TANGENT BUNDLE OF ORDER TWO
AND BIHARMONICITY

H. ELHENDI, M. TERBECHE aAnND D. DJAA

ABSTRACT. The problem studied in this paper is related to the biharmonicity of a section from a
Riemannian manifold (M, g) to its tangent bundle T2M of order two equipped with the diagonal
metric g©. We show that a section on a compact manifold is biharmonic if and only if it is harmonic.
We also investigate the curvature of (T2 M, gD) and the biharmonicity of section of M as a map from
(M, g) to (T*M, g").

1. INTRODUCTION

Harmonic (resp., biharmonic) maps are critical points of energy (resp., bienergy) functional
defined on the space of smooth maps between Riemannian manifolds introduced by Eells and
Sampson [4] (resp., Jiang [6]). In this paper, we present some properties for biharmonic section
between a Riemannian manifold and its second tangent bundle which generalize the results of
Ishihara [5], Konderak [7], Oproiu [9] and Djaa-Ouakkas [3].
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Consider a smooth map ¢: (M™,g) — (N",h) between two Riemannian manifolds, then the
energy functional is defined by

) B0) =5 [ lofo,

(or over any compact subset K C M).

A map is called harmonic if it is a critical point of the energy functional E (or E(K) for all
compact subsets K C M). For any smooth variation {¢}:cr of ¢ with ¢g = ¢ and V = d—dqi—t|t=o,
we have

©) GG =3 [ hr(@), Vo,
where
(3) 7(¢) = tr, Vd¢

is the tension field of ¢. Then we have the following theorem.
Theorem 1.1. A smooth map ¢: (M™,g)— (N™, h) is harmonic if and only if
(4) 7(¢) = 0.

If (2%)1<i<m and (y*)1<a<n denote local coordinates on M and N, respectively, then equation
(4) takes the form

a a ij ]x 6¢B 8(;57
(5) ()" = (A¢ +99 T3, EF @) =0,
A B N
where Agp® = ﬁ 2 (\/19l9% %‘fﬂ- ) is the Laplace operator on (M™, g) and I'g,, are the Christoffel

symbols on N.



Definition 1.2. A map ¢: (M, g) — (IV, h) between Riemannian manifolds is called biharmonic
if it is a critical point of bienergie functional

1
(© Ba9) =5 [ Ir@)Pav.
M
The Euler-Lagrange equation attached to bienergy is given by vanishing of the bitension field
(7) 72(¢) = —Jo(7(0)) = —(A?7(9) + trg RY (7(¢), d9)d),

where Jy is the Jacobi operator defined by
Jo: T(¢~'(TN)) = L(¢7(TN))
V= A%V + tr, RN (V, d¢)dé.
Theorem 1.3. A smooth map ¢: (M™,g)— (N™, h) is biharmonic if and only if
9) 72(¢) = 0.
From Theorem 1.1 and formula (7), we have the following corollary.

Corollary 1.4. If ¢: (M™,g) — (N™, h) is harmonic, then ¢ is biharmonic.

(®)

(For more details see [6]).
2. PRELIMINARY NOTES

. Horizontal and vertical lifts on TM

Let (M,g) be an n-dimensional Riemannian manifold and (7'M T, M ) be its tangent bundle.
A local chart (U,x%);—1. , on M induces alocal chart (7=1(U),z%,97); j=1,.. n on TM. Denote
the Christoffel symbols of g by I‘fj and the Levi-Civita connection of g by V.




We have two complementary distributions on 7'M, the vertical distribution V and the horizontal
distribution H defined by

Vizu = Ker(dmz,v))

= {ala—yi|(%u); a’ ER},
Hiew) = {alﬁhw) a'u FZ@ Flew @ €R},

where (z,u) € TM, such that T, ,\TM = H (g u) © Vizu)-
Let X = X i% be a local vector field on M. The vertical and the horizontal lifts of X are

defined by
. 0
1 XV =Xx"—
(10) =
.0 [ 0 0
H _ i _ Yt _ Tk
(11) X X 57 X {81:1 Y F”(‘?y }

mnuu For consequences, we have:
ONH ¢ a\v 0
) <m0 (o) ~o
2. (i, i) is a local frame on T'M
0 (0 ) 0 o)
3 1u=u' 2 € T, then ! = u{ 2 yzr;.«ja_w} and ¥ =t




Definition 2.1. Let (M, g) be a Riemannian manifold and F': TM — TM be a smooth bundle
endomorphism of T'M. Then we define a vertical and horizontal vector fields VF, HF on T M by

VF:TM — TTM
(z,u) = (F(u)”,

HF:TM — TTM
(,u) = (F(u)f.

Locally we have

D . B NY
1 =yl i
) VE =y s = (P
0 D . o \"
_ i _ ik JTs — o
(13) HF = y'F; e y'y FZF]kays y (F(8w1)> .

Proposition 2.2 ([1]). Let (M, g) be a Riemannian manifold and ¥ be the Levi-Civita connec-
tion of the tangent bundle (T M, g°) equipped with the Sasaki metric. If F is a tensor field of type
(1,1) on M, then

(VxvVE) ) = ECO) oy
(Vv HF) oy = (FOO) o + 5 (Rl X F()) ",
(9 V F) ey = V(VxF) @0 + 5 (Ralon, Fo(w) X2) ",

(Vo HF) oy = H(VxF)(2,0) = 5(Re(Xe, Fufu))u)”,




where (z,u) € TM and X € T(TM).

. Second Tangent Bundle

Let M be an n-dimensional smooth differentiable manifold and (Uy, %a),, ¢ a corresponding atlas.
For each x € M, we define an equivalence relation on

Cy ={v: (—e,6) > M ; 7 is smooth and ~(0) ==z, e >0}
by
v~ h<4'(0)="n"(0) and ~”(0) = h"(0),

where 4" and 7" denote the first and the second derivation of -, respectively,

vt (—&,6) » TM; t = [dy(1)](1)

7' (—e,e) > T(TM);  te [dY'()]Q).

Definition 2.3. We define the second tangent space of M at the point = to be the quotient

T2M = C,/ ~, and the second tangent bundle of M the union of all second tangent space,

T?M = Usenr T2M. We denote the equivalence class of by j2v with respect to ~,, and by j%y
an element of T2M.

In the general case, the structure of higher tangent bundle 7" M is considered in [8, Chapters
1-2] and [2].
Proposition 2.4 ([3]). Let M be an n-dimensional manifold, then TM is sub-bundle of T? M
and the map
i: TM — T°M

14 _
(14 jnf=jof



is an injective homomorphism of natural bundles (not of vector bundles), where
¢

(15) fi= / fi(s)ds —tf(0) + f(0) i=1...n.
0

Theorem 2.5. Let (M, g) be a Riemannian manifold and V be the Levi-Ciwita connection. If
TM & TM denotes the Whitney sum, then
S:T*M - TM & TM

72900) = (5(0), (V.. 1)(0))
is a diffeomorphism of natural bundles. In the induced coordinate we have

(17) (x5 9% 2") = (20, 2" + 7y T).

(16)

Remark 2.6. The diffeomorphism S determines a vector bundle structure on T2M by
a. Wy + - Uy =S~ (aS(¥1) + BS(V2)),

where U, U, € T?M and o, 3 € R, for which S is a linear isomorphism of vector bundles and
i: TM — T?M is an injective linear homomorphism of vector bundles (for more details see [2]).

Definition 2.7 ([3]). Let (M, g) be a Riemannian manifold and 7?M be its tangent bundle of
order two endowed with the vectorial structure induced by the diffeomorphism S. For any section
o €D (T?M), we define two vector fields on M by

(18) X,=PioSoo,

(19) Y, =P,0So00,

where P; and P, denote the first and the second projections from T'M & T'M on T'M.
From Remark 2.6 and Definition 2.7, we deduce the following.



Proposition 2.8. For all sections o, € T'(T?M) and o € R, we have
Xaa—i—w = aXa + XW7
Yaa+w = aYa aF Ywa

where ao + w = S~ (aS(0) + S(w)).

Definition 2.9 ([3]). Let (M, g) be a Riemannian manifold and T2M be its tangent bundle
of order twerndowed with the vectorial structure induced by the diffeomorphism S. We define a
connection V on I'(T2M) by

V:I(TM) x T(T?>M) — T(T2M)
(2,0) = Vzo =S (VzX,,VzYy,)

where V is the Levi-Civita connection on M.

(20)

Proposition 2.10. If (U,z") is a chart on M and (c°,5%) are the components of section o €
[(T?M), then

.
21 X, =0'—
(21) o' o
(22) Y, = (6" + a'o’T%,

9k
Proposition 2.11. Let (M,g) be a Riemannian manifold and T>M be its tangent bundle of
order two, then

J:T(TM) — T(T*M)
Z— S71(Z,0)

is an injective homomorphism of vector bundles.

(23)



Locally if (U;a?) is a chart on M and (U;z%;y*) and (U;a%; y'; 2%) are the induced charts on
TM and T?M. respectively, then we have

(24) J: (@',y) m (2 o', —y Y Th).

Definition 2.12. Let (M, g) be a Riemannian manifold and X € I'(T'M) be a vector field on
M. For A =0, 1,2, the \lift of X to T?M is defined by

(25) X0 =81 (X", Xx")
(26) Xt =51x",0)
(27) X% =5.40,x").

Theorem 2.13 ([2]). Let (M,g) be a Riemannian manifold and R its tensor curvature, then
for all vector fields X,Y € T(TM) and p € T>*M, we have:
L [X° Y%, = [X,Y]) — (R(X,Y)u)! — (R(X,Y)w)?,
2. [X°, Y] = (VxY)i,
3. [X¢,v9] =0,
where (u,w) = S(p) and i,j = 1,2.

Definition 2.14. Let (M, g) be a Riemannian manifold. For any section o € T'(T?M), we
define the vertical lift of o to T2M by

(28) oV =S 1(XY, YY) e (T(T? M)).



Remark 2.15. From Definition 2.7 and the formulae (14), (23) and (28), we obtain

o =X;+Y7,

(Vzo) = (VzX,)' + (VzYs)?,
71 = J(z)¥,
z? =i(z)V

for all 0 € T(T2M) and Z € T(TM).
. Diagonal metric

Theorem 2.16 ([3]). Let (M, g) be a Riemannian manifold and T M its tangent bundle equipped
with the Sasakian metric g°, then

97 =5871(9,9)
is the only metric that satisfies the following formulae
(29) 9P (X', Y7) = 8ij - g(X,Y) omy
for all vector fields X, Y € T(TM) and i,j =0,...,2, where g is the metric defined by

1

igs(XH7 YH)a
JXT YY) =g (x" YY),
JXV. YY) =g"(XV,YY).

gP is called the diagonal lift of g to T2M.

gxXH Yy

Proposition 2.17. Let (M, g) be a Riemannian manifold and V be the Levi-Civita connection
of the tangent bundle of order two equipped with the diagonal metric g©. Then:



L (Vxo¥?), = (VxY)? = 3(R(X,Y)u)! - 3(R(X,Y)w)?,
2. (Vxo¥1)p = (VxY)! + 3(R(v,Y)X)°,
3. (Vxo¥?), = (VxY)? + 1 (R(w,Y)X)°,
4. (Vx1Y0), = L(R,(u, X)Y)°,
5. (eXZYO)p = %(Rx(waX)Y)O}
6. (Vx:iY7), =0
for all wector fields X, Y € T(TM) and p € T(T?M), where i,j = 1,2 and

=
g
~
I
=
S
— o

3. BIHARMONICITY OF SECTION

. The Curvature Tensor

Definition 3.1. Let (M, g) be a Riemannian manifold and F': TM — TM be a smooth bundle
endomorphism of TM. For A = 0,1, 2, the M-lift of F' to 72M is defined by

F'=S;YHF,HF),
F' =S ' (VF,0),
F?=S.%0,VF).

From Proposition 2.17, we obtain the following lemma.




Lemma 3.2. Let F': TM — TM be a smooth bundle endomorphism of T M, then we have

(Vx: FO)y = F(XO) + 5 (Rl X)F ()}
(Vxs FO)y = F(X)) + 5 (R(w, X)F(w))},

(VxiF), = F(X);  4,j=12,

(VxoFV)y = (VxF)} + 5 (R, () X,

(TxoF2)p = (VxF)} + 5(R(w, Fo(w))Xo)",

(Fx0F)y = (VxF)} = 5 (R(Xe Falw))u)! = (RO, Fa(w)u)?

for anyp e T°M, i,j=1,2 and X € (TM).
Using the formula of curvature and Lemma 3.2, we have the following.

Proposition 3.3. Let R be a curvature tensor of (M, g), and R be curvature tensor of (T%M, gP)
equipped with the diagonal lift of g. Then we have the following

L R(x°,Y%)2° = (R(X, Y)Z + leR(u, R(Z,Y)u)X + iR(w, R(Z, Y)w)X)O
Go back 1 1 0
+ (ZR(u, R(X, Z)u)Y + ;R(w, R(X, Zyw)Y)
Full Screen 1 1 0
+ (QR(u, R(X,Y)u)Z + 5 R(w, R(X, Y)w)Z)

Close
2

+ %(VZR)(X, Y)u)1 + %(VZR)(X7 Y)w) ;

Quit




<[>

2 RX°, Y7 = (R(X,Y)Z+ {R(R(w, 2)Y, X)u+ {R(R(w, 2)Y, X)u
- }lR(R(u, 2)X,Y)u — %R(R(w, 2)X, Y)w)i
+ 5((VxB)w, 2)Y + (VxR)(w, )Y ~ (Vy R)(w, )X

- (TR W, 2)X) |

3. R(x',YYH)z° = (R(X, Y)Z + leR(u, X)R(u,Y)Z + %R(w,X)R(w,Y)Z
- }lR(u, Y)R(u, X)Z) — %R(w,Y)R(w,X)Z))O,
4 R(X\,YHZ® = (R(X, Y)Z + leR(u, X)R(w,Y)Z + }lR(w,X)R(w,Y)Z
_ }lR(u, Y)R(u, X)Z — iR(w,Y)R(w,X)Z)O,
5. R(X1,Y%)z° = —(ZILR(U, Y)Z, X)u+ iR(w,Y)Z, X)w + %R(X, Z)Y)i
+ 3 (VxR )2 + (VxR @, V)Z) |
6. R(X\,Y%)Zi = %R(Y, Z)X + iR(u, Y)R(u, X)Z + }LR(w, Y)R(w,X)Z)O
7. R(X',Y?)Z' = R(X'.,YYZ'=R(X2Y*»Z =0

for any € = (p,u,w) € T*M, i,j=1,2 and X,Y,Z cT(TM).



Lemma 3.4. Let (M,g) be a Riemannian manifold and T>M be the tangent bundle equipped
with the diagonal metric. If Z € T(TM) and o € T'(T?M), then

(30) dy0(Zy) = Z8+ (Vz0)Y
where p = o(x).

Proposition 3.5 ([3]). Let (M, g) be a Riemannian manifold and T?>M be its tangent bundle
of order two equipped with the diagonal metric. Then the tension field associated with o € T'(T?M)
18

7(0) = (trace, V2X,)! + (trace, V2Y,)?
0
(31) + (traceg(R(Xa, V.X,) * +R(Y,, v*ya)*))
S 0
= (trace, Vo)V + (traceg(R(X,,, V. X,)*+R(Y,, V*Ya)*)> ,
where — tracey V2 (resp., — trace, V2) denotes the Laplacian attached to ¥ (resp., V).
4. BIHARMONICITY OF SECTION o: (M, g) — (T?M, gP)

For a section o € I'(T?M), we denote

(32) (o) = 7(X,) + 7(¥,),

(33) V(o) = 1(X,) + T3(Y,),

(34) (o) = () +7°(%5)
(39) (o) = (F(x) + ()



where

From these notations, we have
(36) 7(c) =7 +7°.

Theorem 4.1. Let (M,g) be a Riemannian compact manifold and (T?M, gP) be its tangent
bundle of order two equipped with the diagonal metric and a vector bundle structure via the diffeo-
morphism S between T? and TM & TM. Then o: M — T?M is a biharmonic section if and only
if o is harmonic.

Proof. First, if o is harmonic, then from Corollary 1.4, we deduce that o is biharmonic.
Conversely, assuming that o is biharmonic. Let o, be a compactly supported variation of o
defined by o = (1 + t)o. Using Proposition 2.8, we have

(37) Xy, = (148X, and Y, = (1+t)Y,.
Substituting (37) in (32) to (35), we obtain

(38) 0(0y) = (14+1t)%%0o) and 7¥(0¢) = (1 +1t)7
(39) (o) = (1 +1)?7%0) and 7(oy) = (1 + )7 (0).

Then

/'S
S



1 1 1 [
Ba(o) = 5 [ Ir(@nlovs = 5 [IP@0ov, + 5 [ 17 @000y

=20 [ o)ou, + 2 [ 1700w,

Since the section ¢ is biharmonic, then for the variation o;, we have

d
0= 5Baedli0 =2 [ [P ovy + [ 7 (@) o

Hence
7)) =0 and 7(0) =0, then 7(s)=0.
O

In the case where M is not compact, the characterization of biharmonic sections requires the
following two lemmas.

Lemma 4.2. Let (M,g) be a Riemannian manifold and (T*M, gP) be its tangent bundle of
order two equipped with the diagonal metric. If o € T(T?M) is a smooth section, then the Jacobi
tensor J,(tV(0)) is given by

Jo (7 (@) = { trace, v2(TV(a))}V
¥ { tracey (R(u, Vo (X,) * +R(w, Vor2(Yy)) % +R(rY (o), V.0)*

+ %R(u, (X)) R(u, Vi X, ) * +%R(w, 72(Y,))R(w, V*Ya)*)}o.



Proof. Let p € T?>M and {e;}™, be a local orthonormal frame on M such that (V.,e;), = 0.
If we denote Fj(z,u,w) = 1R(u, 7' (X,))e; + 3 R(w, 73(Ys))e;, then we have

VT (0)p = (Vi %,y 40w, v2 (T (X)) + (P (¥0)))y

= (Ve,(7V(0))y + L (R, 7 (Xo))es + Rlw, (Ya))er)” = (Ve, (¥ (0))

5 Y+ (B, u,w)),

hence

m

(traceg§2?v(a)p = Z {6;‘1 %‘; (?V (O’))}

3

= Y Vi@ x4 @ (TelrV (@)Y + (F)°}

i=1 Po= te
= Z {§eg(vei‘r1 (XO‘))l + %eg (VCiTl (YO‘))2 + %egFiO + 6(VeiXa)l‘FiO + %(VeiYaPF‘iO} o
i=1 p

Using Proposition 2.17, we obtain

(traceg 62?‘/(0))1, = Z {(Veive;l (Xs)) — }LR(ei, R(u, 7! (X,,)ei)u}:J
=1

S 20v.)) — L Ree; 27 e wd 4+ 5 f L 1 .
+ ; {(VeVer®(¥0)) = 1Rles Rw, 72 (Y)ew} + ; {GR Ver' (Xo)e:
+ 3 RO, Vo, (Vo))ei + 2 (Ve R 7(Xo))ed) + 2 (Ve Bluw, 7°(Ys ) )ex)
+ SR (Xy), Veu)e: + 5 R (Yo), Veaw)es + 3 Bt Ve, Xo)R(u, 7 (Xo)es

1 1 1 v
+ 1R, Ve, Yo)R(w, 7(Yo)es + 5 R(Ve Xo, TH(Xo))ei + S R(Ve X, (Yo ))ei |



From proposition 3.3, we have

m

trace, (R(7" (0), do)do) = {R((Tl(Xa))l, &)el + R((TH(Xo)'s (Ve, Xo))ed

=l
+ R((Tl(Xa))17 (VeiY0)2)e? + E((Tl (Xa))la e?)(veiXo)l + }Nz(("'l (Xo))la e’?)(veiYO')z
el + R((T(Y0))2, (Ve Xo) el + BT (Yo))%, (Ve Yo)2)el
(Ve Xo)! + B((r(Y2))%, €0)(Ve Yo )2}

By calculating at point p € T2M, we obtain

i 1 1

trace,(R(7Y (0), do)do), = Z{ — SRR, 7 (X,))e:, ei)u}l - {ZR(R(w,T2(Ya)ei),ei)w}2

m

+ 3 {R(X0), Ve Xo)ei + R(P(Yo), Ve Yo)es
p=ll

1 1
4 ZR(u, X)) R(u, Ve, X5 )es — ZR(w, Ve, Ys)R(w, 72(Yy))e;
1 1
+ ZR(w, 7(Y,))R(w, Ve, Y, )e; — ZR(u, Ve, Xo)R(u, 71 (X,))e;
Go back 1 1
+ S BT (Xo), Ve Xo)ei + S R(T(Yo), Ve Yo e
Full Screen
1 1
+ ZR(u, THXo)R(u, Ve, Xo)es + ZR(u, 3(Y,)R(w, Ve, Y, )e;
Close
1 1 0
= 5 (Ve R(u, 7 (Xp)ei = 5(Ve, R(w, 7 (Yo )ei | -
Quit 2 2




[ |

Considering the formula (8), we deduce
v
J, 7 (0)) = {traceg V(Y (o) } + {traceg(R(u, V. H(Xy)*
+ R(w, Vim*(Yy)) * +R(7" (0), Vio)*

lR(w,TQ(Ya))R(w,V*Ya)*)}o.

1
+ ER(u, (X)) R(u, V. X, ) * +2

O

Lemma 4.3. Let (M,g) be a Riemannian manifold and (T?M, gP) be its tangent bundle of
order two equipped with the diagonal metric. If o € T(T?M) is a smooth section, then the Jacobi
tensor J,(7°(0)) is given by

J,(7(0)), = trace, {2R(TO(XJ), $)V. X, — R(, V*TO(XU))u—i—%R(R(u, V. X,)*, TO(XU))U}1
+ tracey {2R(7(Yy), $)V. Yy — R(x, Var®(Yo))w + %R(R(w, V.Y, )k, T(’(xc,))w}2
+ trace, {V*V*TO(J) + R(u, Vo X, )Var%(Xy) + R(w, V. Yy ) V.70 (Y,)
+ %R(u, V. V. X, )% (X,) + %R(w, V. V.Y,)7%(Y,) + R(u, R(1°(X,), *)u)*
+ R(w, R(t°(Yy,), *)w) * +R(%(0), *) * +(V,0.x,)R)(u, VX, )x
+ (Vo (v, R) (w, V.Y, * }Z

for all p = (v, u,w) € T>?M.



Proof. Let p = (z,u,w) € T?M and {e;}"™, be a local orthonormal frame on M such that
(Ve,€i)z = 0, denoted by

(40) F,=Fix +Fy = %R(ei,TO(Xa)) & +%R(6i770(Ya))*
(41) G=Gx+Gy = %R(*, V. X, )m0(X,) + %R(*,V*YU)TO(YU).

First, using Lemma 3.4 and Proposition 2.17, we calculate

traceg %2(?0(0))1» = i {6;‘@ 6; (TO(U))O}

=l

=

=3 { (V%19 3047 o2 (VeuT(0) — Fix ~Fy +GD) }

From Proposition 2.17, we ha\:1
trace, V(7°(0)), = i {(VerVeir (o) + (GR Ve, Xo) V7 (Xs)
+ SR, VoY) Ve, (V) = (Ve Fox)! = (Ve For ) = (5 Bler, Ve, (X))’
() (2 Rler, Ve, (Vo))w)? = 5(R(w Fix (w)en)’ = 5 (R(w, Fiy (w))er)?
— (Fx(Ve) X! = (Foy (Ve)¥a)? + (V,G)° = 3 (Rles, Gx(w)u)* = 5(Rles, G (w))w)?

(
+(Ox (Ve Xo))° + (G (Ve o)) o 5 (Rlu Ve Xo)Gx () + 5 (R(w, Ve, Vo) Gy (w))°}

p




Substituting (40) and (41) in (42), we arrive at
trace, V2(7°(0)),

= > {(VeVer(@)) + R, Ve, Xo) Ve, 7(Xo)

=y

1
+ ('w, VeiYU)VeiTO (YG) + §R(ua VeiveiXO')TO(XU)

1
+ 5 R(W, Ve, Ve Yo )T (Yo) + 5 (Ve  R) (4, Ve, Xo)7°(Xo)

_|_

(Ve R) (@, Ve, Yo) 7 (V) 3 R, Ve, Xo ) R(w, Ve, X )70(X,)

+
N N I VT

- R(w, V., Y, )R(w, V., Y, )T (Y,) — iR(u, R(ei, 7°(X5))u)e;
0 m
-3 {%R(ei,To(Xg))VeiXa

=1

R(w, R(e;, TO(Y(,))'w)ei}

p

=y

+ Rles, Ve, (Ko )ut (Ve B)(es, (X))

N

1
Go back + R(ei7 R(u’ v€iX¢7)TO(XU))U’}p

m

1
Full Screen _ Z {§R(ei7 TO(YO'))VBZ‘YO' + R(ei, veiTO(Ya))w
=1

Close 1 9

+ §(VeiR)(ei7 TO(YO.))'LU + ER(ei, R(wa VCiYO‘)TO(YU))w}p'

Quit




On the other hand, we have

traceg{f?,(FO(a), da)do}p

[R(°(0), ex)e: + SR(w, R((X,), eou)es

Il
.MS

INGGU

<
Il

R(w, R(t°(Yy), e))w)e; + Vo (XoR)(u, Ve, X, )e;

1
(Yo R)(w, Ve, Yo)ei — 5 (Ve, R) (u, Ve, Xo)T(X,)

1
(Ve R)(w, VCiYU)TO(YO') - ZR(uv Ve, Xo)R(u, Vez‘Xa)TO (Xs)

+

ue
<

0

—

N

=~

SN—
== N =

R(w, Ve, Yo) R(w, Ve,v, )7 (Yo) |
p

+ ; {g(veiR)r (Xo, ex)u + S R(R(u, Ve, Xo)ei, 7°(Xo) u

1
+ gR(TO(Xa),ei)VeiXU — iR(R(u, Veng)TO(XU),ei)u}

+ ; {%(Vez R)TO(YO" ei)w ar %R(R(’U}, VeiYa)ei’ 7'0 (Ya))w
3 0 1 0 )
+ §R(T (Ya)’ ei)v&iY"' - ZR(R(U}’ VeiYa)T (Yg), ez)w} 0

By summing (43) and (44), the proof of Lemma 4.3 is completed.




From Lemma 4.2 and 4.3, we deduce the following theorems
Theorem 4.4. Let (M,g) be a Riemannian manifold and (T?>M, gP) be its tangent bundle
of order two equipped with the diagonal metric. If o: M — T?M is a smooth section, then the
bitension field of o is given by
To(0)p = traceg {Vzrl(Xa) + 2R(7%(X,), ¥) VX, — R(*, V.7 (X,))u

1 1
+ SR(R(u, V*)*,TO(XU))U}
+ tracey {V27'2 (Y,) 4+ 2R(7°(Y,), ¥) V.Y,

1 2
— R(x, V7" (Yo))w + S R(R(w, V)%, 7°(Vo))w}
+ trace, {R(u, VoL (X,)) % +R(w, Var2(Yy)) % +R(1H(X,), V. X, )%
1

+ R(T*(Y,), V.Yy) * +5 R(u, H(Xo))R(u, V. X, )*

1
+ 5R(w, 2(Y,))R(w, V.Y, ) * +V.V.7%(0) + R(u, V. X, ) V.1 (X,)

1

+ R(w, V.Y, )V, (Y,) + R(7%(0), %) * +5R(u, V. V. X,)m%(X,)

1
+ 5 R(w, V. V.Yo)r0 (Vo) + R(u, R(r%(X, ), #)u)
+ R(w, R(r°(Yy, ), #)w) * +(V,o(x, ) R) (4, V. X5 )

0
+ (Voo R)(w, VYo « |




for allp € T?M.

Theorem 4.5. Let (M, g) be a Riemannian manifold and (T2M, gP) be its tangent bundle of
order two equipped with the diagonal metric. A section o: M — T*>M is biharmonic if and only if
the following conditions are verified:

1) 0= trace, {v%l(x,) + 2R(79(X,), )Vi Xy — R(x, Vo10(X,))u
4 1R(R(u, V*)*,TO(XU))U,} ,
2 P
9) 0= trace, {v%?(ya) + 2R(70(Y,), %)V, Y,y — R(x, V. 70(Ys))w
+ %R(R(w,v*)*,TO(Yg))w} ,
p
3) 0 = traceg {R(u, V.7HX,)) * +R(w, V.m3(Yy,))*
+ R(T1(X,), VaXo) % +R(72(Ys), V. Yo )
1
4= iR(u, T X)) R(u, V. X, ) * +%R(’w, 72(Y,))R(w, V.Y, )*
4 V. V.r%(0) + R(u, Vu X, )Vur9(X,) + R(w, V.Y,)V.79(Yy)
+ %R(u, VoV X, )r(Xy) + L R(w, V. V.Y, )r(Yy)
+ R(u, R(7%(X,), *)u) * +R(w, R(1°(Yy), *)w)*
A R(TO(O‘), *) * +(V.,-0(XJ)R)(U, V*XU)*
=F (VTO(YU)R)(’LU, V*YU) * }
p
for allp= S~ (z,u,w) € T?>M.




Corollary 4.6. Let (M, g) be a Riemannian manifold and (T?>M, gP) be its tangent bundle of
order two equipped with the diagonal metric. If o: M — T?M is a section such that X, and Y,
are biharmonic vector fields, then o is biharmonic.

(For biharmonic vector see [1]).
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