AN EXAMPLE OF INFINITELY MANY SINKS FOR SMOOTH INTERVAL MAPS

Abstract

A. F. IVANOV

Abstract. We show, for arbitrary $\epsilon>0$, the existence of a $C^{2-\epsilon}$ unimodal interval map with infinitely many sinks outside a neighbourhood of the critical point. It is known that such C^{2} maps do not exist.

1. Introduction

Let a continuous map f of a closed interval I be given. Recall that an attracting cycle of f is called a sink, and an interval $J \subset I$ such that $f^{n}(J) \bigcap f^{m}(J)=\emptyset$, $n \neq m$, and J is not attracted by a sink, is called a wandering interval.
C^{∞} interval maps having wandering intervals or infinitely many sinks can be constructed by using similar procedures [6]. Note that C^{∞} circle map with wandering intervals was first constructed by Hall [2] as an improvement of the classical Denjoy example. Using a procedure suggested by Coven and Nitecki [1] it can be easily transformed into C^{∞} interval map with wandering intervals. Some other examples were given by de Melo [5].

In [3] Mañé proved that C^{2} interval maps cannot possess infinitely many sinks or wandering intervals outside a neighbourhood of the critical set (see also [7]). Recall that the critical set K for a smooth interval map f is defined by $K=$ $\left\{x \in I \mid f^{\prime}(x)=0\right\}$. Martens, de Melo, and van Strien have shown [4] that C^{2} interval maps which are C^{3} in some neighbourhood of the critical set ${ }^{1}$ cannot have wandering intervals or infinitely many sinks provided all critical points are nonflat. Given $f(x)$, a critical point $c \in K$ is called nonflat if there exists an integer $k \geq 2$ such that $f(x) \in C^{k}$ in some neighbourhood of $x=c$ and $f^{(k)}(c) \neq 0$. This means that typical (in C^{3} topology) interval maps have finitely many sinks and do not have wandering intervals.

We construct, for any given $0<\epsilon<1$, an example of a unimodal interval map which has infinitely many sinks outside a neighbourhood of the critical point and which is C^{∞} everywhere except at one point where it is $C^{2-\epsilon}$. A similar example

[^0]of $C^{2-\epsilon}$ map with wandering intervals can be constructed. However, the proof is different (unlike [6] where both examples are treated along the same line), and we plan to discuss it in a forthcoming paper. This shows, in particular, that C^{2} smoothness for the above results by Mañé and Martens et.al. can not be decreased.

Recall that given $0<\epsilon<1$ and a set $M \subset \mathbb{R}, f(x)$ is said to belong to C^{ϵ} on M if $\sup _{x, y \in M}|f(x)-f(y)| /|x-y|^{\epsilon}<\infty$. Given $k \in \mathbb{N}$ and $0<\epsilon<1$ it is said that $f(x) \in C^{k+\epsilon}$ iff $f^{(k)}(x) \in C^{\epsilon}$. We say that $f(x) \in C^{k+\epsilon}$ at a point if it is of this class in some neighbourhood of the point.

2. Auxiliary Functions

Consider on the interval $[0,1]$ the following function

$$
\begin{aligned}
& \phi(x)=\int_{0}^{x} \exp \{1 / t(t-1)\} d t / \int_{0}^{1} \exp \{1 / t(t-1)\} d t, x \in(0,1) \\
& \phi(0)=0, \phi(1)=1
\end{aligned}
$$

It is an easy exercise to verify that $\phi(x)$ has the following properties:

- $\phi(x)$ strictly increases for $x \in[0,1]$;
$-\phi(x) \in C^{\infty}[0,1], \phi^{(k)}(0)=\phi^{(k)}(1)=0, k \in \mathbb{N}$;
- for every $k \in \mathbb{N}$, $\sup \left\{\left|\phi^{(k)}(x)\right|, x \in[0,1]\right\}=c_{k}, c_{k}$ is a constant depending on k only.
Given an interval $J=[a, b]$ and prescribed values $g_{1} \neq g_{2}$, suppose it is required to construct a smooth function $g(x), x \in[a, b]$, such that $g(a)=g_{1}, g(b)=g_{2}$. For this purpose the above $\phi(x)$ can be used. We set

$$
g(x)=\phi(x, J)=g_{1}+\left(g_{2}-g_{1}\right) \phi\left(\frac{x-a}{b-a}\right)
$$

The properties of $\phi(x)$ imply that $\phi(a, J)=g_{1}, \phi(b, J)=g_{2}, \phi(x, J)$ is strictly monotone and infinitely differentiable on $J=[a, b]$ with $\phi^{(k)}(a, J)=\phi^{(k)}(b, J)=0$ for all $k \geq 1$, and

$$
\begin{equation*}
\sup \left\{\left|\phi^{(k)}(x, J)\right|, x \in J\right\}=c_{k}\left|g_{2}-g_{1}\right| /|b-a|^{k} \tag{1}
\end{equation*}
$$

where c_{k} are the above constants depending on k only.
Let $a_{n}, n \in \mathbb{N}$, be a monotone sequence such that $\lim _{n \rightarrow \infty} a_{n}=a_{0}$ exists. Define J_{n} to be intervals with endpoints a_{n} and a_{n+1}. The function $\phi(x, J)$ will be used on the sequence of intervals J_{n} with given values g_{n} at the endpoints. Suppose in addition that $\lim _{n \rightarrow \infty} g_{n}=g_{0}$ exists. Then a function $g(x)$ is defined on the whole interval $\left[a_{1}, a_{0}\right]$ (or $\left[a_{0}, a_{1}\right]$) by

$$
g(x)=\phi\left(x, J_{n}\right), x \in J_{n}, g\left(a_{0}\right)=g_{0}
$$

Proposition 1. Suppose given J_{n} and g_{n} satisfy $\lim _{n \rightarrow \infty}\left|g_{n+1}-g_{n}\right| / \mid a_{n+1}-$ $\left.a_{n}\right|^{k}=0$ for every $k \in \mathbb{N}$. Then $g(x)$ is of C^{∞} class on $\left[a_{1}, a_{0}\right]\left(\left[a_{0}, a_{1}\right]\right)$.

Proof is an immediate consequence of the equality (1).
We shall need also the following
Proposition 2. Suppose $g(x) \in C^{k+1}, k \geq 1$, in some neighborhood of $x=a$ and $g^{(i)}(a)=0, i=1, \ldots, k$. Then $\lim _{b \rightarrow a}(g(b)-g(a)) /(b-a)^{i}=0$ for all $i=1, \ldots, k$.

Proof follows from the Taylor expansion of $g(x)$ in the neighborhood of $x=a$.
Proposition 2 includes also the case $g(x) \in C^{\infty}, g^{(k)}(a)=0, k \in \mathbb{N}$, in which $\lim _{b \rightarrow a}(g(b)-g(a)) /(b-a)^{i}=0$ for every $i \in \mathbb{N}$.

Let $z_{m}, m \in \mathbb{N}$, be an increasing sequence with $0<z_{1}$, and $\lim _{m \rightarrow \infty} z_{m}=1$. With $z_{0}=0$ denote $\left[z_{m-1}, z_{m}\right]=J_{m}$, and consider $\phi\left(x, J_{m}\right)$ with prescribed values $\phi\left(z_{m-1}\right), \phi\left(z_{m}\right)$ at the endpoints. Define $\eta(x)=\phi\left(x, J_{m}\right), x \in J_{m}$, and $\eta(1)=1$. The function $\eta(x)$ depends on $\phi(x)$ and particular choice of $z_{m}, m \in \mathbb{N}$.

Proposition 3. Let $k \in \mathbb{N}$ be given. There exist constants $L>0$ and $0<\delta<1$ which depend on k only and such that

$$
\begin{equation*}
\sup \left\{\left|\eta^{(i)}(x)\right|, x \in[0,1]\right\} \leq L c_{i}, i=1, \ldots, k \tag{2}
\end{equation*}
$$

provided $\left|1-z_{2}\right| \leq \delta$.
Proof. Let $\alpha \in(0,1)$ be given. Consider $\phi(x,[0, \alpha])$ and $\phi(x,[\alpha, 1])$ with prescribed values $\phi(0), \phi(\alpha)$, and $\phi(1)$ at the endpoints. Define $\psi(x)=\phi(x,[0, \alpha]), x \in$ $[0, \alpha], \psi(x)=\phi(x,[\alpha, 1]), x \in[\alpha, 1]$. Then there exists a positive constant L^{\prime} independent of α such that

$$
\sup \left\{\left|\psi^{(i)}(x)\right|, x \in[0,1]\right\} \leq L^{\prime} \sup \left\{\left|\phi^{(i)}(x)\right|, x \in[0,1]\right\}=L^{\prime} c_{i}, i=1, \ldots, k
$$

To prove this assume $i=1$ (case $i \geq 2$ is anologous). For $\alpha \in(0,1)$, $\sup \left\{\left|\phi^{\prime}(x,[0, \alpha])\right|, x \in[0, \alpha]\right\}=c_{1} \phi(\alpha) / \alpha$. Since $\phi(\alpha) / \alpha \rightarrow 0$ as $\alpha \rightarrow 0$ one has $\phi(\alpha) / \alpha \leq L^{\prime}$ for some $L^{\prime}>0$.

Consider now $\eta(x)$ and $\psi(x)$ with $\alpha=z_{1}$. For every $k \in \mathbb{N}$ the functions $\psi(x)$ and $\eta(x)$ are close in uniform C^{k} metric provided z_{2} is close to 1 . This follows from Proposition 2 and equality (1). Therefore, for every $L>L^{\prime}$ there exists $\delta>0$ such that inequality (2) holds provided $\left|1-z_{2}\right| \leq \delta$.

Let an interval $J=[a, b]$ and a sequence $a<u_{1}<u_{2}<\cdots<u_{n}<u_{n+1}<$ $\cdots \rightarrow b$ be given with prescribed values $g_{1} \neq g_{2}$ at the endpoints a and b respectively. Define $\eta(x, J)=g_{1}+\left(g_{2}-g_{1}\right) \eta\left(\frac{x-a}{b-a}\right), x \in J$, where $\eta(t), t \in[0,1]$, is constructed as above with $z_{i}=\left(u_{i}-a\right) /(b-a)$.

Proposition 4. Let $k \in \mathbb{N}$ be given. There exist constants $L>0$ and $0<\delta<1$ which depend on k only and such that

$$
\sup \left\{\left|\eta^{(i)}(x, J)\right|, x \in J\right\} \leq \frac{\left|g_{2}-g_{1}\right|}{|b-a|^{i}} L c_{i}, i=1, \ldots, k
$$

provided $\left|b-z_{2}\right| \leq \delta(b-a)$.
Proof. By differentiation $\eta(x, J)$ and using (2) the proof follows.

3. Example

3.1 Construction.

Take a sequence $x_{n}, n \geq 0$, such that $x_{0}=1$ and x_{n} monotonically approaches zero (particular choices of x_{n} will be specified later). Define $f\left(x_{n}\right)=x_{n-1}, n \in \mathbb{N}$. Set $g\left(x_{n}\right)=x_{n-1}-x_{n}=g_{n}$ and consider intervals $I_{n}=\left[x_{n+1}, x_{n}\right]$ with given values g_{n+1}, g_{n} at the endpoints. Define $g(x)=\phi\left(x, I_{n}\right), x \in I_{n}, n \in \mathbb{N}$, and $g(0)=0$.

Take arbitrary (but fixed) $z \in\left(x_{1}, 1\right), \lambda \in(0,1)$, and define $f(x)$ in the following way:
$-f(x)=x+g(x), x \in\left[0, x_{1}\right] ;$
$-f(x)=\lambda(1-x), x \geq z$;

- $f(x)$ is an arbitrary unimodal C^{∞} function on $\left[x_{1}, z\right]$ such that $f\left(x_{1}\right)=$ $1, f^{\prime}\left(x_{1}\right)=1, f(z)=\lambda(1-z), f^{\prime}(z)=-\lambda, f^{(i)}\left(x_{1}\right)=f^{(i)}(z)=0, i=$ $2,3, \ldots$;
$-f(x) \equiv x, x \leq 0$.
We note that given interval $[\alpha, \beta]$ it is always possible to construct $C^{\infty}[\alpha, \beta]$ function $f(x)$ which takes prescribed values $f^{(i)}(\alpha)=f_{i}^{\alpha}, f^{(i)}(\beta)=f_{i}^{\beta}, i=$ $0,1, \ldots, N$, at the endpoints, and $f^{(i)}(\alpha)=f^{(i)}(\beta)=0, i>N$. In our case such $f(x)$ may be chosen as follows. Take arbitrary $x_{*} \in\left(x_{1}, z\right)$ and define

$$
f(x)=1+\left(x-x_{1}\right)-(1+\lambda) \int_{x_{1}}^{x} \phi\left(\frac{t-x_{1}}{x_{*}-x_{1}}\right) d t, \quad x \in\left[x_{1}, x_{*}\right]
$$

Set $f_{*}=f\left(x_{*}\right)$ and define next

$$
f(x)=\lambda(1-x)+\left[f_{*}-\lambda\left(1-x_{*}\right)\right] \phi\left(\frac{z-x}{z-x_{*}}\right), \quad x \in\left[x_{*}, z\right] .
$$

It is an easy exercise to verify that f is unimodal for $x_{*}-x_{1}$ small enough and is C^{∞} in $\left[x_{1}, z\right]$.

If we define $b=\max \left\{f(x), x \in\left[x_{1}, z\right]\right\}$ and set $a=\lambda(1-b)$, the interval $I=[a, b]$ is mapped by f onto itself.

Since $\phi\left(x, I_{n}\right) \in C^{\infty}$ it is straightforward that $f(x) \in C^{\infty}$ everywhere on $[a, b]$ except possibly the point $x=0$.

Next we are going to choose a sequence of cycles of $f(x)$ with unbounded periods. These cycles will be transformed, by a further change of $f(x)$, into attracting ones. To guarantee required smoothness of the resulting map we choose the sequence in a special way.

Due to the construction we have: $f\left(I_{n}\right)=I_{n-1}, n \in N$, and $f\left(I_{0}\right) \supset[0,1]$ (here $I_{0}=\left[x_{1}, 1\right]$). Therefore, for every $n \in N$ there exists a cycle $\beta=\beta(n)=$ $\left\{z_{0}^{(n)}, \ldots, z_{n-1}^{(n)}\right\}$ of period n such that $z_{0}^{(n)} \in I_{0}, z_{1}^{(n)} \in I_{1}, \ldots, z_{n-1}^{(n)} \in I_{n-1}$. Since $\lim _{n \rightarrow \infty} x_{n}=0$ there exists $n_{0} \in N$ with $z_{0}^{(n)} \in[z, 1]$ for all $n \geq n_{0}$.

Take some $n_{1} \geq n_{0}$ and consider the cycle $\beta_{1}=\left\{z_{0}^{\left(n_{1}\right)}, z_{1}^{\left(n_{1}\right)}, \ldots, z_{n_{1}-1}^{\left(n_{1}\right)}\right\}$ of period n_{1} as the first chosen one. Let $L>1$ and $0<\delta<1$ be fixed constants (their further choice is specified in subsection 3.2). Take next $n_{2}>n_{1}$ in such a way that the cycle $\beta_{2}=\left\{z_{0}^{\left(n_{2}\right)}, z_{1}^{\left(n_{2}\right)}, \ldots, z_{n_{2}-1}^{\left(n_{2}\right)}\right\}$ has the following property:

$$
\begin{aligned}
& x_{i}-z_{i}^{\left(n_{2}\right)} \leq \delta \operatorname{diam} I_{i} \\
& \frac{\left|g\left(z_{i}^{\left(n_{2}\right)}\right)-g\left(z_{i}^{\left(n_{1}\right)}\right)\right|}{\left|z_{i}^{\left(n_{2}\right)}-z_{i}^{\left(n_{1}\right)}\right|} \leq L \frac{\left|g\left(x_{i}\right)-g\left(z_{i}^{\left(n_{1}\right)}\right)\right|}{\left|x_{i}-z_{i}^{\left(n_{1}\right)}\right|}
\end{aligned}
$$

$i=1,2, \ldots, n_{1}-1$. In view of Proposition 2 such a choice is always possible, since point $z_{0}^{(n)}$ of the cycle $\beta(n)$ satisfies $\lim _{n \rightarrow \infty} z_{0}^{(n)}=1$. This implies $z_{i}^{(n)} \rightarrow x_{i}$ as $n \rightarrow \infty$ for arbitrary $i \in \mathbb{N}$.

In the next step choose $n_{3}>n_{2}$ in such a way that the cycle $\beta_{3}=\left\{z_{0}^{\left(n_{3}\right)}, \ldots\right.$, $\left.z_{n_{3}-1}^{\left(n_{3}\right)}\right\}$ has the property:

$$
\begin{aligned}
& x_{i}-z_{i}^{\left(n_{3}\right)} \leq \delta \operatorname{diam} I_{i} \\
& \frac{\left|g\left(z_{i}^{\left(n_{3}\right)}\right)-g\left(z_{i}^{\left(n_{2}\right)}\right)\right|}{\left|z_{i}^{\left(n_{3}\right)}-z_{i}^{\left(n_{2}\right)}\right|^{2}} \leq L \frac{\left|g\left(x_{i}\right)-g\left(z_{i}^{\left(n_{2}\right)}\right)\right|}{\left|x_{i}-z_{i}^{\left(n_{2}\right)}\right|^{2}}
\end{aligned}
$$

$i=1,2, \ldots, n_{2}-1$. Note that we have to care about inequalities $x_{i}-z_{i}^{\left(n_{3}\right)} \leq$ $\delta \operatorname{diam} I_{i}$ for $i=n_{1}, \ldots, n_{2}-1$ only since they are satisfied for $i=1,2, \ldots, n_{1}-1$ because $x_{i}>z_{i}^{\left(n_{3}\right)}>z_{i}^{\left(n_{2}\right)}$.

In the $k^{t h}$ step we choose $n_{k}>n_{k-1}$ in such a way that the cycle $\beta_{k}=$ $\left\{z_{0}^{\left(n_{k}\right)}, \ldots, z_{n_{k}-1}^{\left(n_{k}\right)}\right\}$ has the property:

$$
\begin{align*}
& x_{i}-z_{i}^{\left(n_{k}\right)} \leq \delta \operatorname{diam} I_{i} \tag{3}\\
& \frac{\left|g\left(z_{i}^{\left(n_{k}\right)}\right)-g\left(z_{i}^{\left(n_{k-1}\right)}\right)\right|}{\left|z_{i}^{\left(n_{k}\right)}-z_{i}^{\left(n_{k-1}\right)}\right|^{k-1}} \leq L \frac{\left|g\left(x_{i}\right)-g\left(z_{i}^{\left(n_{k-1}\right)}\right)\right|}{\left|x_{i}-z_{i}^{\left(n_{k-1}\right)}\right|^{k-1}} \tag{4}
\end{align*}
$$

$i=1,2, \ldots, n_{k-1}-1$.

Proceeding in this way we obtain on each of the intervals $I_{n}, n \in \mathbb{N}$, a sequence $z_{n}^{\left(n_{m}\right)}, m \geq l$, for some $l=l(n)$ satisfying $x_{n+1}<z_{n}^{\left(n_{l}\right)}<z_{n}^{\left(n_{l+1}\right)}<$ $z_{n}^{\left(n_{l+2}\right)}<\ldots<z_{n}^{\left(n_{m}\right)}<\ldots \rightarrow x_{n}$. Denote $\left[x_{n+1}, z_{n}^{\left(n_{l}\right)}\right]=J_{n l},\left[z_{n}^{\left(n_{l}\right)}, z_{n}^{\left(n_{l+1}\right)}\right]=$ $J_{n l+1}, \ldots,\left[z_{n}^{\left(n_{m-1}\right)}, z_{n}^{\left(n_{m}\right)}\right]=J_{n m}, \ldots$, with prescribed values of given $g(x)$ at the endpoints. Redefine $g(x)$ on I_{n} by setting:

$$
g^{*}(x)=\phi\left(x, J_{n i}\right), x \in J_{n i}, i \geq l(n), \text { and, } g^{*}\left(x_{n}\right)=g\left(x_{n}\right) .
$$

Consider now new $f(x)$ as defined above with $g(x)$ replaced by $g^{*}(x)$. Since

$$
\left.\frac{d}{d x} f(x)\right|_{x=z_{0}^{\left(n_{k}\right)}}=-\lambda,\left.\quad \frac{d}{d x} f(x)\right|_{x=z_{i}^{\left(n_{k}\right)}}=1, \quad i=1,2, \ldots, n_{k}-1
$$

the multiplicator of the cycle $\beta_{k}=\left\{z_{0}^{\left(n_{k}\right)}, z_{1}^{\left(n_{k}\right)}, \ldots, z_{n_{k}-1}^{\left(n_{k}\right)}\right\}$ equals $-\lambda$. This shows that every cycle $\beta_{k}, k \in N$, is attracting one.

3.2 Smoothness of $f(x)$.

Theorem. For arbitrary $0<\epsilon<1$ the sequence x_{n} and cycles $\beta_{n}, n \in \mathbb{N}$, may be chosen in such a way that $f(x) \in C^{\infty}$ for $x \in[a, b] \backslash\{0\}$, and $f(x) \in C^{2-\epsilon}$ for $x=0$.

Proof. Choose $L>1$ and $0<\delta<1$ for inequalities (3), (4) and Propositions 3 , and 4 with $J=I_{n}$ to hold.

Claim 1. $g^{*}(x)$ is of C^{∞} class on every interval $I_{n}, n \geq 1$.
Proof. It is enough to show that $\lim _{i \rightarrow \infty} \sup \left\{\left|\phi^{(k)}\left(x, J_{n i}\right)\right|\right\}=0$ for every $k \geq 1$. Using (1) and (4) we have $\sup \left\{\left|\phi^{(k)}\left(x, J_{n i}\right)\right|, x \in J_{n i}\right\}=c_{k} \mid g\left(z_{n}^{\left(n_{i}\right)}\right)-$ $g\left(z_{n}^{\left(n_{i-1}\right)}\right)\left|/\left|z_{n}^{\left(n_{i}\right)}-z_{n}^{\left(n_{i-1}\right)}\right|^{k} \leq c_{k} L\right| g\left(x_{n}\right)-g\left(z_{n}^{\left(n_{i-1}\right)}\right)\left|/\left|x_{n}-z_{n}^{\left(n_{i-1}\right)}\right|^{k}\right.$ for i sufficiently large. Proposition 2 gives $\left|g\left(x_{n}\right)-g\left(z_{n}^{\left(n_{i-1}\right)}\right)\right| /\left|x_{n}-z_{n}^{\left(n_{i-1}\right)}\right|^{k} \rightarrow 0$ as $i \rightarrow \infty$. Therefore, Proposition 1 applies to conclude $g^{*}(x) \in C^{\infty}$ for $x \in I_{n}$ for every finite n.

Choose the sequence $x_{n}, n \in \mathbb{N}$, in such a way that $\Delta x_{n}=x_{n}-x_{n+1}=d / n^{1+\tau}$ for large N where $0<d$ and $\tau>0$ are constants. Then $x_{n}=\sum_{i=n}^{\infty} \Delta x_{i} \sim d_{1} / n^{\tau}$ as $n \rightarrow \infty$ for some $d_{1}>0$.

Claim 2. For every $\tau>0 f^{\prime}(x)$ is continuous for all $x \in[a, b]$, moreover, $\sup \left\{\left|g^{* \prime}(x)\right|, x \in I_{n}\right\} \leq d_{2} / n$ for some $d_{2}>0$.

Proof. It is enough to show the continuity at $x=0$ only. With constants L and $0<\delta<1$ chosen above one has $\sup \left\{\left|g^{* \prime}(x)\right|, x \in I_{n}\right\} \leq L \sup \left\{\left|g^{\prime}(x)\right|, x \in I_{n}\right\}$ provided $\left|x_{n}-z_{n}^{\left(n_{l}\right)}\right| \leq \delta \operatorname{diam} I_{n}$. This follows from Proposition 4. Using this and (1) we obtain $\sup \left\{\left|g^{* \prime}(x)\right|, x \in I_{n}\right\} \leq c_{1} L\left|\Delta x_{n-1}-\Delta x_{n}\right| / \Delta x_{n} \sim d_{2} / n$ as $n \rightarrow \infty$ for some $d_{2}>0$. Therefore, $\lim _{x \rightarrow 0} f^{\prime}(x)=1=f^{\prime}(0)$.

Claim 3. For arbitrary $0<\epsilon<1$ there exists $\tau=\tau(\epsilon)$ such that $f^{\prime}(x) \in C^{1-\epsilon}$ at $x=0$.

Proof. We have to show that for every $\epsilon>0$ there exists $\tau>0$ such that

$$
\begin{equation*}
\limsup _{x, y \rightarrow+0} \frac{\left|f^{\prime}(x)-f^{\prime}(y)\right|}{|x-y|^{1-\epsilon}}<\infty \tag{5}
\end{equation*}
$$

Suppose first $x, y \in I_{n}$. Then $|x-y| \leq \Delta x_{n}, g^{*}(x)=\eta\left(x, I_{n}\right)$ for a respective η. Using intermediate value theorem and Proposition 3 we obtain

$$
\begin{aligned}
& \frac{\left|f^{\prime}(x)-f^{\prime}(y)\right|}{|x-y|^{1-\epsilon}}=\frac{\left|g_{n}-g_{n+1}\right|}{\left|x_{n}-x_{n+1}\right|}\left|\eta^{\prime}\left(\frac{x-x_{n+1}}{x_{n}-x_{n+1}}\right)-\eta^{\prime}\left(\frac{y-x_{n+1}}{x_{n}-x_{n+1}}\right)\right| /|x-y|^{1-\epsilon} \leq \\
& \leq d_{4} \frac{\left|g_{n}-g_{n+1}\right|}{\left|x_{n}-x_{n+1}\right|^{2}}|x-y|^{\epsilon} \leq d_{4} n^{\tau-\epsilon(1+\tau)}
\end{aligned}
$$

for some $d_{4}>0$ and large n. By choosing $0<\tau<\epsilon$ (5) follows.
Suppose next $x \in I_{n}, y \in I_{n+1}$. Then

$$
\frac{\left|f^{\prime}(x)-f^{\prime}(y)\right|}{|x-y|^{1-\epsilon}} \leq \frac{\left|f^{\prime}(x)-f^{\prime}\left(x_{n+1}\right)\right|}{\left|x-x_{n+1}\right|^{1-\epsilon}}+\frac{\left|f^{\prime}(y)-f^{\prime}\left(x_{n+1}\right)\right|}{\left|y-x_{n+1}\right|^{1-\epsilon}}
$$

and by the first case considered, (4) follows.
Suppose finally $x \in I_{n}, y \in I_{m}, n+1<m$. Then $|x-y| \geq \Delta x_{n+1}$, and in view of Claim 2 we have

$$
\frac{\left|f^{\prime}(x)-f^{\prime}(y)\right|}{|x-y|^{1-\epsilon}} \leq d_{2} \frac{|1 / n+1 / m|}{1 /(n+1)^{(1+\tau)(1-\epsilon)}} \leq d_{5} n^{\tau-\epsilon(1+\tau)}
$$

for some $d_{5}>0$ and large n. By choosing $0<\tau<\epsilon$, (4) follows.
The remaining case $x \in I_{n}, y=0$ follows from the above with $1 / m=0$. This completes the proof.

Acknowledgement. I am thankful to the referee for his careful reading the manuscript and helpful suggestions to improve the paper.

References

1. Coven E. M. and Nitecki Z., Non-wandering sets of the powers of maps of the interval, Ergod. Th.\& Dynam. Sys. 1 (1981), 9-31.
2. Hall G. R., A C^{∞} Denjoy counterexample., Ergod. Th.\& Dynam.Sys. 1 (1981), 261-272.
3. Mañé R., Hyperbolicity, sinks, and measure in one-dimensional dynamics., Commun. Math. Phys. 100 (1985), 495-524.
4. Martens M., de Melo W., and van Strien S., Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Preprint no. 88-100, Delft University (1988).
5. de Melo W., A finiteness problem for one-dimensional dynamics., Proc. Amer. Math. Soc. 101 (1987), 721-727.
6. Sharkovsky A. N. and Ivanov A. F., C^{∞} interval maps with attracting cycles of arbitrarily large periods, Ukrainian Math. J. 35 no. 4 (1983), 537-539. (Russian)
7. van Strien S., Hyperbolicity and invariant measures for general C^{2} interval maps satisfying the Misiurewicz condition, Commun. Math. Phys. 128 (1990), 437-495.
A. F. Ivanov, Institute of Mathematics of the Ukrainian Academy of Sciences, Kiev, Ukraine; current address: Alexander von Humboldt Fellowship at Mathematisches Institut der Universität München, Germany

[^0]: Received October 21, 1991; revised April 30, 1992.
 1980 Mathematics Subject Classification (1991 Revision). Primary 58F08, 26A18; Secondary 54 H 20 .

 The research was supported by the Alexander von Humboldt Stiftung
 ${ }^{1}$ The exact statement in [4] is slightly stronger

