Proceedings of ALGORITMY 2000
Conference on Scientific Computing, pp. 320-329

AN ENHANCED MARKOWITZ RULE FOR ACCUMULATING
JACOBIAN MATRICES EFFICIENTLY

UWE NAUMANN *

Abstract. Jacobian matrices can be accumulated using either the forward or reverse mode of
Automatic Differentiation. Alternatively, derivative code can be generated to compute the Jacobian
matrix directly at the current argument. The minimization of the corresponding number of arithmetic
operations leads to a computationally hard combinatorial optimization problem. A new powerful
heuristic for its approximate solution will be presented. The resulting codes lead to a speedup of
three and more for most problems.

Key words. Optimized Jacobian code, combinatorial optimization, vertex elimination.

AMS subject classifications. 90C27, 65Y99.

1. Motivating Example. Jacobian matrices (or Ja-
hy = tan(zo)/(z1 - z2) cobians) of vector functions which are given in form of a

ha = x1 - T3 - sinh(z3) computer program are widely required in numerical com-
m =4 -arctan(1) putations such as simulation or optimization. Prior to a
yo = log(4.3)-hy -sin(h) formal introduction to Jacobian accumulation techniques
y1 = cos(hy)/ exp(ha) let us have a look at a simple example. Consider the sys-
y2 = Vh1 -7 ha tem of non-linear equations shown in F1G. 1.1. It describes

a function F' mapping IR" 3 X = (%;)i—g..(n—1), 7 = 4, on-
to R™ 3y = (y;)j=0..(m—1), m = 3. We denote the Jaco-
bian of F by F' = (8y;/dz;)=y 5. After performing cer-
tain optimizations (e.g. elimination of common subexpressions) this program may
be transformed into a code list by assigning the results of the elementary opera-
tions ({+,—,/,-}) and intrinsic functions ({sin,exp, /...}) to unique intermediate
variables vy, = (v, ..vy,) for & = 1..p and arguments vy, ..v;, of . In most cases
we are interested in computing Jacobian-vector products of the forms y = F’ - x or
% =yT . F'. Automatic Differentiation (AD) [Gri00] provides a fast and effective way
to evaluate these products with machine accuracy based on the partial derivatives of
the elementary operations and intrinsic functions and by simply applying the chain
rule. This approach is completely different from the numerical approximation of
derivatives through finite difference quotients.

Given the code list of F' the function value and the par-
tial derivatives of both the elementary operations and intrinsic
functions at a given argument xo can be calculated by a single
recording [Gri00] evaluation of F. This is illustrated on the Lh.s.
of F1G. 1.3. Setting v;—3 = z;,7 = 0..3, and y; = viy12, y = 0..2,
the intermediate function values are computed in parallel with
the corresponding partial derivatives. The relation between the
variables in the code list can be visualized by a directed acyclic
computational graph (c-graph) with integer vertices (F1G. 1.2).
In the linearized c-graph the partial derivatives are assumed to
be attached as labels to the corresponding edges.

AD provides two basic modes for computing y and X. They -3 -2 ! 0
are referred to as the forward and reverse modes [Wen64],

Fi1Gc. 1.1. Vector Function

FiGc. 1.2. c-graph

*Computer Science, University of Hertfordshire, Hatfield, UK (U.1.Naumann@herts.ac.uk).
320

Recording

Adjoint

Jacobian

Vi—3 = Ty, (7, = 0..3)

vy = tan(v_3)
ci1=1+ tan(v,3)2

Vg =V_2-V_1

C2,—2 =V_1;C,—1 =UV_2
v3 = sinh(vp)

C3,0 = — COSh(’Uo)

Vg = 1)]_/1)2

ca1 = 1/va; cap = —v1 V3
Vs = Vg * VU3

C5,2 = V35 C5,3 = VU2

vg = log(4.3) - v4

Ce4 = 10g(43)

v7 = sin(vy)

¢7,5 = cos(vs)

vg = cos(v4)

¢4 = —sin(vy)
vg = exp(vs)
C9,5 = Vg

V10 = /Us

10,4 = 1/(2v10)

v1; =4 - arctan(l) - vy

C11,5 = 4 - arctan(l)

V12 = Vg - U7

C12,7 = VUg; C12,6 = U7

v13 = Us/Ug

13,8 = 1/vg; c13,9 = —vg V3
V14 = V10 * V11

C14,10 = V115 C14,11 = V10

Yi = viy12, (y=0.2)

ci; =0, (l,J =-3.14,i<])

Viy12 = Ui, (i =0.2)
5 =0, (i=-3.11)

U11 += C14,11 - V14
U109 += C14,10 " V14
Ug += C13,9 - V13
Ug += C13,8 - V13
U7 += c12,7 - V12
Ug += C12,6 - V12
Us += C11,5 - U11
U4 += C10,4 - V10
Us += Cg,5 - Ug

Uy += Cg,4 - Ug

Us += Cr.5 - U7

U4 += Cg,4 - Vs

U3 += ¢5,3 - U5

U +=C5,2 - Us

Uy += C4,2 " Uy

U1 += C4,1 " Uy

C4,—3 +=0C4,1 - C1,—3
C5,0 T=C5,3°C3,0
C12,4 += C12,6 - C6,4
C12,5 +=1C12,7 " C75
C13,4 +=C13,8 - Cs,4
€135 +=C13,9 " C9.5
C14,4 += C14,10 * C10,4
C14,5 += C14,11 * C11,5
C12,-3 +=1C12,4 - C4,-3
€13,-3 +=C13,4 - C4,-3
C14,—-3 +=C14,4 - C4,-3
€12,2 +=C12,4 - C4,2
€132 += C13,4 - C4,2
C14,2 +=C14,4 - C4.2
€12,0 +=C12,5 " C5,0
€13,0 +=C13,5 " C5,0
C14,0 += C14,5 * C5,0
C12,2 += C12,5 * C5,2
€132 +=C13,5 - C5,2
C14,2 +=C14,5 - C5,2
C12,—2 +=C12,2 - C2,—2
C13,—2 +=C13,2 * C2,—2
C14,—2 +=C14,2 - C2,—2
€12,—1 +=1C12,2 - C2,—1
€13,-1 t=<cC13,2-C2,—1
C14,-1 +t=1C14,2 - C2,—1

Fic. 1.3. Approaches to Jacobian Accumulation

[Gri92] and represent two special choices of how to apply the chain rule to the code list.
The reverse mode generates adjoint code shown in the middle of F1G. 1.3. Existing
source code transformation AD tools [ADIFOR], [ODYSSEE], [TAMC] will deliver
a more compact representation of the adjoint code. The explicit decomposition in
Fic. 1.3 is merely used to make things easier to understand. For more advanced
information on state-of-the-art adjoint code generation refer to [TAMC] or [Fau00].
After the initialization of ¥ the adjoint code computes X = y7 - F'(x¢). Consequent-
ly, the Jacobian itself can be accumulated by setting ¥ equal to the Cartesian basis

321

vectors e; € IR3, i = 0..2, successively.

Once all partial derivatives of the elementary operations and intrinsic functions
are available the accumulation of F' = F'(x¢) may, in general, involve a varying
number of evaluations of v; = v; + ¢;,; - U, for 4,5 € {—3..14}, i < j. (In F1G. 1.3 the
more compact C-style notation ”+=" is used instead.) Expressions of this type will
be referred to as maf’s (multiply-add-fused). Our objective will be to minimize the
number of maf’s required for the accumulation of F'.

The computation of F' by reverse propagation of the corresponding Cartesian
basis vectors involves m(p + n) = 45 maf’s. Provided that trivial multiplications by
0 or 1 are not carried out this number could be decreased to 33. Alternatively one
may choose to generate explicit Jacobian code which accumulates F’ at the current
argument xg directly. This is illustrated on the r.h.s. of Fic. 1.3 where all entries
of F' are underlined. In fact, this code is optimal regarding the number of maf’s
performed, which is equal to 26 (compare SEC. 3).

2. Accumulation of Jacobians. Let

F' = F'(x0) = (8% (XO))izo..(m_l)

O, j=0..(n—1)

denote the Jacobian matrix of a non-linear vector function
F:R"DD—>R": xw—y=F({x)

evaluated at a given argument x¢ as in SEC. 1. The runtime of numerous numerical
algorithms is dominated by the time it takes to accumulate F” or to evaluate products
of the form (R™*"13)Y = F'X and (IR">*"3) X =Y F', which represent the matrix
versions of what was introduced in SEC. 1. They can be computed using the forward
and reverse vector mode of AD [Gri00], respectively. This paper will discuss a new
powerful heuristic for accumulating F' more efficiently. Unquestionably, the ideas will
also be useful for computing higher order derivative tensors. AD will be looked at
from the point of view of graph theory and combinatorial optimization.

F' is assumed to be given as a computer program which decomposes into a se-
quence of scalar elemental functions (IR 3) v; = ¢;(v;)iep; Where j = 1..¢ and
P; C {(1 —n)..p}, p = ¢ — m. P; is the set of indices of the arguments of ¢; and
we denote its cardinality by |P;|. Within F we distinguish between three types of
variables V = X U Z UY, referred to as independent (X = {v;_,..v0}), intermediate
(Z = {v1..v,}), and dependent (Y = {vp41..v,}). We set z;_1 = vj_p, t = 1..n, and
Yj—1 = VUpy+j, j = 1l..m. The direct dependence of v; on v; is denoted by ¢ < j with <*
representing the transitive closure of this relation. A numberingZ : V' — {(1 —n)..q}
of the variables of F' is expected to be consistent, i.e. it must induce a topological
order with respect to dependence as i <* j = Z(v;) < Z(v;).

Since the differentiation of F' is based on the differentiability of its elemental
functions it will be assumed that the ¢;, j = 1..q, have jointly continuous partial
derivatives

0 .
Cji = 5 -Pi (Vk)kep;, i € P; (2.1)
1

on open neighborhoods D; C IR"™ , n; = |P;|, of their domain. Thus, the accumulation
of F' can be regarded as a sequences of transformations in IR("t9) applied to the

322

extended Jacobian

(nta)x(nta) 5 g — (o) _Je iy

R > B =B(x0) = (¢ji)jm1-n = {0 otherwise

such that, finally, the intersection of B’s first n columns with its last m rows contains

F'. Moreover, the order in which these transformations are applied to B should min-

imize the number of maf’s carried out. The above sequence of transformations on B

may be regarded as the successive elimination of intermediate variables from F.
PROPOSITION 1. Let

&i(B)=&B=B+ BejefB - BejejT - e]-ejTB. (2.2)
Then
F=Qm| [&B|P! (2.3)
Jje{1l..p}

P, = [I,,,0,...,00 € R~ Q,, = [0,...,0,I,] € R™*("+9) and I, and I,
are the identity matrices in IR™*™ and IR™*™, respectively. 4
PrOOF: The proof follows immediately from the chain rule:

6yj—p—1 ij 6Uk) .
A 1 B j = 1 .. = 1_ .U, 2-4
OTitn—1 Ov; k;' Cik vy’ j=m@+1.q, i=(1-n).0 (2.4)

The c¢;i, are the partial derivatives defined by EQN. (2.1). In order to prove PROP. 1 we
need to show that EQN. (2.4) can be transformed into explicit expressions for all entries
of F'. This is done by eliminating all terms containing intermediate variables. We will
sketch the procedure by eliminating the dependence of y;,—p—1, j1 € {(p+ 1)..¢}, on

some vy, , k1 € Pj,. Starting with the isolation of the term, which is to be eliminated,

followed by the substitution of the expression corresponding to 8; :1} ,i=0.(n-1),

by the chain rule we get:

6Uj1 r . 6Uk1 r
O X =\ Cjik D1
Zi li=0..(n—1) Zi li=0..(n—1)

+ ka]T

Cirk [—
J1
T |.
k1#kEP;, O i=0..(n—1)

T

ot 1"
+ Z Ci k! |:(9—3:'k:| X.

i=0..(n—1) ki#k'€P;, i=0..(n—1)

> cnncnr | 5]
= J1k1Ckik | 59
ver, Ox;
It follows a new expression for calculating ¢;, p—1, j1 = (p + 1)..q, which does not
depend on vy, , i.e. v;; = Zkeﬁjl Cj 10k Where

le =P, U le \ {kl} and 6j1k = Cjik t+ Cjiki Chik- (25)
B+ BejefB is equivalent to the elimination of the dependencies of v; on all v; < v;
which implies the elimination of the dependencies of all v;, with v; < vy on v;. This
must lead to the deletion of both the j-th column (Beje]) and the j-th row (e;e] B)
of B. The repeated application of this argument to all intermediate variables proves
Pror. 1. R

2.1. Computational Graphs. The computational graph G = (V, E) of F is a
directed acyclic graph with V' = {i|v; € F'} and (i,j) € E if i < j. We assume G to
be linearized in the sense of SEC. 1, i.e. (¢,7) is labelled with c;;.

323

&; represents the elimination of j from G. Graphically, this
is equivalent to connecting all predecessors of j (i € P;) with all
its successors (k € S;) followed by updating the existing or gen-
erating new edge labels and, finally, the deletion of j. FiG. 2.1
is to illustrate this showing the elimination of 4. In correspon-
dence with the chain rule we multiply the labels of successive
edges (4,) and (4, k) whereas we add the labels of parallel edges :
having both the same source and the same target. The addition
of values of parallel edges will be referred to as absorption. Con-
sequently, the elimination of an intermediate vertex j involves
w; = |P;|-|S;| scalar multiplications. y; is called the Markowitz 2 3
degree of j [GrRe91]. |P;| and |S;| denote the numbers of pre-
decessors and successors of j in G, respectively.

2.2. A combinatorial optimization problem. The ex- fie. 2.1. 4

pression j € {1..p} in EQN. (2.3) indicates that any of the p!

distinct orders in which the p intermediate variables can be eliminated will lead to
the desired result in the form of F'. However, the computational costs in terms of the
numbers of maf’s actually performed may vary drastically.

Example. The following function
n—1
y=F(x)= H Ti
i=0

is due to Speelpenning [Spe80] and it will be used here to illustrate the savings that
could become possible by choosing one particular elimination sequence instead of
another (in the present case we will be looking at a factor of nearly 13). F' could be
evaluated by a program containing 48 intermediate variables for n = 50. We consider
two alternative approaches to accumulating the gradient of F' : the forward vertex
elimination mode (F) given by

F'=Qm| [] &B)PT
Jj=l..p

and the reverse vertex elimination mode (R):

F'=Qm H &B | PL.

j=p..1

Eliminating the dependence of y on all intermediate variables in reverse order (R) is
optimal on this problem requiring 96 maf’s. Notice, that F performs 1224 maf’s.

Let M be a method for eliminating the intermediate variables in a certain order.
We assume M to be deterministic. Let s;, ¢ = 0..p, denote permutations of i elements
from {1..p} such that s; C s;41 for ¢ = 0..(p — 1), i.e. if s = (j1,...,Jk) then
Sk C Sg4+1 = (J1,--- »Jk>Jk+1)- For a deterministic M jjy1 is defined uniquely by sg.
The s, k = 0..p, are also called stages of the elimination procedure.

Let pf = MAF(E?-A) whe1'°e A = Hies,sg{l..p}\{j} &B. A is the ?esult of aI;')ply?ng
a set of transformations not including £; to B leading to a stage s in the elimination
procedure. According to EQN. (2.3) the Markowitz degree ,u;‘? of v; at stage si is

324

equal to the product of the number of non-zero elements in the j-th row and the
number of non-zero elements in the j-th column of A. The sum of the Markowitz
degrees of all intermediate variables at the times of their respective elimination, i.e.
w=p(sp) = ;-p:z.l ,u;? where k is increased from 0 to p — 1 correspondingly, is called
the overall Markowitz degree of the elimination sequence s,.

Our objective is to solve the Optimal Vertex Elimination (OVE) problem, which
is about finding a method M such that MAFg/ (M) — min for arbitrary F. This is
equivalent to minimizing the overall Markowitz degree. Since the OVE problem is
conjectured to be NP-complete [GrRe91], [GaJo79] we will search for heuristics to
solve it approximately.

3. Heuristics. Let v; < v; denote the situation where a variable v; is eliminated
before v;. Since our objective is to minimize the cost of computing F' it certainly
makes sense to think about how cheaply a particular intermediate variable v; can
possibly be eliminated. A greedy approach to this problem would be to order all
intermediate variables increasingly by their Markowitz degrees. At a particular stage
sj, j € {0..p}, the variable with the lowest Markowitz degree is eliminated. In order
to make this approach deterministic it has to be combined with at least one tie-
break criterion. This approach is known as the Lowest-Markowitz-Degree-First (LM)
strategy and has been proposed in [GrRe91] for the approximate solution of the OVE
problem. As a heuristic for the minimization of the fill-in generated during the solution
of sparse systems of linear equations the adaption to the OVE problem represents a
robust and easy to implement way of calculating often nearly optimal elimination
sequences. Formally LM is given by

sk€{l,...,p}: vi<v; & /,Lf<,uf. (3.1)

At each stage the number of predecessors and successors of (possibly) every vertex in
G has to be computed, which results in a complexity of O(|V|?). However, numerous
tests showed that, in general, LM does not deliver optimal elimination sequences.

DEFINITION 1. Let G = (V,E) be a c-graph. A variable v; € Y U Z has the
in-dependency degree id; = k if there are paths connecting a mazimum of k
independent vertices with j in G. A wvariable v; € X U Z has the out-dependency
degree od; =k if a mazimum of k dependent vertices are reachable from j in G. For
intermediate variables v; € Z we define the dependency degree as dd; = id; - od;.
The dependency degree dd; of an intermediate variable v; is equal to the Markowitz
degree at which v; would be eliminated at stage s, = sp(M). To improve the LM
heuristic the Markowitz degree will be evaluated relative to the dependency degree,
which is invariant with respect to different vertex elimination sequences. Once we
have tabulated it for every variable, which can be done at a cost of O(|V|(|V| + |E|))
[MeN#96], we can look it up at every stage s;, ¢ = 0..p. The computation of this
reachability matrix dominates the entire calculation. As an instance of a dependency
degree based heuristic the Lowest-Extended-Markowitz-Degree-First heuristic (EM)
is defined as follows:

spe{l,...,p}: wvi<v; & ,uf—ddi<,u§—ddj.

EM is more expensive than LM due to the computation of id; and od; for all
intermediate variables. In many cases it delivers better elimination sequences which
more than compensate the additional effort. Although, in general, EM does not
deliver an optimal elimination sequence, it turns out to be the most consistent strategy

325

compared with F, R, and LM. Let us have a closer look at the behavior of EM and
the ideas behind it:

1. EM extends LM by an implicit tie-breaker. If at some stage s of the elimi-
nation procedure two variables v; and v; have the same (lowest) Markowitz degree
pf = p then the one with the higher dependency degree is eliminated first. The
idea behind this decision is that if dd; > dd; then the probability that the Markowitz
degree of v; will be increased during the rest of the elimination procedure is higher
than for v;. So, one should use the opportunity to eliminate v; cheaply.

2. Obviously, v; should be eliminated before v; if uf < p¥ and dd; > dd;. Not
only is the Markowitz degree of v; lower, the probability of it being increased is also
higher than for v;.

3. b < uf and dd; < dd; and pf —dd; < u;? — dd; yields the elimination of
v; before v;. This case as well as the one before let EM inherit both strengths and
weaknesses of LM as it behaves exactly in the same way.

4. Tf pf < p¥ and dd; < dd; such that puf — dd; > p¥ — dd; EM would choose to
eliminate v; before v;. Therefore dd; must be much larger than dd; to satisfy the above
inequality. Consequently, the possible increase of the Markowitz degree of v; is larger.
To avoid taking any chances v; should be eliminated. This decision is based on a look
ahead to what could possibly happen during the rest of the elimination procedure.
This ”guess” and the tie-breaking feature may be regarded as the advantages of EM
over LM.

Reconsider the motivating example from SEcC. 1. FiG. 3.1
shows the computational graph after the pre-elimination of 8

12 13 14
vertices with both a single predecessor and successor at the
optimal cost of 1 maf each. Thus, we are taken to stage sg
with an overall Markowitz degree of u(sg) = 8. There are 3 ' \
5

intermediate vertices left. LM eliminates vo (4 maf’s) followed
by vs and vs (9 maf’s each), resulting in MAFp (LM) = 30. EM
would look ahead to see that the Markowitz degrees of v, and
vs are more likely to be increased than the one of vy due to
6 —9 < 4—6. If F was the primary tie-breaker of EM v4 would
be eliminated first. Hence p — dds < p§ —dds (6 —9 <8 —6)
at sg. Consequently, vs would be eliminated next followed by vo _s -2 -1 0

and MAF (EM) = 26.
F1g. 3.1. G(sg)
4. Numerical Results, Summary, Outlook.

4.1. Case Study 1: Speelpenning’s function. Both R and EM are optimal
for y = H?:_ol x; [Spe80]. LM has to rely on its primary tie-breaker. Only if it was
R the above would also apply to LM. EM is able to solve the problem in any case
as dd;, ¢ = 1..p, gets larger with increasing .

4.2. Case Study 2: Absorption function. The absorption function has the
form y = f(z) with f: R™ — IR and

n—1 2(i+1)
y=1I[wit@)-] =
i=0 j=1

This name is motivated by the shape of the c-graph, which is displayed in F1G. 4.1, and
the behavior of f with respect to different vertex elimination strategies. It represents
an example where as a result of the absorption of potentially new edges the reverse

326

[*] Y
e—®n

*1

Pn—1

Fic. 4.1. Absorption Function

mode R is not optimal in terms of the number of maf’s required for the computation of
the gradient. Looking at the c-graph of f we observe the following: R starts with the
elimination of the n — 2 vertices in the outer loop at a Markowitz degree of two each.
It goes on with the 2(¢ + 1) vertices of the inner loop, again, each of them at a cost of
two followed by the n univariate scalar functions ;. Hence, MAFz(R) = 2n? 4+ 5n —4.
Using the forward vertex elimination strategy F we would start with the ¢; followed by
the elimination of all vertices of the inner loop at a Markowitz degree of one due to the
exploitation of absorption. Finally, the outer loop vertices are eliminated successively
with their costs incremented by one after each step: MAF; (F) = 2n2? + 3n — 1. We
would prefer some combination of F and R in order to be able to accumulate the
gradient of f at a minimal cost by behaving as F on the inner loop while eliminating
the vertices in the outer loop backwards as done by R. LM would certainly satisfy
the first requirement. However, for the outer loop it would again have to be combined
with R as primary tie-breaker.

EM is the optimal choice for this problem. It makes full use of absorption as
the forward mode does while avoiding the incrementation of the vertex degrees by
running through the outer loop backward resulting in MAF s (EM) = n? + 4n — 4.

4.3. Case Study 3: Unsaturated flow problem. This example is a two-
dimensional unsaturated flow problem in a porous medium described in [CGRW92].
Its Jacobian F' is an extremely sparse 1989 x 1989 square matrix yielding a very
regular sparsity structure arising from the underlying discretization grid. Notice,
that EM does not use this knowledge. We have chosen to optimize the computation
of the sub-matrix D = J(0..935,936..1286) of the Jacobian. The corresponding c-
graph consists of 351 minimal, 936 maximal, and 21177 intermediate vertices. Robey
[CGRW92] recognized that the 351 rows of D could be computed in only 6 passes.
This would result in an operations count of approximately 133 thousand. By fully
exploiting the structural sparsity of the problem in F the cost could be decreased
further to 73 thousand maf’s. With 29 thousand maf’s, the EM heuristic delivered
the lowest known overall Markowitz degree, so far. This represents an improvement,
by a factor of more than 4! LM lead to a slightly larger operations count.

4.4. Further Results. By applying them to a selection of MINPACK test prob-
lems [ACM91] we have compared the heuristics LM and EM with the optimal uni-

327

directional Newsam-Ramsdell method NR [NeRa83], [Gri00]. NR represents one of
the most powerful static analyses for exploiting sparsity of the Jacobian. It gives a
good impression on the efficiency of tools that are built on the forward and reverse
modes of AD.

| | » | NR |LM | EM |
FDC | 984 | 11000 | 1338 | 930
WAT | 1683 | 11830 | 4240 | 4240
DIE | 2499 | 50380 | 1659 | 1659
GDF | 1625 | 18590 | 1430 | 1430

One observes that reductions in the operations count of nearly three up to 10 and
more are achievable. A large part of the savings is due to the full exploitation of
structural sparsity of the extended Jacobian. There are many problems where LM
and EM deliver equivalent results. Although, of course, it is possible to come up
with examples where EM would fail, among the more than 50 test problems there
was none for which LM delivered a lower operations count than EM.

In [Nau99] we have compared the run times of an optimized Jacobian code and
a state-of-the-art AD based code. The objective was to show that the theoretical
improvements in the operations count could be ”translated” into run time savings.
Promising a reduction of the operations count by a factor of 4 the resulting optimized
code ran 3.5 times faster than the original version.

4.5. Conclusion. For most real-world problems the generation of optimized
derivative code based on either forward or backward vertex elimination sequences
would result in remarkable savings in the overall operations count due to the full
exploitation of structural sparsity of the extended Jacobian. Unfortunately, it is not
clear a priori whether we should prefer the forward or the backward approach. There-
fore it would be useful to exploit the strength of heuristics for determining nearly
optimal vertex elimination sequences for almost all sorts of c-graphs. EM turned out
to be very consistent, while being only slightly more expensive than the pure uni-
directional methods. It could be worth to analyze selected evaluation routines deeper
by using more costly optimization methods like dynamic programming or simulated
annealing [Nau99]. However, the additional effort is justified only if the resulting
derivative code is generated once and is then used over and over again.

328

REFERENCES

[ACM91] B. AVERIK, R. CARTER, AND J. MORE, The Minpack-2 test problem collection, TM No.
150, ANL, 1991.

[BBCG96] M. BERz, C. BiSCHOF, G. CORLISS, AND A. GRIEWANK, EDS, Computational differentia-
tion: techniques, applications, and tools, SIAM, Philadelphia, 1996.

[Bis96] C. BISCHOF, Hierarchical approaches to automatic differentiation, in [BBCG96], pp. 83-94.

[ADIFOR] C. BiscHoF, A. CARLE, P. HovLAND, P. KHADEMI, AND A. MAUER, ADIFOR 2.0 user’s
guide (revision D), Argonne National Laboratory, March 1995. Revised: June, 1998.

[CoGr91] G. CoRLISs AND A. GRIEWANK, EDS, Automatic differentiation: theory, implementation,
and application, STAM, Philadelphia, 1991.

[CGRW92] G. CorLiss, A. GRIEWANK, T. ROBEY, AND S. WRIGHT, Automatic differentiation ap-
plied to unsaturated flow — ADOL-C case study, Preprint ANL/MCS-TM-162, Math-
ematical and Computer Science Division, Argonne National Laboratory, 1992.

[Fau00] C. FAURE, Adjoining strategies for multi-layered programs, Optimisation Methods and Soft-
ware, 2000. To appear.

[ODYSSEE] C. FAURE AND Y. PAPEGAY, Odyssee user’s guide. Version 1.7, Rapport technique 0224,
INRIA, September 1998.

[GaJo79] M. GAREY AND D. JoHNSON, Computers and intractability - a guide to the theory of
NP-completeness, W. H. Freeman and Company, San Francisco, 1979.

[TAMC] R. GIERING AND T. KAMINSKI, Recipes for Adjoint Code Construction, ACM Trans. On
Math. Software, Vol. 24, Nr. 4, p437-474, 1998.

[Gri92] A. GRIEWANK, Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation, Optimization Methods and Software 1 (1992), 35 - 54.

[Gri00] A. GRIEWANK, Evaluating Derivatives, Principles and Techniques of Algorithmic Differen-
tiation, Frontiers in Appl. Math., no. 19, STAM, Philadelphia, 2000.

[GrRe91] A. GRIEWANK AND S. REESE, On the calculation of Jacobian matrices by the Markowitz
rule, in [CoGr91], pp. 126-135.

[MeN396] K. MEHLHORN AND S. NAHER, LEDA, a platform for combinatorial and geometric com-
puting, Communications of ACM, Vol. 38, no. 1, pp. 96-102, 1995.

[Nau99] U. NauMANN, Efficient calculation of Jacobian matrices by optimized application of the
chain rule to computational graphs Ph.D. thesis, Dresden, 1999.

[NeRa83] G. NEWSAM AND J. RAMSDELL, Estimation of sparse Jacobian matrices, STAM(SJADM),
4 (1983), pp. 404-417.

[Spe80] B. SPEELPENNING, Compiling fast partial derivatives of functions given by algorithms, Ph.D.
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana-Champaign, January 1980.

[Wen64] R. E. WENGERT, A simple automatic derivative evaluation program, Comm. ACM, 7 (1964),
pp. 463-464.

329

