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ON SURJECTIVE KERNELS OF PARTIAL ALGEBRAS

P. ZLATOŠ

Abstract. A partial algebra A = (A, F ) is called surjective if each of its elements
lies in the range of some of its operations. By a transfinite iteration construction
over the class of all ordinals it is proved that in each partial algebra A there exists
the largest surjective subalgebra Skr A, called the surjective kernel of A. However,
what might be found a bit surprising, for each ordinal α there is an algebra A
with only finitary operations (even with a single unary operation), such that the
described construction stops exactly in α steps. The result is compared with the
classical ones on perfect kernels of first countable topological spaces.

We use standard set-theoretical notation and terminology; in particular Y X

denotes the set of all functions from the set X into the set Y , each ordinal α is

represented as the set of all ordinals β < α, the least ordinal of cardinality ℵγ is

denoted by ωγ , and ω = ω0.

Under the term “partial algebra” we will understand a pair A = (A,F ), where

A is an arbitrary set and F is a set of partial (finitary or infinitary) operations on

A (we do not exclude any of the possibilities A = ∅ or F = ∅). For an operation

f ∈ F we denote by ar(f) the arity and by D(f) the domain of f . This is to

say that to each f ∈ F two sets ar(f) (in most cases ar(f) is assumed to be

an ordinal) and D(f) ⊆ Aar(f) are assigned, such that f : D(f) → A. A partial

algebra A = (A,F ) will be called finitary if ar(f) is finite for each f ∈ F . A will

be called a total algebra, or simply an algebra if all its operations are total, i.e.,

D(f) = Aar(f) for each f ∈ F .

Any subset B ⊆ A closed with respect to all operations f ∈ F , i.e. f(b) ∈ B
whenever b ∈ D(f)∩Bar(f), will be called a subalgebra of A and it will be identified

with the corresponding partial algebra B = (B,FB), where FB = {fB; f ∈ F} and

fB denotes the restriction of f to B, i.e. ar(fB) = ar(f), D(fB) = D(f) ∩ Bar(f)

and fB(b) = f(b) for b ∈ D(fB). Obviously, every subalgebra of a total algebra

is total, as well.
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Let A = (A,F ) be a partial algebra, X ⊆ A and H ⊆ F . We put

H[X] =
⋃
f∈H

f
[
Xar(f)

]
=
{
f(a); f ∈ H & a ∈ D(f) ∩Xar(f)

}
.

The partial algebra A = (A,F ) will be called surjective if A = F [A]. The

largest surjective subalgebra of A (we will prove that it always exists) will be

called the surjective kernel of A and denoted by Skr A.

Concerning the asymptotic behaviour of a (partial) finitary algebra A, it suffices

to deal with its surjective kernel Skr A, as the remaining elements of A do not

matter at all. It is not our aim to make fully precise the intuitive meaning of the

previous sentence in this short note. We expect that the article [Z], devoted to

this topic and developing some ideas from [M–Z], will be submitted in the nearest

future.

For every partial algebra A = (A,F ) and any subset X ⊆ A one can construct a

sequence of subsets F (n)[X] ⊆ A by recursion over the set ω of all natural numbers

putting

F (0)[X] = X,

F (n+1)[X] = F
[
F (n)[X]

]
.

If B is a subalgebra of A, then obviously, F (n+1)[B] ⊆ F (n)[B] holds for each

n, all the sets F (n)[B] are subalgebras of A, and they are nonempty provided B

is. On the other hand, taking for A the algebra with the underlying set ω and the

successor operation, one can see that the intersection
⋂
n<ω F

(n)[A] may well be

empty.

But more surprising is (at least for the author was) the fact that the expected

and offering “theorem,” asserting

Skr A =
⋂
n<ω

F (n)[A],

is not true even for finitary algebras, as it will be shown within short.

This leads us to prolong the above sequence F (n)[B] over the class Ω of all

ordinals by transfinite recursion. For every partial algebra A = (A,F ), any its

subalgebra B, each ordinal α and each limit ordinal λ > 0 we put

F (0)[B] = B,

F (α+1)[B] = F
[
F (α)[B]

]
,

F (λ)[B] =
⋂
β<λ

F (β)[B].

We write f (α)[B] instead of {f}(α)[B].

Again, each F (α)[B] is a subalgebra of A and F (β)[B] ⊆ F (α)[B] for all ordinals

α ≤ β. Also, if C is another subalgebra of A and B ⊆ C, then F
(α)
B [B] ⊆ F (α)[C]

holds for each α ∈ Ω.
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Proposition. For every partial algebra A = (A,F ) there is an ordinal number

ϑ such that

Skr A = F (ϑ)[A] =
⋂
α∈Ω

F (α)[A].

Proof. As A is a set, the sequence
{
F (α)[A]

}
α∈Ω

cannot be strictly decreasing.

Let us denote ϑ the least ordinal such that F (ϑ)[A] = F (ϑ+1)[A]. Then obviously

F (ϑ)[A] =
⋂
α∈Ω

F (α)[A],

and it is a surjective subalgebra of A. On the other hand, if B is any surjective

subalgebra of A, then for each ordinal α we have B = F (α)[B]. In particular,

B = F (ϑ)[B] ⊆ F (ϑ)[A].

Hence F (ϑ)[A] = Skr A is the largest surjective subalgebra of A. �

The least ordinal ϑ such that F (ϑ)[A] = F (ϑ+1)[A] will be called the depth of

A and denoted by ϑA. Thus

Skr A = F (ϑA)[A].

If A is finite, then obviously ϑA ≤ card(A)−1. If card(A) = ℵγ , say, then, as it

will be shown during the proof of the next Theorem, one cannot prove more than

the obvious inequality ϑA < ωγ+1.

Given a partial algebra A = (A,F ), we will introduce the surjectivity rank

function on A putting

rankA[x] =

{
α if x ∈ F (α)[A] \ F (α+1)[A],

Ω if x ∈ Skr A

for x ∈ A.

Theorem. For each ordinal α there exists an algebra A = (A, f) with a single

unary operation, such that ϑA = α.

Proof. We will construct a sequence of algebras Tα = (Tα, fα) with a single

unary operation by transfinite recursion over Ω. Each Tα in fact will be a tree

with finite branches only, and fα will be the tree-predecessor operation along the

branches. Let t be any element, distinct from any finite sequence of ordinals (hence

from all the nodes to be added during the construction); it will be the root of each

of the trees Tα.

We start with the trivial tree, i.e.,

T0 = {t} and f0(t) = t.
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Then for each α ∈ Ω we put

Tα+1 = Tα ∪ {α} and fα+1(x) =


fα(x), for x ∈ Tα, x 6= t 6= fα(x),

α, for x ∈ Tα, x 6= t = fα(x),

t, for x = α or x = t.

Thus Tα+1 is the tree obtained by inserting a new node α between the root t and

the rest of the tree.

Further, for each limit ordinal λ > 0 we define

Tλ = {t} ∪
⋃
α<λ

(
Tα \ {t}

)
× {α},

fλ(t) = t and fλ(x,α) =

{
(fα(x), α) if fα(x) 6= t,

t if fα(x) = t,

whenever α < λ, x ∈ Tα, x 6= t. In other words, Tλ is the tree obtained by

identifying the roots (but no other nodes) of all the preceding trees Tα, α < λ.

Some of the trees Tα are in the following picture:

T0 T1 T2

Tω Tω+1
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Now, following the described construction, one can easily prove by transfinite

induction that every tree Tα has indeed finite branches only, and that

f (α)
α [Tα] = {t} = f (α+1)

α [Tα] and rankTα [x] < α

for each α ∈ Ω and each x ∈ Tα, x 6= t. Consequently

Skr Tα = {t} and ϑTα = α

for each α ∈ Ω. �

Any first countable topological space (M,O), in particular any metric space

(M,d), raises to a partial algebra M = (M, lim) where lim denotes the partial

ω-ary operation of taking limits of convergent seqences a ∈ Mω. It is clear that

a set C ⊆ M is a subalgebra of M if and only if it is closed in the corresponding

topological space (M,O). However, the above construction applied to the partial

algebra M, though it reminds of the Cantor’s derivative, leads to trivial results,

only. For each set X ⊆M , lim[X] is namely the closure of X, and lim[C] = C for

each closed set C ⊆ M . Nevertheles our algebraic construction can be modified

to include the Cantor’s derivative in the following way.

For every partial algebra A = (A,F ) and all X ⊆ A, H ⊆ F we put

H〈X〉 =
{
f(a); f ∈ H & a ∈ D(f) ∩Xar(f) & (∀p ∈ ar(f))(a(p) 6= f(a))

}
.

Obviously, lim〈X〉 is the set of all accumulation points of the set X ⊆ M in

the first countable topological space (M,O), or if you like, the Cantor’s derivative

of X.

Now, a partial algebra A = (A,F ) can be be called perfect if A = F 〈A〉.
Similarly as in the previous case, iterating this new construction for a given

subalgebra B of A, one can produce a transfinite sequence
{
F (α)〈B〉

}
α∈Ω

of sub-

algebras of A, isotone in B and antitone in α. Then one can show that for each

partial algebra A the sequence
{
F (α)〈A〉

}
α∈Ω

stabilizes starting from some ordinal

τ and the respective sequence item is the largest perfect subalgebra of A which

can be called the perfect kernel of A and denoted by Pkr A. Also the correspondig

characteristic τA = τ , called the order of A, and the rank function rankA〈x〉 on

elements of A can be introduced in the obvious way.

It is a well known result that for each second countable topological space (M,O)

it holds that τM < ω1, and each ordinal < ω1 can occure. More generally, for each

ordinal α there is a metric space (M,d) satisfying τM = α. At a glance the fact

that infinitely many iterations of the operation lim〈X〉 are needed, seems to be

caused by the ω-arity of the partial operation lim. However, introducing a slight

modification of the algebras Tα we will show that this is not the reason.
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Let s be an arbitrary element not belonging to any of the sets Tα. For every

α ∈ Ω we put

Sα = Tα ∪ {s} and gα(x) =


fα(x) if t 6= x ∈ Tα,

s if x = t,

t if x = s.

Now, substituting the algebras Sα = (Sα, gα) in the places of the algebras Tα and

inspecting once more the proof of the Theorem, one can find that

g(β)
α 〈Sα〉 = g(β)

α [Sα]

holds for all α, β ∈ Ω. With this fact in mind it can be easily seen that

g(α)
α 〈Sα〉 = {s, t} = g(α+1)

α 〈Sα〉 and rankSα〈x〉 < α

for each α ∈ Ω and each x ∈ Sα \ {s, t}. Hence

Pkr Sα = {s, t} and τSα = α

for each α ∈ Ω. Thus also in this case every ordinal can occur as the order of a

finitary algebra.
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