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THE FRACTAL DIMENSION OF INVARIANT SUBSETS

FOR PIECEWISE MONOTONIC MAPS ON THE INTERVAL

F. HOFBAUER

Abstract. We consider completely invariant subsets A of weakly expanding piece-
wise monotonic transformations T on [0, 1]. It is shown that the upper box dimen-
sion of A is bounded by the minimum tA of all parameters t for which a t-conformal
measure with support A exists. In particular, this implies equality of box dimension
and Hausdorff dimension of A.

1. Introduction

During the last years the fractal dimension of invariant subsets in dynamical

systems has attracted much interest. Different notions of dimension have been

considered. The best known are box dimension, Hausdorff dimension and packing

dimension. We need here only the definition of box dimension of a subset X of

[0, 1]. Let Nr(X) be the number of closed intervals of length r required to cover X.

The lower and upper box dimension of X are defined by

BD−(X) = lim inf
r→0

logNr(X)

− log r
and BD+(X) = lim sup

r→0

logNr(X)

− log r

If BD+(X) = BD−(X) this number is called the box dimension BD(X) of X. The

definitions of Hausdorff dimension HD(X) and of packing dimension PD(X) of a

set X can be found in [1] or in [3]. It is well known that HD(X) ≤ PD(X) ≤
BD+(X) and that HD(X) ≤ BD−(X) ≤ BD+(X).

In this paper we investigate the fractal dimension of invariant subsets of piece-

wise monotonic transformations on the interval. A map T : [0, 1]→ [0, 1] is called

piecewise monotonic, if there are ci ∈ [0, 1] for 0 ≤ i ≤ N with 0 = c0 < c1 <

· · · < cN = 1 such that T |(ci−1, ci) is monotone and continuous for 1 ≤ i ≤ N .

Since T is allowed to be discontinuous at the points in P : = {c0, c1, . . . , cN}, we

call a closed subset of [0, 1] invariant, if T (A\P ) ⊂ A, and completely invariant, if

x ∈ A is equivalent to T (x) ∈ A for all x ∈ [0, 1] \ P . For equivalent definitions of

completely invariant subsets see Lemma 4 in [7]. One goal of this paper will be to

find conditions under which BD+(A) ≤ HD(A), which implies equality of notions

of dimension introduced above.
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The investigation of the dimension of an invariant subset A usually involves

the derivative of T . In this paper a measurable function T ′ : [0, 1]→ R is called a

derivative of T , if T (b)−T (a) =
∫ b
a
T ′dx for all a and b satisfying ci−1 < a < b < ci

for some i. A function f : [0, 1]→ R is called regular, if f(x+): = limy↓x f(y) for

x ∈ [0, 1) and f(x−) : = limy↑x f(y) for x ∈ (0, 1] exist. We shall always assume

that T has a derivative, which is regular.

For an invariant subset A of a piecewise monotonic transformation T various

quantities associated with the dynamical system (A,T |A) have been introduced in

order to prove results about dimension. We give a short review.

The essential Hausdorff dimension was introduced in [2] (see also [10]). For an

invariant subset A let MT (A) be the set of all T -invariant probability measures

µ with µ(A) = 1, and let ET (A) be the set of all µ ∈ MT (A) which are ergodic.

For a probability measure µ define HD(µ) = inf{HD(B) : µ(B) = 1}. Then one

defines the essential Hausdorff dimension of an invariant subset A by

HDess(A) = sup{HD(µ) : µ ∈ ET (A), hµ > 0}

where hµ denotes the entropy of µ. It is clear from the definition that HDess(A) ≤
HD(A).

Now let A be a completely invariant subset which is topologically transitive.

For a measurable function f : [0, 1] → R we define the pressure p(T |A, f) : =

sup{hµ +
∫
fdµ : µ ∈ ET (A)}. We fix a regular derivative T ′ of T and set

π(t) = p(T |A, tϕ), where ϕ = − log |T ′|. Then π is a convex function on R+

with p(0) ≥ 0. It is shown in [6] that zA := inf{t ≥ 0 : π(t) = 0} exists if

|T ′| ≥ 1 or if T is continuous, and that zA ≤ HDess(A) if |T ′| is of bounded

variation or if inf |T ′| > 0. It is not known whether zA exists in general. In the

general case one can define a modified pressure q(T |A, f) exhausting (A,T |A) by

Markov maps (see [9]). Again we set π̃(t) = q(T |A, tϕ). Theorem 1 in [9] implies

that z̃A := inf{t ≥ 0 : π̃(t) = 0} exists under seme weak assumptions on T .

Furthermore, if |T ′| is of bounded variation, then z̃A = HDess(A) (Theorem 5 in

[9]) and z̃A = zA whenever zA exists (remark after Theorem 5 in [9]).

Now we consider conformal measures. A probability measure m is called t-

conformal, if

(1.1) m(TB) =

∫
B

|T ′|t dm for all B contained in (ci−1, ci) for some i

Lemma 5 in [7] says that the support of a conformal measure is a completely

invariant subset. For a completely invariant subset A let tA be the infimum of all

t ≥ 0 for which a t-conformal measure with support A exists. Theorem 2 in [9]

implies that tA ≤ z̃A and hence tA ≤ zA whenever zA exists, if htop(T |A) > 0 and

(A,T |A) is topologically transitive.
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Therefore, under the assumptions on T used in [9], for a completely invariant

topologically transitive subset A with htop(T |A) > 0 we have that tA ≤ z̃A ≤
HDess(A) ≤ HD(A) ≤ BD+(A). The question arises under which conditions

we have BD+(A) ≤ tA holds. We consider this for weakly expanding piecewise

monotonic transformations. Let F+ be the set of all x ∈ [0, 1) with T (x+) = x

and T ′(x+) = 1 and let F− be the set of all x ∈ (0, 1] with T (x−) = x and

T ′(x−) = 1. These sets need not be disjoint. Set F = F+ ∪ F−. We say that

a piecewise monotonic map T is weakly expanding, if the following properties are

satisfied.

(a) F is finite

(b) there is δ > 0, such that T ′|(p − δ, p) is decreasing, if p ∈ F−, and

T ′|(p, p+ δ) is increasing, if p ∈ F+

(c) inf
{
|T ′(y)| : y /∈ P ∪

⋃
p∈F−(p− δ, p] ∪

⋃
p∈F+ [p, p+ δ)

}
> 1 for each

δ > 0.

We shall prove the following theorem.

Theorem. Let A be an invariant subset of a weakly expanding piecewise mono-

tonic transformation T with regular derivative. Suppose that there is a t-conformal

measure with support A. Then BD+(A) ≤ t.

This theorem implies that for a weakly expanding transformation T , such

that T ′ is equicontinuous on f |(ci−1, ci) for all i (then the assumptions of [9]

are satisfied), and a completely invariant topologically transitive subset A with

htop(T |A) > 0 we have tA = zA = HD(A) = PD(A) = BD(A).

Under the assumption, that T is expanding, which means that F = ∅, the above

theorem is already proved in [8]. In this paper also an example of a transformation

T and a set A is given, for which all assumptions of the above theorem are satisfied

except (b) in the definition of a weakly expanding transformation, but for which

HD(A) < BD+(A). Therefore it cannot expected that the above theorem holds

under weaker assumptions.

For the proof of the the above theorem we have to construct suitable covers of

A by intervals. In Section 2 we define a directed graph, called Markov diagram,

whose paths can be used to define such covers of A. In Section 3 we deal with

indifferent fixed points. Estimates of the lengths of halfneighbourhoods of the

points in F are given. Together with estimates of the cardinality of certain sets

of paths in the Markov diagram, which are given in Section 4, this gives upper

bounds of Nr(A) used in the definition of BD+(A).

2. Intervals Defined By Paths of a Graph

In order to estimate box dimension, we have to construct covers by intervals.

To this end we construct a directed graph, called Markov diagram, whose finite

paths correspond to certain intervals.
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In this paper a finite collection of open intervals, which cover A up to a finite

set, is called a cover of A. A cover of [0, 1], which consists of open disjoint intervals,

is called a partition.

Set W = {(p − δ, p) : p ∈ F−} ∪ {(p, p + δ) : p ∈ F+}, where δ > 0 is chosen

so small that the intervals in W are disjoint and that (b) holds. For each W ∈ W
let V0(W ) = W ⊃ V1(W ) ⊃ V2(W ) ⊃ . . . be the uniquely determined open inter-

vals with an indifferent fixed point as common endpoint, such that T (Vi(W )) =

Vi−1(W ) for i ≥ 1. Furthermore, for i ≥ 0 set Ui(W ) = Vi(W ) \ Vi+1(W ) and

Vi =
⋃
W∈W Vi(W ).

We fix a regular derivative T ′ of T and set ϕ = log |T ′| ≥ 0. Set Γ = supϕ and

γ = infx/∈V1
ϕ > 0. We fix ε ∈ (0, γ) and θ = θ(ε) ∈ N, such that supx∈Vθ ϕ <

ε
4 .

We fix a partition Z such that

T |Z is monotone and continuous for each Z ∈ Z(2.1)

Vθ(W ) ∈ Z for each W ∈ W(2.2)

if Z ∈ Z, W ∈ W and 0 ≤ i < θ then Z ∩ Ui(W ) = ∅ or Z ⊂ Ui(W )(2.3)

sup
Z
ϕ− inf

Z
ϕ <

ε

4θ
for all Z ∈ Z \ {Vθ(W ) : W ∈ W}(2.4)

We define the Markov diagram of ([0, 1], T ) with respect to the partition Z. If

D is an open interval contained in an element of Z, the nonempty sets among

T (D) ∩ Z for Z ∈ Z are called the successors of D. These successors are again

open intervals contained in elements of Z, so that one can iterate the formation of

successors. We write D → C if C is a successor of D. Set D0 = Z. For n ≥ 1 let

Dn be the union of Dn−1 and the set of all successors of elements of Dn−1. Since

the number of successors of an interval is always bounded by card Z, the sets Dn
for n ≥ 0 are finite. Set D =

⋃∞
n=0Dn. The directed graph (D,→) is called the

Markov diagram of ([0, 1], T ) with respect to the partition Z.

If D0D1 . . . Dk−1 is a path in (D,→), then
⋂k−1
j=0 T

−jDj is a nonempty open

interval by the definition of a successor. We shall use intervals of this kind to

define covers of an invariant subset A. We begin with the definition

(2.5) h(D0D1 . . .Dk−1) =
∑k−1

i=0
inf
Qi
ϕ where Qi =

⋂k−1

j=i
T i−jDj

Observe that Q0 =
⋂k−1
j=0 T

−jDj and that Qi = T i(Q0) for 1 ≤ i ≤ k − 1 by the

definition of a successor. We define also h̃(D0D1 . . . Dk−1) =
∑k−1
i=0 supQi ϕ. We

have

Lemma 1. For a path D0D1 . . . Dk−1 in (D,→) we have

(i) h(D0D1 . . . Dk−1) ≥ h(D0D1 . . . Dk−2)

(ii) h̃(D0D1 . . . Dk−1) ≤ h̃(D0D1 . . . Dk−2) + Γ

(iii) h(D0D1 . . . Dk−1) ≥ h(D0D1 . . . Dl−1) + h(DlDl+1 . . .Dk−1)

(iv) h̃(D0D1 . . . Dk−1) ≤ h̃(D0D1 . . . Dl−1) + h̃(DlDl+1 . . .Dk−1)
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Proof. This follows easily from the definitions using 0 ≤ ϕ ≤ Γ. �

Set G = {D ∈ D : D∩V1 = ∅} and let Pn be the set of all paths D0D1 . . . Dk−1

in (D,→) with k ≥ 1 satisfying

h(D0D1 . . . Dk−2) < γn ≤ h(D0D1 . . . Dk−1)(2.6)

D0 ∈ Z = D0 and Dk−1 ∈ G(2.7)

A ∩
⋂k−1

i=0
T−iDi 6= ∅(2.8)

If k = 1 we set h(D0D1 . . . Dk−2) = 0. By Lemma 1 for each infinite path D0D1 . . .

in (D,→) there is at most one k such that (2.6) holds.

Now we can estimate length and measure of the intervals associated with paths

in Pn. Let |I| denote the length of the interval I.

Lemma 2. For D0D1 . . .Dk−1 ∈ Pn we have h̃(D0D1 . . . Dk−2) −
h(D0D1 . . . Dk−2) ≤ εn. Furthermore, we have |

⋂k−1
i=0 T

−iDi ∩ T−kJ | ≤ e−nγ|J |
for any interval J ⊂ [0, 1] and m(

⋂k−1
i=0 T

−iDi) ≥ m(Dk−1)e−t(γn+εn) for any

t-conformal measure m.

Proof. Set Qi =
⋂k−2
j=i T

−(j−i)Dj for 0 ≤ i ≤ k − 2. Let i1 < i2 < · · · <
ir = k − 1 be all elements i of {0, 1, . . . , k − 1} with Di ∈ G. Consider some

s ≥ 1 with is−1 < is − 1, where we set i0 = −1. Then there is W ∈ W such

that Dj ⊂ V1(W ) for is−1 < j < is and Dis ⊂ U0(W ). By (2.3) we have then

Qis−j ⊂ Dis−j ⊂ Uj(W ) for 0 ≤ j < min(is − is−1, θ). Since T (Ql) ⊂ Ql+1 this

implies that Qj ⊂ Uis−j(W ) for is−1 < j < is. Set ψl = supQl ϕ − infQl ϕ

for 0 ≤ l ≤ k − 2 and ψk−1 = supDk−1
ϕ − infDk−1

ϕ. The sets Ul(W ) are

disjoint. Hence
∑is−θ
j=is−1+1 ψj <

ε
4 by the choice of θ, provided that is−1 < is − θ.

Furthermore, ψj <
ε
4θ for max(is−θ, is−1) < j ≤ is. Therefore

∑is
j=is−1+1 ψj <

ε
2 .

If is = is−1 + 1 then ψis <
ε
4θ < ε

2 . We have shown that h̃(D0D1 . . . Dk−2) −

h(D0D1 . . . Dk−2) =
∑k−2
j=0 ψj < r ε2 . Since Dis ∈ G and hence infDis ϕ ≥ γ for all

s, we have (r − 1)γ ≤ h(D0D1 . . . Dk−2) < γn and hence r < n+ 1. This implies

the first assertion.

Now set Ri =
⋂k−1
j=i T

−(j−i)Dj for 0 ≤ i ≤ k − 1, which are intervals con-

tained in elements of Z. The sets Si := Ri ∩ T−(k−i)J satisfy T (Si) = Si+1. By

the mean value theorem and (2.5) we get that |S0| ≤ |T (Sk−1)|e−h(D0D1...Dk−1).

As T (Sk−1) = T (Dk−1) ∩ J we get |S0| ≤ |J |e−γn by (2.6). This is the sec-

ond assertion. Similarly we get for a t-conformal measure m that m(R0) ≥
m(Rk−1)e−th̃(D0D1...Dk−2). By (2.6) and the first assertion of this lemma we have

h̃(D0D1 . . . Dk−2) ≤ γn+ εn proving the last assertion. �
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3. Estimates Near Indifferent Fixed Points

In this section we use the existence of a t-conformal measure to estimate the

length of halfneighbourhoods of indifferent fixed points. This leads to an estimate

of Nr(A) for r = γn and n ∈ N in terms of t and the cardinality of the sets Pl.
We begin with

Lemma 3. Fix W ∈ W and set ϕj(W ) = supVj(W ) ϕ.

(i)
∑∞
j=0 j =∞

(ii) |Vk(W )| ≤
∑∞
i=k e

−
∑i+1
j=1 ϕj(W ) for k ≥ 0

(iii) if m is a t-conformal measure and m(W ) > 0 then m(Ui(W )) > 0 for all

i and
∑∞
i=1 e

−t
∑i
j=1 ϕj(W ) <∞ .

Proof. Let m be a t-conformal measure with m(W ) > 0. By (1.1) and (b) we

get

etϕj+1(W )m(Uj(W )) ≤ m(TUj(W )) ≤ etϕj(W )m(Uj(W ))

Since T (Uj(W )) = Uj−1(W ) for j ≥ 1, we get m(Ui(W )) = 0 for all i or

m(Ui(W )) > 0 for all i. Since W =
⋃∞
i=0 Ui(W ) the first assertion of (iii) fol-

lows. Furthermore,

et
∑i+1
j=1 ϕj(W )m(Ui(W )) ≤ m(TU0(W )) and m(U0(W )) ≤ et

∑i
j=1 ϕj(W )m(Ui(W ))

The first inequlity gives m(Vk(W )) ≤
∑∞
i=k e

−t
∑i+1
j=1 ϕj(W ), since m(TU0(W )) ≤ 1.

This shows (ii), since Lebesgue measure is a 1-conformal measure with m(W ) > 0

for all W ∈ W. The second inequlity gives
∑∞
i=1 e

−t
∑i
j=1 ϕj(W ) ≤ m(V1(W ))

m(U0(W )) , which

gives (iii). Taking form again the Lebesgue measure, it gives
∑∞
i=1 e

−
∑i
j=1 ϕj(W ) <

∞ for all W ∈ W, which implies (i). �

Lemma 4. Set WA = {W ∈ W : W ∩ A 6= ∅} and let m be a t-conformal

measure with support A. There is d > 0 with |Vk(W )| ≤ de−(1−t)
∑k
i=1 ϕi(W ) for

all k ≥ 1 and all W ∈ WA, where ϕi(W ) is as in Lemma 3.

Proof. Set d = supW∈WA

∑∞
i=1 e

−t
∑i
j=1 ϕj(W ) which is finite by Lemma 3 (iii)

since m has support A. We have

e
∑k
l=1 ϕl(W )|Vk(W )| ≤

∑∞

i=k
e−
∑i+1
l=k+1 ϕl(W ) by Lemma 3 (ii)

≤
∑∞

i=k
e−t

∑i+1
l=k+1 ϕl(W ) as t ≤ 1 and ϕ ≥ 0

≤ det
∑k
l=1 ϕl(W ) by definition of d.

This gives the desired estimate. �
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Lemma 5. For each u > 0 there is v ∈ N such that each path D0D1 . . . Dv−1

of length v in (D,→) with Dv−1 ∩ Vθ = ∅ satisfies h(D0D1 . . .Dv−1) ≥ u.

Proof. For W ∈ W and j ≥ 0 let ϕj(W ) be as in Lemma 3. This lemma says

that
∑∞
j=0 ϕj(W ) =∞. For fixed u > 0 choose l > θ such that

∑l
j=θ ϕj(W ) ≥ u

holds for each W ∈ W. Then choose an integer v > ul
γ .

By (2.3) for a path D0D1 . . .Dv−1 in (D,→) with Dv−1 ∩ Vθ = ∅ there are two

cases. Either the number of Di satisfying Di ∩ V1 = ∅ is greater than u
γ or there

is i < v − l such that Di+j ⊂ V1 for 0 ≤ i < l and Di+l ∩ Vθ = ∅. In the first case

we get h(D0D1 . . . Dv−1) ≥ u
γ
γ = u by definition of γ. In the second case there is

W ∈ W and s with i ≤ s < i+ l, such that Qs+j ⊂ Ul−j−1(W ) for 0 ≤ j ≤ l − θ
by (2.3) and the definition of the sets Uj(W ), where Qj is as in (2.5). By (b)

we get infQs+j ϕ ≥ ϕl−j(W ) for 0 ≤ j ≤ l − θ. Therefore we have again that

h(D0D1 . . . Dk−1) ≥
∑l
j=θ ϕj(W ) ≥ u. �

Now we can give a first estimate of Nr(A) for r = e−γn.

Proposition 1. Let m be a t-conformal measure with support A. There is

c > 0 such that Ne−γn(A) ≤ ce2εn
∑n
l=0 ple

tγ(n−l) for all n, where p0 = 1 and

pl = card Pl for l ≥ 1.

Proof. Let ϕi(W ) be as in Lemma 3. For l < n and W ∈ W let j(l,W ) be

the minimal j such that
∑j
i=1 ϕi(W ) ≥ (n − l)γ − εn − Γ. The existence of

j(l,W ) follows from Lemma 3 (i). We write Rl(W ) for Vj(l,W )(W ). Set Un =

{
⋂k−1
i=0 T

−iDi : D0D1 . . .Dk−1 ∈ Pn}. For W ∈ WA := {W ∈ W : W ∩A 6= ∅} set

U0(W ) = {R0(W )} and Ul(W ) = {
⋂k−1
i=0 T

−iDi ∩ T−kRl(W ) : D0D1 . . . Dk−1 ∈
Pl} for 1 ≤ l ≤ n−1. We show first that U := Un∪

⋃n−1
l=0

⋃
W∈WA

Ul(W ) covers A.

To this end choose q ≥ supl<n supW∈WA
j(l,W ) such that h(C0C1 . . . Cq−1) > γn

for all paths C0C1 . . . Cq−1 with Cq−1 ∈ G. This is possible by Lemma 5. FoLet k

be maximal such that Ck−1 ∈ G and h(C0C1 . . . Ck−2) < γn. If no such k exists

set k = 0. If k > 0 and h(C0C1 . . . Ck−1) ≥ γn then C0C1 . . . Ck−1 ∈ Pn and Z is

contained in an element of Un.

Therefore suppose that k = 0 or that h(C0C1 . . . Ck−1) < γn. If k = 0 set l = 0.

If k ≥ 1, there is l ∈ {1, 2, . . . , n−1} such that C0C1 . . . Ck−1 ∈ Pl, since Ck−1 ∈ G
and hence infCk−1

ϕ ≥ γ. We consider two cases.

Suppose first that there is no i ≥ k with Ci ∈ G. Hence there is W ∈ W
with Ci ∈ V1(W ) for k ≤ i ≤ s − 1. By the choice of q and by Lemma 1 we

have k < q. Since s = 2q we get
⋂s−1
i=k T

k−iCi ⊂ Vs−k(W ) ⊂ Vq(W ) and hence

T k(Z) ⊂ Vq(W ). Since T k(Z) ∩ A 6= ∅, as A is invariant, Vq(W ) and hence also

W has nonempty intersection with A. By the choice of q we get Vq(W ) ⊂ Rl(W ).

Thus Z ⊂
⋂k−1
i=0 T

−iCi ∩ T−kRl(W ) and we have found an element of Ul(W ),

which contains Z (empty intersections have to be considered as absent).

Now suppose that u > k is minimal such that Cu−1 ∈ G. Because of

h(C0C1 . . . Ck−1) < γn and the choice of k we have Ck /∈ G. Hence Ck ⊂ V1(W )
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for some W ∈ W. As above we get that
⋂u−2
i=k T

k−iCi ⊂ Vu−k−1(W ) for some

W ∈ WA. The choice of k implies that h(C0C1 . . . Cu−2) ≥ γn. Using Lemmas 1

and 2 we get∑u−k−1

i=1
ϕi(W ) ≥ h̃(CkCk+1 . . . Cu−2)

≥ h̃(C0C1 . . . Cu−2)− h̃(C0C1 . . . Ck−2)− Γ

≥ h(C0C1 . . . Cu−2)− h(C0C1 . . . Ck−2)− Γ− εn

≥ γn− γl− Γ− εn

This says that Vu−k−1(W ) ⊂ Rl(W ). As above we get that Z is contained in an

element of Ul(W ). Thus we have proved that U covers A.

We consider I :=
⋂k−1
i=0 T

−iDi ∩ T−kRl(W ) ∈ Ul(W ) and estimate the length

|I| of the interval I. If l = n we have [0, 1] instead of Rl(W ), and if l = 0 then

k = 0, which means that I = R0(W ). By Lemma 2 we have |I| ≤ e−γl|Rl(W )|.
By Lemma 4 we get |Rl(W )| ≤ de−(1−t)(γ(n−l)−εn−Γ) for l < n. Setting b = deΓ

we get |I| ≤ be−γnetγ(n−l)eεn. The number of intervals of length e−γn necessary

to cover I is bounded by betγ(n−l)eεn. Since pl = card Ul(W ) for l ≤ n − 1 and

pn = card Un, the desired result follows with c = b card WA. �

4. The Cardinality of Certain Sets of Paths

Proposition 1 leaves us with the problem of estimating the cardinality of the

sets Pn. For E ∈ D and B ⊂ D let QEn (B) be the set of all paths D0D1 . . . Dk−1

with k ≥ 1 satisfying (2.6), such that Di ∈ B for 1 ≤ i ≤ k − 1 and D0 is a

successor of E. We begin with

Lemma 6. For each α > 0 there is a finite subset E containing Z = D0 such

that card QEn (D \ E) ≤ 4eαn for all n and all E ∈ D.

Proof. Fix u ≥ γ
α

log 2 and let v be as in Lemma 5. Set E = Dv. Let H1 be the

set of all D ∈ D which have a common endpoint with some Z ∈ Z and let H2 be

the set of all D ∈ H1 which satisfy D ∩ Vθ = ∅. For C ∈ D we show the following.

(i) There are j ≥ 1 and C0 = C,C1, . . . , Cj−1 in D such that Ci is the only

successor of Ci−1 in D \ E for 1 ≤ i ≤ j − 1 and Cj−1 has at most two successors

in D \ E , which are in H1. If C ∈ H1 then either j ≥ v or Cj−1 has no successor

in D \ E .

(ii) For each successor B of Cj−1 in D\E there are l ≥ 1 and B0 = B,B1, . . . , Bl−1

in D, such that Bi is the only successor of Bi−1 in D \ E for 1 ≤ i ≤ l − 1 and

either Bl−1 ∈ H2 or Bl−1 has no successor in D \ E .

Assuming (i) and (ii) it is easy to prove the lemma. Each path D0D1 . . .Dk−1 ∈
QEn (D \ E) is made up of segments C1C2 . . . Cj−1B0B1 . . .Bl−1, where j ≥ v ex-

cept in the first segment, and Bl−1 ∈ H2 except in the last segment, where the
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Bi may be missing. For all segments except the first and the last one we have

h(C1C2 . . . Cj−1B0B1 . . . Bl−1) ≥ u ≥ γ
α log 2 by Lemma 5, since j ≥ v and Bl−1

has a successor inD\E and is therefore inH2 by (ii). Since h(D0D1 . . . Dk−2) < γn,

Lemma 1 implies that D0D1 . . .Dk−1 can consist of at most 2+ αn
log 2 such segments.

Since all successors in these segments are uniquly determined except that of Cj−1,

which can have two successors in D \ E , the number of paths in QEn (D \ E) is

bounded by 22+ αn
log 2 = 4eαn.

It remains to show (i) and (ii) for C ∈ D. Lemmas 12 and 13 of [4] give the

existence of j and Ci for 0 ≤ i ≤ j − 1 such that (i) holds. In order to show (ii)

let B ∈ H1 be a successor of Dj−1 in D \ E . If B ∩ Vθ = ∅, then B ∈ H2, and (ii)

holds with l = 1 and B0 = B. Hence using (2.3) we can assume that B ⊂ Vθ(W )

for some W ∈ W. Let p and y be the endpoints of Vθ(W ), where p ∈ F . One of

these points is also an endpoint of B.

Suppose first that p is an endpoint of B and denote the other endpoint of B

by x. Choose s minimal such that T s(x) /∈ Vθ(W ). Set Bi = T iB for 0 ≤ i ≤ s−1.

Then Bi is the only successor of Bi−1 in D for 1 ≤ i ≤ s − 1. Furthermore, let

Bs be that successor of Bs−1, which has T s(x) as endpoint. Since T (Bs−1) has

endpoints p and T s(x) we have Bs ∈ H2 and all other successors of Bs−1 are in

Z ⊂ E . Either there is l ≤ s such that Bi ∈ D \ E for i < l and Bl ∈ E so that

Bl−1 has no successor in D \ E or Bi ∈ D \ E for all i ≤ s. In the second we set

l = s+ 1 and (ii) is shown.

Now suppose that p is not an endpoint of B. Then B has endpoint y. We

denote its other endpoint by z. Choose s minimal such that T s(z) /∈ Vθ(W ). Set

B0 = B and Bi = TBi−1 ∩ Vθ(W ) for 1 ≤ i ≤ s − 1. The successors of Bi−1 for

1 ≤ i ≤ s − 1 are then Bi and all Z ∈ Z contained in T (Vθ(W )) \ Vθ(W ). Let

Bs be that successor of Bs−1 which has T s(z) as endpoint. Since T (Bs−1) has

endpoints T (y) and T s(z), all successors of Bs−1 are in Z ⊂ E except Bs which is

in H2. Either there is l ≤ s such that Bi ∈ D\E for i < l and Bl ∈ E so that Bl−1

has no successor in D \ E or Bi ∈ D \ E for i ≤ s. In the second we set l = s + 1

and again (ii) is shown. �

For B ⊂ D let Pn(B) be the set of all D0D1 . . . Dk−1 ∈ Pn with Dk−1 ∈ B.

Then we have

Proposition 2. For each α > 0 there is a finite subset F of D and a constant

a such that card Pn ≤ aeαεn/γ
∑n
l=1 card Pl(F)eα(n−l) for all n.

Proof. For fixed α > 0 let E ⊂ D be as in Lemma 6. For each E ∈ D contained

in some W ∈ W and each path E0E1 . . . in (D,→) with E0 = E one shows using

similar arguements as in the second part of the proof of Lemma 6 that there is a

minimal s ≥ 0 such that either Es ⊂ V0(W ) and hence Es ∈ G or Es = Vθ(W ) ∈ Z.

For each E ∈ E contained in some W ∈ W and each path E0E1 . . . with E0 = E

we add Ei for 1 ≤ i ≤ s to E and denote the resulting set by F . This set is still
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finite and contains E and hence also Z, as Z ⊂ E by Lemma 6. Let F̃ be the set

of all D ∈ F , which have a successor outside F . Then F̃ ⊂ G by the construction

of F , since each Vθ(W ) has all its successors in Z by (2.3).

For each path D0D1 . . . Dk−1 ∈ Pn let q be minimal, such that Di /∈ F for

q ≤ i ≤ k − 1. Since D0 ⊂ Z ⊂ F by (2.7), this q exists and satisfies 1 ≤ q ≤ k.

Set Rl = {D0D1 . . . Dk−1 ∈ Pn : q < k,D0D1 . . . Dq−1 ∈ Pl(F)} for 1 ≤ l ≤ n−1.

We show that Pn ⊂ Pn(F) ∪
⋃n−1
l=1 Rl. If D0D1 . . . Dk−1 ∈ Pn and q = k then

D0D1 . . . Dk−1 ∈ Pn(F). If q < k then h(D0D1 . . . Dq−1) < γn and, since Dq−1

is in F and its successor Dq is not in F , we get Dq−1 ∈ F̃ ⊂ G, which implies

infDq−1 ϕ ≥ γ. Thus there is l ∈ {1, 2, . . . , n− 1} with D0D1 . . . Dq−1 ∈ Pl, since

also A∩
⋂q−1
i=0 T

−iDi 6= ∅ by (2.8). Hence D0D1 . . . Dq−1 ∈ Pl(F). We have shown

that Pn ⊂ Pn(F) ∪
⋃n−1
l=1 Rl. Hence the lemma is proved if we have shown that

card Rl ≤ aeαεn/γ card Pl(F)eα(n−l) for 1 ≤ l ≤ n− 1 with a = 4 e
αΓ/γ

eα−1 .

To this end consider some D0D1 . . .Dk−1 ∈ Rl. As Dk−1 ∈ G and hence

infDk−1
ϕ ≥ γ, there is j such that DqDq+1 . . .Dk−1 ∈ Q

Dq−1

j (D \ E). Using

Lemmas 1 and 2 we get

γl+ γj ≤ h(D0D1 . . . Dq−1) + h(DqDq+1 . . . Dk−1) ≤ h(D0D1 . . . Dk−1)

≤ h̃(D0D1 . . . Dk−2) + Γ ≤ h(D0D1 . . . Dk−2) + εn+ Γ

< γn+ εn+ Γ

Hence j ≤ n− l + εn+Γ
γ . Since card Q

Dq−1

j (D \ E) ≤ 4eαn by Lemma 6 and since

D0D1 . . . Dq−1 ∈ Pl(F), we get card Rl ≤ card Pl(F)
∑n−l+u(ε)
j=0 4eαj, where u(ε)

is the largest integer less than or equal to εn+Γ
γ

. This easily implies the estimate

for card Rl stated above. �
Now we use again t-conformal measures.

Proposition 3. Let m be a t-conformal measure with support A. For each

finite subset F of D there is a constant b such that card Pn(F) ≤ betγn+tεn for all

n ≥ 1.

Proof. Set q = min{m(D) : D ∈ F , D∩A 6= ∅}. Since F is finite and supp m =

A we have q > 0. For D0D1 . . .Dk−1 ∈ Pn(F) ⊂ Pn we have Dk−1 ∩ A 6= ∅ by

(2.8), since A is invariant. Therefore we get

m

(⋂k−1

i=0
T−iDi

)
≥ m(Dk−1)e−t(γn+εn) ≥ qe−tγne−tεn

by Lemma 2. Since the intervals
⋂k−1
i=0 T

−iDi are disjoint for different paths

D0D1 . . . Dk−1 in Pn by Lemma 1 and (2.6), we get the desired result with

b = 1/q. �
The three propositions together give now
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Theorem. Let A be an invariant subset of a weakly expanding piecewise mono-

tonic transformation T with regular derivative. Suppose that there is a t-conformal

measure with support A. Then BD+(A) ≤ t.

Proof. Choosing α = tγ the three propositions imply that there is a constant c

such that Ne−γn(A) ≤ cn2e(2t+1)εnetγn holds for all n. Hence

lim sup
r→0

logNr(A)

− log r
≤ lim sup

n→∞

logNe−γn(A)

− log e−γ(n−1)
≤ t+

(2t+ 1)ε

γ

Since ε can be chosen arbitrary small, the desired result follows. �
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