in the positions of the discrete
points of the two merging interfaces.

A different idea is employed in the level-set method, which was introduced by
Osher and Sethian [3]. In this method, the interfaces are implicitly defined as the zero
level set of a continuous function, and this function is updated in order to capture
the motion of the interfaces. The level-set function is discretized on a Eulerian grid
that is defined on the computational domain. To update this function, a vector field
for advection is needed throughout the domain. If the velocities are prescribed only
at interfaces, extension velocities can be computed everywhere in the domain, see e.g.
[6]. The level-set method has been applied to many different problems, see [2, 6, 7].
In the level-set method, topological merging will always occur when interfaces defined
by the same level-set function get close relative to the resolution of the grid. Merging
is therefore naturally incorporated in the level-set method. Instead, explicit action
must be taken to prevent merging if it is not wanted. This is in general not a trivial
task.
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In this paper, we introduce a new method which can be viewed as a compro-
mise between the front-tracking and level-set methods. The new segment projection
method relies on the partitioning of an interface into several parts. In the case of
two dimensional calculations, the interfaces are curves in the plane. Each curve is de-
scribed by a union of overlapping curve segments, where the segments are chosen such
that they can be given as functions of one spatial variable. The segment functions
are discretized using one-dimensional Eulerian grids in the z and y directions. Hence,
the curve is explicitly discretized with points on the curve as in the front-tracking
method, thereby keeping the lower dimensionality, but the discretization is Eulerian
as in the level-set method.

As in the front-tracking method, each interface has a separate representation,
which is most natural for non-merging interfaces. It is however easier to define a
merging algorithm in the segment projection method, due to the Eulerian discretiza-
tion of the segment functions.

2. The Segment Projection Method. Introduce the interface I' bounding a
region 24 that may be multiply connected. The region €24 is contained in the com-
putational domain © C IR?. In general, I will consist of several separate interfaces,
i.e.

r= ij. (2.1)

Each of the interfaces -y; encloses a region of {24, possibly together with parts of 912,
the boundary of €. In the example of two-phase flow, the region Q4 bounded by T’
will be the region occupied by one of the two fluids.

In the segment projection method, each interface y; is represented by a union of
overlapping curve segments. The segments are chosen such that they can be given as
functions of one coordinate variable, i.e. the segments are represented by functions
fi(z) and g¢;(y). One example of a curve and its segment representation is given in
Figure 2.1.

3 3 3
25 25 m 25
0

15 15
-1 0 1 -1

(a) The interface. (b) The z-segments. (c) The y-segments.

Fi1G. 2.1. Ezample of a curve and its segment representation. The x-segments are functions
fi(x), i = 1,2. The y-segments are functions g;(y), j =1,... ,4.

We define a uniform z-discretization from the minimum z-value of the computa-
tional domain (%5 ), to the maximum z-value of the domain (2,,,4;). The number of
intervals is NV, and the distance between two discrete points is Az. The same is done
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in the y-direction, with NN, intervals, and a grid size of Ay. For the z-discretization,
we have

Ty = Tmin +kAz, k=0,...,N,, (2.2)
and for the y-discretization
Yk =Ymin + kAy, k=0,...,N,. (2.3)

For each segment, the domain of the independent variable must be defined. A segment
described as a function of z, an z-segment, is defined from %o to Z1, and a segment
described as a function of y, a y-segment, is defined from g to 7;. In the discrete case,
corresponding integer variables ko and ki are defined so that zx,—1 < o < xp, and
g, < &1 < Xp,;4+1. The discretized z-segment is defined from z, to zj,. Similarly,
we define ko and k; also for each y-segment. For each x-segment, the points on the
curve are then given by

(xkafi(xk)) :('Z'kafk)a kszJ"‘ 7k17 (24)
and for each y-segment
(95r)>ye) = (k> k), Kk =koy... k1. (2.5)

The discrete points are in general different for an z-segment and a y-segment describ-
ing the same part of the curve. The variables kg and k; are in general different for
each segment. The uniform discretizations of two of the segments in Figure 2.1 are
indicated in Figure 2.2.
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(a) The lower z-segment in Figure 2.1b), (b) The left most y-segment in
segment function fi(x). Figure 2.1¢), segment function

91(y)-

F1G. 2.2. The segments are discretized using one-dimensional uniform grids.

The number of segments needed to describe a curve depends on the shape of
the curve. An extremum of a function f;(z) defines a break point that separates
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the y-segments. Similarly, an extremum of a function g;(y) defines a break point in
the z-segments. To complete the description, information about the connectivity of
segments is needed.

Given the definition of an z-segment, create an ordered set containing the start
and end points of the segment, together with the extremum points of the segment.
With the number of extremum points equal to M, denote the positions of these points
by 2§ to x4, 1 (T§ = Tky, TG4y = Tk, )- Then, for each interval

(@5 X5y1), m=0,...,M, (2.6)

it is necessary to keep track of which y-segment that this part corresponds to. For
the y-segments, in the same manner we define points (yg,, ¥5,,1), and corresponding
z-segments for each part.

Given a velocity field u = (u,v) by which the curve should move, the segments
y = f(z,t) and z = g(y, t) are updated according to the partial differential equations

of | of _
dg dg
5t +v 3y u. (2.8)

Note that there is only one spatial variable present in both these equations. If the
curve is open, boundary conditions must be defined for the segments defining the
start and the end of the curve. However, if it is closed, there is an overlap of segments
defined in z and y, and we can update the boundary values for one segment from the
segment in the opposite direction. These one-dimensional partial differential equations
can be discretized using some standard finite difference technique, such as a Lax-
Wendroff scheme.

If new extrema have appeared or disappeared after an advection step, the struc-
ture of the segments defined as functions of the other spatial variable needs to be
modified. The four generic cases are indicated in Figure 2.3. If two new extrema
appear around existing extremum in an z-segment (illustrated by a) — b) in Figure
2.3), two new y-segments must be added in between the extrema. In the reversed
situation (b) — a) in the same figure), the two y-segments in the region between the
three old extrema need to be removed.

If two new extrema appear away from existing extrema in an z-segment (¢) — d)
in Figure 2.3), the original y-segment must be split in two parts, and a new y-segment
must be added in between the two extrema. In the reversed situation, the y-segment
between the two old extrema, needs to be removed. The two y-segments defined on
each side of the segment to be removed, must be merged into one segment. The same
actions must be taken for corresponding z-segments if extrema appear or disappear
in a y-segment.

In practice, no short segments are however added or removed in this process.
Instead of keeping very short segments, an empty segment is referenced instead. An
empty segment is a segment that can be referenced as a corresponding segment, but
that contains no information.

Therefore, we need to monitor the use of empty segments. Using the notation
introduced around equation (2.6), for each interval

(26, Topr), m=1,...,M -1, (2.9)
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(a) Segment with one extremum. (b) Segment with three extrema.
(c) Segment with one extremum. (d) Segment with three extrema.

F1G. 2.3. The four different cases: Development from a) to b) or from b) to a). Development
from ¢) to d) or from d) to c).

we need to check if there should be a segment discretized in the y-direction, or if there
should only be a reference to an empty segment. Denote the value at z¢, by fg. If
|f, — fr41] < 2Ay, there should not be an opposite segment (i.e. y-segment) in this
interval. If such a segment exists, it should be removed, and an empty segment should
be referenced instead. On the other hand, if |fs, — fr 1| > 2Ay, there should be an
opposite segment corresponding to this interval. If there is no such segment, then it
should at this point be created by interpolation from this segment, and added to the
structure. For each interval (z,, z5,,,), we make a reference to the corresponding
y-segment, or to an empty segment. The same procedure is made for each y-segment,
where |g%, — g5, 11| is compared to 2Az.

The domain of definition of a segment might need to be extended or reduced af-
ter the advection. The extension of this domain is defined by the position of extrema
in segments in the opposite direction. If it is extended, so that new values of the
discretization need to be defined, these values are interpolated linearly from the cor-
responding segment discretized in the opposite direction. In this process, we update
ko and k; for all segments.

In overlapping regions, two segments define the same part of the curve, and we
can not allow discrepancies to develop in the representation. For both segments,
new values are computed as weighted averages of the values of the segment function
and the values interpolated from the segment defined in the opposite direction. The
weighting function is a function of the slopes of the segments, since the most accurate
values should be defined for the segment function with the smallest slope. We use
cubic interpolation.
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3. The Multiphase Flow Problem. We study two-dimensional incompress-
ible flows including immiscible fluids. In this presentation, we assume that we have
two different fluids, fluid A and fluid B. The density and viscosity at a fixed time are
given by

[ (pa;pa) forxin fluid A,
(p(x), n(x)) = { (pB,pp) for x in fluid B. (3.1)

In general pg # pp and pa # pp, so that p(x) and u(x) are discontinuous across
each interface separating fluid A and B. Refer to Figure 3.1 for an example of a
configuration of the two fluids A and B.

PA, PA

PB, 4B

Fic. 3.1. Ezample of a configuration involving two fluids A and B, with different density and
viscosity (pa, pa) and (pB, uB).

The equations describing this immiscible multiphase flow are the Navier-Stokes
equations for incompressible flow. The contribution of the surface tension forces and
the gravity forces are added as source terms. The equations can be written

p (% +u-Vu> =-—Vp+ V- (u (Vu+Vul)) +f + pg, (3.2)

V-u=0, (3.3)

in Q C IR?, together with appropriate boundary conditions and initial conditions.

As seen in (2.1), I' will in general consist of several separate interfaces 7;, where
each interface can either be closed or attached to the boundary of the domain. The
domain Q4 enclosed by T, is in this case the regions of the domain occupied by fluid
A. The surface tension force is given by

f = oKy, (3.4)

where dr is a measure of Dirac delta function type with support on I, i.e the union
of all interfaces «y;. Its action on any smooth test function ¢(x) is given by

/drsodxz/sod7=Z/sodv, (3.5)
Q T j Vi
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where the last quantity denotes the sum of the line integrals of p(x) along the inter-
faces ;. The interfaces y; are advected by the flow field u(x,t), and change with
time. The coefficient o € IR in (3.4) is the surface tension coefficient, x € IR is the
curvature and fi € IR? the normal vector to I. The direction of this force is towards
the local center of curvature.

The singular surface tension force f and the discontinuous coeflicients p and u are
better represented numerically starting from a weak form of the equations. For this
formulation, we introduce the spaces

—(veH(Q)?:v=vondQ}, I=/{geI?Q): /qux=0}.

Multiplying equation (3.2) by v € Vg, (3.3) by ¢ € II, and integrating over the
domain using Green’s formula, the following variational formulation of (3.2)-(3.3) is
obtained. Find u(x,t) € V, and p(x,t) € II such that V¢ € [0,T],

m(p, g, v) + a(p,u,v) +b(v,p) + c(p,u,u,v) = fy(v) + m(p, g, v), (3.6)
b(u,q) =0, (3.7)

hold for all v in Vg and for all ¢ in II, respectively. The forms in the weak formulation
are given in [8], i.e.

Ou; Ov; Bui Ov;
,u,u V / Z (6.%'] (9.1'] 6:12]' 6.%’,) dX, (38)

fr(v) = a/ ki -v dy. (3.9

The singular terms V - (u (Vu + Vu?)) and f = oxfid, in (3.2) are easier to approx-
imate numerically in their weak forms (3.8) and (3.9).

In the multiphase flow problem, interfaces are advected by the flow field. The in-
terfaces are represented using the segment projection method. The advection process
was described in the previous section, where the advection equations for the segments
were given in (2.7)-(2.8). The velocity field is however affected by the configuration
of the volumes of different density and viscosity and the surface tension forces, which
are all determined by the positions and shapes of the interfaces. In order to complete
the formulation of this problem, we need not only to define how the interface I' is
represented and how the evolution of T is determined. In addition, definitions of the
density and viscosity fields using the information from the segment projection method
are needed, as well as calculation of surface tension forces.

The discretization of the Navier-Stokes equations is based on a finite element
approximation with piecewise quadratic polynomials in space and a second order BDF
difference method in time. To resolve the nonlinearities, we use a direct fixed point
iteration. In each iteration, it remains to solve a Stokes problem. The divergence-free
constraint is enforced using an iterated penalty method (see [8]). The finite element
mesh need not conform to the interfaces. The effects of the interfaces are taken
into account through the definition of the density and viscosity fields and the surface
tension forces.

The density and viscosity have one set of values in fluid A4, (p4, ua) and another
set of values in fluid B, (pp, up). At a fixed time, given a characteristic function I(x),
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where
1 for x in fluid A,
I(x) = { 0 for x in fluid B, (3.10)
we can write the density and viscosity as
p(x) = pp + (pa — pB) I(x), (3.11)

p(x) = ps + (pa — ps) 1(x).

For numerical accuracy reasons, we do not want to keep I(x) discontinuous. Let d(x)
be the signed distance function defined so that |d(x)| yields the closest distance to
any interface, and d(x) > 0 in fluid A4, d(x) < 0 in fluid B. Then we have that
I(x) = H(d(x)), where H(t) is the Heaviside function. When H () is replaced by an
approximation H,(t), which varies continuously across a transition zone of width 2w,
we naturally obtain a more regular characteristic function I, (x). The accuracy of the
discretization depends on the particular choice of H,(t), see [8].

The closest distance to the interface can be computed using the segment repre-
sentations, and the sign of this function can be defined if we also assign two integer
indicator variables for each segment.

The definition of the surface tension forces were given in (3.4) as f = okidr, and
in their weak form in (3.9) as a sum of line integrals along each interface. To evaluate
this interfacial force term, we need to have a representation of each interface, the
curvature k£ and normal vector i1 along that interface.

The curvature and normal vectors can be computed from the definition of the
segments. The product ki that is included in the surface tension forces is defined by

_1"@) (=L@, )
T+ 7@y

k(z) i(x)

(3.12)

for the z-segments, and

g"(y) (1,—4'(y))
(1+g'(y)?)? ~

for the y-segments. The derivatives in this formulas can be approximated by divided
differences f'(zy) = Do fr and f"(dg) ~ D4+ D_ fi, and similarly, ¢'(yx) = Dogr and
9"(yx) = D1 D_gi.

When two regions of the same fluid merge, the segments must be reconnected
to represent the new topology, which requires a specific algorithm. This step in the
algorithm gives full control over the merging process and the surface physics may
influence if or when merging should take place. The segment projection method has
been used for simulations with and without topology changes. In Figure 3.2, results
from two different simulations are shown. Comparisons with a level-set method and
a front-tracking method have been made, and show good agreement. See [8] for more
details.

K(y) Aly) = (3.13)
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(a) Bubble dynamics including topology (b) The sedimentation of viscous drops.
changes.

F1G. 3.2. Results from runs with the segment projection method. The arrows represent the

velocity fields and the solid lines the interfaces.
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