A NOTE ON THE RADIUS OF ITERATED LINE GRAPHS

M. KNOR

ABSTRACT. We prove that almost all *i*-iterated line graphs are selfcentric with radius i + 2. This generalizes the well-known result that almost all graphs are selfcentric with radius two.

INTRODUCTION

Let G be a graph. Then by its line graph L(G) we mean a graph whose nodes are the edges of G, and two nodes are adjacent in L(G) if and only if the corresponding edges are adjacent in G. We remark that if G has no edges, then L(G) is an empty graph. The *i*-iterated line graph of G, the $L^{i}(G)$, is $L(L^{i-1}(G))$ where $L^{0}(G) = G$ and $i \geq 1$. For an example of iterated line graphs see Figure 1.

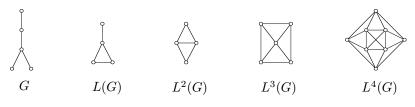


Figure 1.

By d(G) and r(G) we denote the radius and the diameter of D, respectively. Let G be a graph different from a path, a cycle, and a claw $K_{1,3}$. Then, as proved in [2], there are numbers d_G , i_G , c_G , and c'_G , such that

$$\begin{aligned} d(L^i(G)) &= d_G + i \quad \text{for every} \quad i \ge i_G; \\ i - \sqrt{2\log_2 i} + c_G &\le r(L^i(G)) \le i - \sqrt{2\log_2 i} + c'_G \quad \text{for every} \quad i \ge 0 \,. \end{aligned}$$

These results imply that if G is not a path, a cycle, and a claw, then there is a number s_G such that $d(L^i(G)) > r(L^i(G))$ for every $i \ge s_G$, i.e., the $L^i(G)$ is not selfcentric. In contrast with this we show that almost all *i*-iterated line graphs are selfcentric of radius i + 2.

As a model of random graphs we use the well-established model of Erdős and Rényi, see [3, the model A]. In this model the node set of the graph is fixed, and

Received January 9, 1995; revised March 20, 1995.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 05C12.

M. KNOR

each pair of nodes is joined by an edge with probability p, or left unjoined with probability 1-p. A property is said to hold for **almost all graphs** if the limit of the probability that a random graph has the property is 1.

Result

We will identify edges in a graph G with the corresponding nodes in L(G). Hence, if u and v are two adjacent nodes in G then by uv we mean an edge in G, as well as the node in L(G) corresponding to the edge uv. This notation enables us to consider a node in $L^i(G)$, $i \ge 2$, as a pair of adjacent nodes in $L^{i-1}(G)$, either of these is a pair of adjacent nodes from $L^{i-2}(G)$, and so on. Furthermore, we can define each node in $L^i(G)$ using only edges of G, and such a definition will be called the **recursive definition of** v **in** G.

Let G be a graph and v be a node in $L^i(G)$, $i \ge 1$. By the j-butt $B_j(v)$ of the node v in $L^i(G)$ we mean a subgraph of $L^{i-j}(G)$ induced by the edges involved into the recursive definition of v. The butt we will abbreviate to B(v) if i = j. We have:

Lemma 1 [2]. Let H be a subgraph of a graph G. Then H is an *i*-butt for some node in $L^i(G)$ if and only if H is a connected graph with at most i edges, distinct from any path with less than i edges.

The distance $d_G(H, J)$ between two subgraphs H and J of a graph G equals to the length of a shortest path in G joining a node from H to a node from J. The following lemma enables us to compute distances between nodes in iterated line graphs:

Lemma 2 [2]. Let G be a connected graph, and let u and v be distinct nodes in $L^i(G)$. Then

- (i) $d_{L^i(G)}(u,v) = i + d_G(B_i(u), B_i(v))$ if the *i*-butts of v and u are edgedisjoint.
- (ii) $d_{L^{i}(G)}(u, v) = \max\{t : t \text{-butts of } u \text{ and } v \text{ are edge-disjoint}\} \text{ if } i \text{-butts of } u \text{ and } v \text{ have a common edge.}$

For the diameter and the radius of line graphs we have:

Lemma 3 [1]. Let G be a connected graph such that L(G) is not empty. Then

$$d(G) - 1 \le d(L(G)) \le d(G) + 1$$
 and
 $r(G) - 1 \le r(L(G)) \le r(G) + 1$.

Let H consists of two node-disjoint triangles. Since almost all graphs contain a prescribed graph as an induced subgraph, see [3, p. 14], the H is an induced subgraph of almost all graphs. Thus, $d(L^i(G)) \ge i + 2$ for almost all graphs G, by Lemma 1 and Lemma 2. From the other side for almost all graphs G we have d(G) = 2, see [3, p. 14]. Thus, by Lemma 3 $d(L^i(G)) \leq i+2$ for almost all graphs G, and hence $d(L^i(G)) = i + 2$ for almost all graphs. It means that the following theorem implies that almost all *i*-iterated line graphs are selfcentric:

Theorem 4. Let $i \ge 0$. Then $r(L^i(G)) = i + 2$ for almost all graphs G.

Proof. By V(G) is denoted the node set of G; and by $e_G(u)$ we denote the eccentricity of the node u in G, i.e., $e_G(u) = \max\{d_G(u, v) : v \in V(G)\}.$

Let G be a graph on n nodes, n is sufficiently large, in which each edge appears with probability p, 0 . We give an upper bound for the probability $P(r(L^i(G)) \leq i+1)$, i.e. that the radius of $L^i(G)$ does not exceed i+1.

Let H be a subgraph of G on m nodes. Then V(H) can be partitioned into $\left|\frac{m}{2}\right|$ sets, each consisting of at least three nodes. Thus, for the probability P_H that H contains no triangle we have $P_H \leq (1-p^3)^{\lfloor \frac{m}{3} \rfloor}$.

Let $u \in V(L^i(G))$ such that $e_{L^i(G)}(u) \leq i+1$. The B(u) contains at most i+1nodes, by Lemma 1. Let $S \supseteq V(B(u))$ such that |S| = i + 1. Since $e_{L^i(G)}(u) \leq i \leq j \leq n$ i+1, there is no $v \in V(L^i(G))$ such that $d_G(B(u), B(v)) \geq 2$, by Lemma 2. In particular, there is no triangle T in G such that $d_G(S,T) \geq 2$. Let $v \in V(G) \setminus S$. Then the probability that $d_G(S, v) \geq 2$ equals $(1-p)^{i+1}$. Thus, we have:

$$P(e_{L^{i}(G)}(u) \leq i+1) \leq \sum_{j=0}^{n-i-1} {n-i-1 \choose j} \left(1 - (1-p)^{i+1}\right)^{n-i-1-j} \left((1-p)^{i+1}\right)^{j} (1-p^{3})^{\lfloor \frac{j}{3} \rfloor}$$

(here j denotes the number of nodes v such that $d_G(S, v) \ge 2$). Further,

$$\begin{split} P(e_{L^{i}(G)}(u) &\leq i+1) \\ &< \frac{1}{(1-p^{3})} \sum_{j=0}^{n-i-1} \binom{n-i-1}{j} \left(1-(1-p)^{i+1}\right)^{n-i-1-j} \left((1-p)^{i+1}\right)^{j} \sqrt[3]{1-p^{3}}^{j} \\ &= \frac{1}{(1-p^{3})} \left(1-(1-p)^{i+1}+(1-p)^{i+1} \sqrt[3]{1-p^{3}}\right)^{n-i-1} \\ &= \frac{1}{(1-p^{3})} a_{i}^{n-i-1} \,. \end{split}$$

Since $(1 - (1-p)^{i+1} + (1-p)^{i+1}) = 1$ and $0 < \sqrt[3]{1-p^3} < 1$, we have $0 < a_i < 1$.

Since each B(u), $u \in V(L^{i}(G))$, is contained in a subgraph of G induced by i + 1 nodes, we have $P(r(L^{i}(G)) \leq i + 1) < \frac{1}{(1-p^{3})} {n \choose i+1} a_{i}^{n-i-1}$. Clearly $\lim_{n \to \infty} \frac{1}{(1-p^{3})} {n \choose i+1} a_{i}^{n-i-1} = 0$, and hence $r(L^{i}(G)) \geq i + 2$ for almost all graphs G. Since r(G) = 2 for almost all graphs G, see [3, p. 14], by Lemma 3 we have $r(L^i(G)) \leq i+2$ for almost all graphs G.

M. KNOR

References

- Knor M., Niepel E. and Šoltés E., Centers in line graphs, Math. Slovaca 43 (1993), 11–20.
 _____, Distances in iterated line graphs, Ars Comb., (to appear).
- [3] Palmer E. M., Graphical Evolution: An Introduction to the Theory of Random Graphs, John Wiley, New York, 1985.

M. Knor, Department of Mathematics, Faculty of Civil Engineering, Slovak Technical University, Radlinského 11, 813 68 Bratislava, Slovakia