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NORM–TO–WEAK UPPER SEMICONTINUOUS MONOTONE

OPERATORS ARE GENERICALLY STRONGLY CONTINUOUS

L. VESELÝ

Abstract. In any Banach space a monotone operator with a norm-to-weak upper
semicontinuous multivalued selection on an open set D is singlevalued and norm-
to-norm upper semicontinuous at the points of a dense Gδ subset of D.

Monotone operators — and especially a special case of them, subdifferentials of

convex functions — play an important role in various parts of nonlinear analysis.

One of the often investigated problems is the question about generic continuity of

monotone operators, which in the case of subdifferentials means generic Fréchet

differentiability of convex functions.

In general Banach spaces monotone operators are not always generically con-

tinuous. There are numerous characterizations of Asplund spaces, i.e. the spaces

in which any monotone operators is generically continuous on the interior of its

effective domain (see e.g. [Ph]). The aim of this note is to prove that monotone

operator of a certain class are generically continuous in an arbitrary Banach space

(Theorem 2).

Our result can be deduced from a selection result by Ch. Stegall [St], based on

hard topological techniques (Remark 2). We present a relatively simple alternative

proof, self-contained in the sense that it uses monotone operator techniques only.

Three main tools of this note are following: a slight modification of a result

by D. Preiss and L. Zaj́ıček [Pr–Zaj] (Theorem P–Z), the observation that the

image of a separable set by a norm-to-weak continuous mapping is separable, and

the well known method of separable reduction which extends the result from the

separable into the nonseparable case.

Definitions and Notations

Let us recall some definitions and notations. X always denotes a real Banach

space, X∗ its continuous dual. Closed and open balls with centre c (in X or X∗)

and radius r > 0 are denoted by B(c; r) and B(c; r), respectively.
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A setvalued mapping T : X → 2X
∗

is a monotone operator if 〈x−y, x∗−y∗〉 ≥
0 whenever x, y ∈ X, x∗ ∈ T (X), y∗ ∈ T (Y ). The effective domain of T is

the set D(T ) = {x ∈ X; T (x) 6= ∅}. The symbol S ⊂ T will mean that S is a

setvalued mapping from X into X∗ with the property S(x) ⊂ T (x) for all x ∈ X.

If T (x) is a singleton, we often identify it with the point in X∗; so, for example,

B(T (x); r) means B(x∗; r) where x∗ ∈ X∗ is such that T (x) = {x∗}. We put

T (G) = ∪{T (x); x ∈ G}.
T is (n-w)u.s.c. (norm-to-weak upper semicontinuous) at x0 ∈ D(T ) if for any

weakly open set W with T (x0) ⊂W there is δ > 0 such that T (x) ⊂W whenever

x ∈ B(x0; δ).

We shall say that T is strongly continuous at x0 ∈ D(T ) if T (x0) is a singleton

and x∗n → T (x0) whenever xn → x0 and x∗n ∈ T (xn) for all n (or equivalently:

T (x0) is a singleton and T is u.s.c. at x0 in the norm topologies on X and X∗).

Let us remark that a monotone operator T has always an extension which is

norm-to-weak∗ u.s.c. at the points in the interior of D(T ) (cf. results on maximal

monotone operators in [Ph]).

Preliminary Results

Theorem Z (E. H. Zarantonello [Zar]). Let D be a nonempty open set in

a separable Banach space X. Then any monotone operator T : X → 2X
∗

with

D(T ) ⊃ D is generically singlevalued in D.

Theorem P–Z. Let T : X → 2X
∗

be a monotone operator with an arbitrary

domain D(T ). Suppose there is a countable set C ⊂ X∗ such that dist (T (x), C) =

0 for any x ∈ D(T ). Then the set

{x ∈ D(T ); T is not strongly continuous at x}

is of the first Baire category.

Proof. It can be repeated word by word the proof of [Pr–Zaj] (see also [Ph;

Theorem 2.11]) replacing the countable dense subset of X∗ by our set C. �
Remark 1. Much more can be said in the two theorems above. In [Zaj],

L. Zaj́ıček proved that for any monotone operator T with an arbitrary D(T ) on

a separable space the set M = {x ∈ D(T ); card (T (x)) > 1} can be covered

by countably many Lipschitz hypersurfaces. Even a stronger result is proved in

[Ves]: the set M is a countable union of “CFC-fragments of codimension 1”. The

exceptional set from Theorem P–Z is even “angle-small” (cf. [Pr–Zaj], [Ph]).

The following lemma is well known, but we have not found any reference.

Lemma. Let G be a nonempty open set in X and let K ⊂ X∗ be a convex

weak∗-compact set. Let T : X → 2X
∗

be a monotone operator with D(T ) ⊃ G. If

the set Q = {x ∈ G; T (x) ∩K 6= ∅} is dense in G then T (G) ⊂ K.
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Proof. Suppose there exist x ∈ G and x∗ ∈ T (x) \ K. Then there is a vec-

tor v ∈ X with 0 < ‖v‖ < dist (x,X \ G) and 〈v, x∗〉 > sup〈v,K〉. Denote

m = sup{‖x∗ − y∗‖; y∗ ∈ K}. Clearly x + v ∈ G and m > 0. By the den-

sity assumption there is a vector u ∈ X such that y := x + v + u ∈ Q and

‖u‖ < 1
m

(〈v, x∗〉 − sup 〈v,K〉). Take y∗ ∈ T (y)∩K. The monotonicity of T gives

0 ≤ 〈y − x, y∗ − x∗〉 = 〈v + u, y∗ − x∗〉. Consequently

sup 〈v,K〉 ≥ 〈v, y∗〉 ≥ 〈v, x∗〉 − 〈u, y∗ − x∗〉

≥ sup 〈v,K〉+ (〈v, x∗〉 − sup 〈v,K〉 −m‖u‖) > sup 〈v,K〉

which is a contradiction.

Theorems

Theorem 1 (separable case). Let D be a nonempty open subset of a separable

Banach space X and let T : X → 2X
∗

be a monotone operator with D(T ) ⊃ D.

Suppose there exists an operator S ⊂ T with D(S) residual in D and such that S

is (n-w)u.s.c. at the points of D(S)∩D. Then T is generically strongly continuous

in D.

Proof. By Theorem Z, the set D1 = {x ∈ D ∩ D(S); card (T (x)) = 1} is

residual in D. Let A be a countable dense subset of D1. Clearly T |D1
= S|D1

is

singlevalued and norm-to-weak continuous, hence

T (D1) ⊂ T (A)
w
⊂ span (T (A))

w
= span (T (A)).

Consequently T (D1) is separable. Applying Theorem P–Z to the operator T |D1
we conclude that T |D1

is strongly continuous at points of a residual subset D0 of

D1. D0 is residual in D, too.

It suffices to show that T is continuous at each point x0 ∈ D0. Take ε > 0

arbitrarily. There is δ > 0 such that T (x) ∈ B(T (x0); ε) whenever x ∈ B(x0; δ) ∩
D1. Using Lemma for K = B(T (x0); ε), G = B(x0, δ) we get T (u) ⊂ B(T (x0); ε)

whenever u ∈ B(x0; δ). This completes the proof. �

Theorem 2 (nonseparable case). Let D be a nonempty open subset of

an arbitrary Banach space X and let T : X → 2X
∗

be a monotone operator with

D(T ) ⊃ D. Suppose there exists S ⊂ T with D(S) ⊃ D and such that S is

(n-w)u.s.c. in D. Then T is generically strongly continuous in D.

Proof. Suppose that the set H = {x ∈ D; T is not strongly continuous at x} is

of the second category. Since H = ∪∞m=1Hm, where

Hm = {x ∈ D; there exist f ∈ T (X), {yk} ⊂ D, gk ∈ T (yk) such that

lim yk = x and ‖gk − f‖ >
1

m
for all k},
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by the Baire Category Theorem there is an index m0 and a nonempty open set

G ⊂ D such that Hm0 is dense in G.

We shall construct a sequence Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . of separable subspaces of X

by induction.

Choose an arbitrary point x0 ∈ Hm0 ∩ G. There exist f0 ∈ T (x0) and a

sequence {(yk, gk)} in the graph of T such that lim yk = x0 and ‖gk − f0‖ >
1
m0

.

For any k choose vk ∈ X such that ‖vk‖ = 1 and 〈gk − f0, vk〉 >
1
m0

. Define

Y0 = span ({x0} ∪ {yk}∞1 ∪ {vk}
∞
1 ). Clearly Y0 is separable.

Let Y0 ⊂ Y1 ⊂ · · · ⊂ Ys be already defined. There exists a sequence {csi}
∞
i=1

which is a countable dense subset of Ys ∩G. (Note that Ys ∩G is nonempty since

it contains x0.) For any i there is a sequence {xsi,n}
∞
n=1 ⊂ Hm0 ∩ G such that

limn x
s
i,n = csi . By the definition of Hm0 , for any i, n there exist fsi,n ∈ T (xsi,n)

and a sequence {(ysi,n,k, g
s
i,n,k)}∞k=1 in the graph of T such that

lim
k
ysi,n,k = xsi,n and ‖gsi,n,k − f

s
i,n‖ >

1

m0
for all k.

Choose vsi,n,k ∈ X such that ‖vsi,n,k‖ = 1 and

〈gsi,n,k − f
s
i,n, v

s
i,n,k〉 >

1

m0
.

Define

Ys+1 = span (Ys ∪ {x
s
i,n}
∞
i,n=1 ∪ {y

s
i,n,k}

∞
i,n,k=1 ∪ {v

s
i,n,k}

∞
i,n,k=1).

Put Y =
⋃∞
s=1 Ys. It is evident that Y is a closed separable subspace of X and

GY = G ∩ Y is a nonempty open set in Y . Let Q : X∗ → Y ∗ be the “restriction

map” ϕ 7→ ϕ|Y (which is equal to the quotient map of X∗/Y ⊥ if we identify Y ∗

with X∗/Y ⊥). Q is continuous and linear, hence Q is also continuous for weak

topologies on X∗ and Y ∗. Clearly TY = Q ◦ T |Y is a monotone operator on Y

with D(TY ) ⊃ GY and its “multivalued selection” SY = Q ◦S|Y is (n-w)u.s.c. on

GY . By Theorem 1, TY is generically strongly continuous in GY .

But we shall show that TY is a strongly continuous at no point of GY . Fix

z ∈ GY and δ > 0. It is easy to see that there exist positive integers s, i, n, k

such that ‖z − xsi,n‖ < δ and ‖z − ysi,n,k‖ < δ. (In fact, we can find some us ∈
Ys ∩G near z, csi near us, xsi,n near csi , y

s
i,n,k near xsi,n.) Now Q(fsi,n) ∈ TY (xsi,n),

Q(gsi,n,k) ∈ TY (ysi,n,k) and

‖Q(fsi,n)−Q(gsi,n,k)‖ ≥ 〈Q(fsi,n)−Q(gsi,n,k), vsi,n,k〉 = 〈fsi,n − g
s
i,n,k, v

s
i,n,k〉 >

1

m0
.

Consequently diam (TY (Y ∩ B(z; δ))) > 1
m0

for any δ > 0, and hence TY is not

strongly continuous at z. This is a contradiction with generic strong continuity of

TY . �
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Remark 2. As already remarked in the introduction, our Theorem 2 admits

an alternative proof. Results in [St] imply that there exists σ : D → X∗ of the first

Baire class such that dist (σ(x), S(x)) = 0 for all x ∈ D. Hence σ is a selection for

any maximal monotone extension T̂ of T on D. The points of continuity of σ form

a dense Gδ subset D0 of D. Reasoning as in the end of the proof of Theorem 1, it

is possible to show that T̂ , and hence also T , is strongly continuous at each point

of D0.
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