A NOTE ON THE RADIUS OF ITERATED LINE GRAPHS

M. KNOR

Abstract

We prove that almost all i-iterated line graphs are selfcentric with radius $i+2$. This generalizes the well-known result that almost all graphs are selfcentric with radius two.

Introduction

Let G be a graph. Then by its line graph $L(G)$ we mean a graph whose nodes are the edges of G, and two nodes are adjacent in $L(G)$ if and only if the corresponding edges are adjacent in G. We remark that if G has no edges, then $L(G)$ is an empty graph. The i-iterated line graph of G, the $L^{i}(G)$, is $L\left(L^{i-1}(G)\right)$ where $L^{0}(G)=G$ and $i \geq 1$. For an example of iterated line graphs see Figure 1.

Figure 1.

By $d(G)$ and $r(G)$ we denote the radius and the diameter of D, respectively. Let G be a graph different from a path, a cycle, and a claw $K_{1,3}$. Then, as proved in [2], there are numbers d_{G}, i_{G}, c_{G}, and c_{G}^{\prime}, such that

$$
\begin{gathered}
d\left(L^{i}(G)\right)=d_{G}+i \quad \text { for every } \quad i \geq i_{G} \\
i-\sqrt{2 \log _{2} i}+c_{G} \leq r\left(L^{i}(G)\right) \leq i-\sqrt{2 \log _{2} i}+c_{G}^{\prime} \quad \text { for every } \quad i \geq 0
\end{gathered}
$$

These results imply that if G is not a path, a cycle, and a claw, then there is a number s_{G} such that $d\left(L^{i}(G)\right)>r\left(L^{i}(G)\right)$ for every $i \geq s_{G}$, i.e., the $L^{i}(G)$ is not selfcentric. In contrast with this we show that almost all i-iterated line graphs are selfcentric of radius $i+2$.

As a model of random graphs we use the well-established model of Erdős and Rényi, see [3, the model A]. In this model the node set of the graph is fixed, and

[^0]each pair of nodes is joined by an edge with probability p, or left unjoined with probability $1-p$. A property is said to hold for almost all graphs if the limit of the probability that a random graph has the property is 1 .

Result

We will identify edges in a graph G with the corresponding nodes in $L(G)$. Hence, if u and v are two adjacent nodes in G then by $u v$ we mean an edge in G, as well as the node in $L(G)$ corresponding to the edge $u v$. This notation enables us to consider a node in $L^{i}(G), i \geq 2$, as a pair of adjacent nodes in $L^{i-1}(G)$, either of these is a pair of adjacent nodes from $L^{i-2}(G)$, and so on. Furthermore, we can define each node in $L^{i}(G)$ using only edges of G, and such a definition will be called the recursive definition of v in G.

Let G be a graph and v be a node in $L^{i}(G), i \geq 1$. By the j-butt $B_{j}(v)$ of the node v in $L^{i}(G)$ we mean a subgraph of $L^{i-j}(G)$ induced by the edges involved into the recursive definition of v. The butt we will abbreviate to $B(v)$ if $i=j$. We have:

Lemma 1 [2]. Let H be a subgraph of a graph G. Then H is an i-butt for some node in $L^{i}(G)$ if and only if H is a connected graph with at most i edges, distinct from any path with less than i edges.

The distance $d_{G}(H, J)$ between two subgraphs H and J of a graph G equals to the length of a shortest path in G joining a node from H to a node from J. The following lemma enables us to compute distances between nodes in iterated line graphs:

Lemma 2 [2]. Let G be a connected graph, and let u and v be distinct nodes in $L^{i}(G)$. Then
(i) $d_{L^{i}(G)}(u, v)=i+d_{G}\left(B_{i}(u), B_{i}(v)\right)$ if the i-butts of v and u are edgedisjoint.
(ii) $d_{L^{i}(G)}(u, v)=\max \{t: t$-butts of u and v are edge-disjoint $\}$ if i-butts of u and v have a common edge.

For the diameter and the radius of line graphs we have:
Lemma $3[\mathbf{1}]$. Let G be a connected graph such that $L(G)$ is not empty. Then

$$
\begin{aligned}
& d(G)-1 \leq d(L(G)) \leq d(G)+1 \quad \text { and } \\
& r(G)-1 \leq r(L(G)) \leq r(G)+1
\end{aligned}
$$

Let H consists of two node-disjoint triangles. Since almost all graphs contain a prescribed graph as an induced subgraph, see [3, p. 14], the H is an induced subgraph of almost all graphs. Thus, $d\left(L^{i}(G)\right) \geq i+2$ for almost all graphs G,
by Lemma 1 and Lemma 2. From the other side for almost all graphs G we have $d(G)=2$, see [3, p. 14]. Thus, by Lemma $3 d\left(L^{i}(G)\right) \leq i+2$ for almost all graphs G, and hence $d\left(L^{i}(G)\right)=i+2$ for almost all graphs. It means that the following theorem implies that almost all i-iterated line graphs are selfcentric:

Theorem 4. Let $i \geq 0$. Then $r\left(L^{i}(G)\right)=i+2$ for almost all graphs G.
Proof. By $V(G)$ is denoted the node set of G; and by $e_{G}(u)$ we denote the eccentricity of the node u in G, i.e., $e_{G}(u)=\max \left\{d_{G}(u, v): v \in V(G)\right\}$.

Let G be a graph on n nodes, n is sufficiently large, in which each edge appears with probability $p, 0<p<1$. We give an upper bound for the probability $P\left(r\left(L^{i}(G)\right) \leq i+1\right)$, i.e. that the radius of $L^{i}(G)$ does not exceed $i+1$.

Let H be a subgraph of G on m nodes. Then $V(H)$ can be partitioned into $\left\lfloor\frac{m}{3}\right\rfloor$ sets, each consisting of at least three nodes. Thus, for the probability P_{H} that H contains no triangle we have $P_{H} \leq\left(1-p^{3}\right)^{\left\lfloor\frac{m}{3}\right\rfloor}$.

Let $u \in V\left(L^{i}(G)\right)$ such that $e_{L^{i}(G)}(u) \leq i+1$. The $B(u)$ contains at most $i+1$ nodes, by Lemma 1. Let $S \supseteq V(B(u))$ such that $|S|=i+1$. Since $e_{L^{i}(G)}(u) \leq$ $i+1$, there is no $v \in V\left(L^{i}(G)\right)$ such that $d_{G}(B(u), B(v)) \geq 2$, by Lemma 2. In particular, there is no triangle T in G such that $d_{G}(S, T) \geq 2$. Let $v \in V(G) \backslash S$. Then the probability that $d_{G}(S, v) \geq 2$ equals $(1-p)^{i+1}$. Thus, we have:

$$
\begin{aligned}
& P\left(e_{L^{i}(G)}(u) \leq i+1\right) \\
& \quad \leq \sum_{j=0}^{n-i-1}\binom{n-i-1}{j}\left(1-(1-p)^{i+1}\right)^{n-i-1-j}\left((1-p)^{i+1}\right)^{j}\left(1-p^{3}\right)^{\left\lfloor\frac{j}{3}\right\rfloor}
\end{aligned}
$$

(here j denotes the number of nodes v such that $d_{G}(S, v) \geq 2$). Further,

$$
\begin{aligned}
P\left(e_{L^{i}(G)}\right. & (u) \leq i+1) \\
& <\frac{1}{\left(1-p^{3}\right)} \sum_{j=0}^{n-i-1}\binom{n-i-1}{j}\left(1-(1-p)^{i+1}\right)^{n-i-1-j}\left((1-p)^{i+1}\right)^{j} \sqrt[3]{1-p^{3}} \\
& =\frac{1}{\left(1-p^{3}\right)}\left(1-(1-p)^{i+1}+(1-p)^{i+1} \sqrt[3]{1-p^{3}}\right)^{n-i-1} \\
& =\frac{1}{\left(1-p^{3}\right)} a_{i}^{n-i-1}
\end{aligned}
$$

Since $\left(1-(1-p)^{i+1}+(1-p)^{i+1}\right)=1$ and $0<\sqrt[3]{1-p^{3}}<1$, we have $0<a_{i}<1$.
Since each $B(u), u \in V\left(L^{i}(G)\right)$, is contained in a subgraph of G induced by $i+1$ nodes, we have $P\left(r\left(L^{i}(G)\right) \leq i+1\right)<\frac{1}{\left(1-p^{3}\right)}\binom{n}{i+1} a_{i}^{n-i-1}$. Clearly $\lim _{n \rightarrow \infty} \frac{1}{\left(1-p^{3}\right)}\binom{n}{i+1} a_{i}^{n-i-1}=0$, and hence $r\left(L^{i}(G)\right) \geq i+2$ for almost all graphs G. Since $r(G)=2$ for almost all graphs G, see [3, p. 14], by Lemma 3 we have $r\left(L^{i}(G)\right) \leq i+2$ for almost all graphs G.

References

[1] Knor M., Niepel L. and Šoltés L.., Centers in line graphs, Math. Slovaca 43 (1993), 11-20.
[2] , Distances in iterated line graphs, Ars Comb., (to appear).
[3] Palmer E. M., Graphical Evolution: An Introduction to the Theory of Random Graphs, John Wiley, New York, 1985.
M. Knor, Department of Mathematics, Faculty of Civil Engineering, Slovak Technical University, Radlinského 11, 81368 Bratislava, Slovakia

[^0]: Received January 9, 1995; revised March 20, 1995.
 1980 Mathematics Subject Classification (1991 Revision). Primary 05C12.

