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LINEAR INDEPENDENCES IN BOTTLENECK ALGEBRA

AND THEIR COHERENCES WITH MATROIDS

J. PLÁVKA

Abstract. Let (B,≤) be a dense, linearly ordered set with maximum and min-
imum element and (⊕,⊗) = (max,min). We say that an (m,n) matrix A =
(a1, a2, . . . , an) has: (i) weakly linearly independent (WLI) columns if for each
vector b the system A⊗ x = b has at most one solution; (ii) regularly linearly inde-
pendent columns (RLI) if for each vector b the system A⊗x = b is uniquely solvable;
(iii) strongly linearly independent columns (SLI) if there exist vectors d1, d2, . . . , dr ,
r ≥ 0 such that for each vector b the system (a1, . . . , an, d1, . . . , dr) ⊗ x = b is
uniquely solvable. For these linear independences we derive necessary and suffi-
cient conditions which can be checked by polynomial algorithms as well as their
coherences with definition of matroids.

1. Introduction

The aim of this paper is to review the results concerning some types of linear

independences in Bottleneck algebras (some of them and the others were studied

in [1]–[10]) and suggest their coherences with matroidal properties where matroid

was formally introduced by Welsh in the following definition.

Definition. Let S be a finite set and I a family of its subsets, called indepen-

dent sets. Then (S, I) is a matroid if

(i) I 6= φ has hereditary property (if A ∈ I and B ⊆ A then B ∈ I)

(ii) A,B ∈ I such that |A| = |B| + 1 then there exists a ∈ A \ B such that

B ∪ {a} ∈ I.

If there only (i) is fulfilled we say that (S, I) is hereditary system.

A notion of linear independence fulfilling (i), (ii) properties, ensures that all

maximal independent sets will have the same cardinality and, hence serves a good

starting point for the notion of rank and dimension.

2. Definitions and Notations

The quadruple B = (B,⊕,⊗,≤), or B itself, is called bottleneck algebra (BA) if

(B,≤) is a nonempty, linearly ordered set with a maximum element (denoted by ε
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and called zero) and a minimum element (denoted by σ and called unit), whereby

ε 6= σ and ⊕,⊗ are binary operations on B defined by formulas

a⊕ b = max{a, b}

a⊗ b = min{a, b}.

In the following we will deal with (m,n) matrices, and we assume everywhere that

m and n are given positive integers. For short we denote {1, 2, . . . , n} by N and

{1, 2, . . . ,m} by M . The system of all (m,n) matrices over B will be denoted by

B(m,n). The elements of B(m, 1) will be called vectors. The elements of B will

be represented by letters of Greek alphabet, a matrix with vectors a1, . . . , an as its

columns will be denoted by A = (a1, . . . , an) or A = (aij). If A = (aij) ∈ B(m,n),

m ≥ n and aij > σ for i = j and aij = σ otherwise then we say that matrix A is

trapezoidal one and we will denote it as A = trap {a11, . . . , ann}. If m = n we say

that the trapezoidal matrix A is diagonal and denote A = diag {a11, . . . , ann}.

Two matrices A, B are said to be equivalent (abbr. A ∼ B) if one can be

obtained from the other by permutations of its rows and columns. If matrix A is

equivalent to a diagonal matrix then we say A is a permutation matrix.

Extend ⊕,⊗ and ≤ to matrices over B as in conventional algebra. The main

results are proved under the assumption of density of the ordering ≤, that is to

say,

(∀x, y ∈ B) x < y =⇒ (∃ z ∈ B) x < z < y.

We say that a matrix A = (a1, . . . , an) ∈ B(m,n), n ≤ m has

(i) weakly linearly independent (WLI) columns if for each vector b the system

A⊗ x = b has at most one solution;

(ii) regularly linearly independent (RLI) columns if for each vector b the system

A⊗ x = b is uniquely solvable;

(iii) strongly linearly independent (SLI) columns if there exist vectors d1, . . . , dr ∈
B(m, 1), r ≥ 0 such that for each vector b the system (a1, . . . , an, d1, . . . , dr)⊗x =

b is uniquely solvable.

The definition WLI was introduced under the name 2B-independence in [4],

for which was formulated open problem to find necessary and sufficient conditions

and cheking algorihm for testing of it. RLI has a motivation in the conventional

linear algebra. The SLI is introduced originally in this paper to give a definition

of independence with matroidal properties.

3. Necessary and Sufficient Conditions for Linear Independences

Before statement of the main results of this paper we establish some notations.

If in i-th row of A only one maximum element exists i.e. there exists j ∈ N such

that aij > ais for all s 6= j we will denote it by πi and second maximum element
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of i-th row we will denote by τi i.e. τi = ⊕ j
aij 6=πi

aij. By M∗A we denote the set

of all row indices for which only one maximum exists. Denote the sets {j ∈ M∗A;

πj = aji > τj > σ} and {j ∈M∗A; πj = aji > τj = σ} by Ri and Ci, respectively.

Theorem 1. Let A ∈ B(m,n). Then A has WLI columns if and only if

(i) A contains a permutation submatrix of order n

(ii) A contains a square submatrix of order n which has in each row and each

column exactly one unit entry

(iii) for all i ∈ N ′ = {s ∈ N ; Rs 6= φ}⊗
j∈Ri

τj ≤
⊕
j∈Ci

πj

holds.

Proof. Suppose that A = (aij) ∈ B(m,n).

(i) Denote Mj = {i ∈ M ; aij > σ}. Suppose that a matrix A is different

from the zero-matrix and all zero rows are removed since they do not have any

influence on WLI and it implies ∪k∈NMk = M . Then it is clear that A contains

a permutation submatrix of order n if and only if ∪k 6=jMk 6= M holds for all

jεN . Now suppose that A doesn’t contain a permutation submatrix of order n

i.e. according to foregoing discussion there exists j ∈ N (say j = n) such that

∪k 6=jMk = M . Then the system A ⊗ x = b for b = (b1, . . . , bm)T ∈ B(m, 1), and

bi = ⊗ars>0ars has solutions x = (x1, . . . , xn)T where xi = bi for i = 1, 2, . . . , n−1

and xn is arbitrary element from closed interval [σ,⊗aij>σaij ].
(ii) Suppose that A contains a column with all entries less than ε. W.l.o.g.

let ai1 < ε for all i ∈ M . Set the right-hand side vector b equal to the first

column of A. It is easy to see that the vector x = (⊕ai1, σ, . . . , σ)T is a solution of

A⊗x = b, moreover, x′ = (ε, σ, . . . , σ) is another solution. Therefore each column

of A must contain at least one unit entry. If a submatrix of order n with exactly

one unit in each row and column does not exist then A contains a row with at

least two unit entries (say) in r-th and s-th position for r < s, k ≤ s ≤ n. Then

system A ⊗ x = b for bi = ⊕jaij has solutions x = (x1, . . . , xn)T , xi = ε for all

i 6= s and xs ∈ [⊕ars<εars, ε].
(iii) The case N ′ = φ is clear since since according to (i), (ii) the matrix A

contains a submatrix of order n equivalent to a diag {ε, . . . , ε} and consequently

it follows that the system A ⊗ x = b has at most one solution for each vector b.

Suppose that there exists i ∈ N ′ (say i = 1) such that⊗
j∈R1

τj >
⊕
j∈C1

πj .

Then the system A ⊗ x = b for b = (b1, . . . , bm)T where bi = τi for i ∈ R1,

bi = πi for i ∈ C1, otherwise bi = ⊕jaij has solutions x = (x1, . . . , xn)T whereby
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x2 = x3 = . . . = xn = ε and x1 ∈ [⊕j∈C1πj ,⊗j∈R1τj ]. From the density a

contradiction follows.

Conversely, we suppose that (i), (ii), (iii) hold. By analysis of cases we will

show that for arbitrary vector b the system A⊗x = b either doesn’t have solution

or ⊕j∈Ciπj ≤ xi ≤ ⊗j∈Riτj or xi = bj but this fact together with (iii) imply the

assertion. Suppose that j ∈ Ci. If bj < πj then xi = bj and if bj = πj then xi ≥ πj
and otherwise the system is not solvable. From foregoing inequality follows that

⊕j∈Ciπj ≤ xi. The second part we will prove similarly. Let j ∈ Ri. If πj > bj > τj
then xi = bj . If bj ≤ τj then xi ≤ bj ≤ τj and again otherwise the system is not

solvable. Thus, xi ≤ ⊗j∈Riτj and the assertion results. �
The previous theorem gives a clear hint to the testing of WLI-it suffices to

look for first and second maxima (in O(mn) steps) for each i ∈ N ′ to check

whether ⊗j∈Riπj ≤ ⊕j∈Ciτj . For this purpose suppose that rows of A which

have only one maximum element precede the others and denote p = (π1, . . . , πj),

s = (τ1, . . . , τj), j ≤ m then we are led on finding the sets Ri and Ci and then

minima and maxima of elements of p and s over Ri and Ci, respectively (in O(2m)

steps) −O(mn) + nO(2m) = O(mn).

Lemma 1. Let A ∈ B(m,n). If A has RLI columns then m = n.

Proof. Suppose that A has RLI (implies WLI) columns. The part (ii) of Proof

of Theorem 1 suggests that a matrix A having WLI columns contains a square

submatrix of order n which has in each row and each column exactly one unit

entry. For n < m we will construct a vector b which implies the system A⊗ x = b

is not solvable. Denote bi = ⊕jaij . If there exists i ∈M such that bi < ε then for

b′ = (b1, . . . , bi−1, ε, bi+1, . . . , bm)T the system A⊗x = b′ doesn’t have a solution.

If bi = ε for all i ∈ M then the matrix A contains a column with at least two

unit entries (say) in r-th and s-th positions, s > n. The system A ⊗ x = b is not

solvable for b = (b1, . . . , bm) where bi = σ for all i ∈M \ {s} and bs = ε. �
Theorem 2. Let A ∈ B(n, n). Then A has RLI columns if and only if A ∼

diag {ε, . . . , ε}.

Proof. The part “if” is trivial. For a converse, suppose that A has RLI columns

then A has WLI columns and according to (i) and (ii) of Theorem 1 we have the

assertion. �
Theorem 3. Let A ∈ B(m,n). Then A has SLI columns if and only if A ∼

trap {ε, . . . , ε}.

Proof. Suppose that A ∼ trap{ε, . . . , ε}. Denote for i = 1, 2, . . . , r; r = m−n a

vector di which has on (n+i)-th position unit entry and otherwise entries are equal

to σ. Then the matrix (a1, . . . , an, d1, . . . ., dr) ∼ diag {ε, . . . , ε} and according to

Theorem 2 the system (a1, . . . , an, d1, . . . , dr) ⊗ x = b has only one solution for

arbitrary vector b.
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Conversely, suppose that there exist vectors d1, . . . , dr such that the system

(a1, . . . , an, d1, . . . , dr)⊗ x = b

is unique solvable. But again using the Theorem 2

(a1, . . . , an, d1, . . . , dr) ∼ diag {ε, . . . , ε}

implies A ∼ trap {ε, . . . , ε}. �

The last assertions enable to immediately compile an O(mn) algorithm for

testing RLI and SLI columns of a matrix A.

4. Coherence of the Linear Independences with Matroids

Let A = (a1, . . . , an) ∈ B(m,n). If A′ = (ai1 , . . . , aik), {i1, . . . , ik} ⊂
{1, . . . , n} has WLI (RLI, SLI) columns then the system of vectors {ai1 , . . . , aik}
is said to be WLI (RLI, SLI) subset of A.

Theorem 4. Let S = {a1, . . . , an}. Then (S, I) is hereditary system where I
is a family of WLI subsets of S.

Proof. Suppose that A = {a1, . . . , ar} ∈ I and B = {ai1 , . . . , ais} ⊆ A and

A = (a1, . . . , ar), B = (ai1 , . . . , ais).

Denote

πj =
⊕
i∈M∗A

aji, π′j =
⊕
i∈M∗B

aji

τj =
⊕
i∈M∗A
aji 6=πj

aji, τ ′j =
⊕
i∈M∗B
aji 6=πj

aji

R′t = {j ∈M∗B; π′j = ajt > τ ′j > σ}

and

C′t = {j ∈M∗B; π′j = ajt > τ ′j = σ}.

Since {i1, . . . , is} ⊆ {1, . . . , r} we have Ci ⊆ C′i and⊕
j∈Ct

πj ≤
⊕
j∈C′t

π′j

holds. Therefore for all tε{i1, . . . , is} \ {p;R′p = φ} is fulfilled either⊕
j∈C′t

π′j = ε
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or

⊗
j∈R′t

τ ′j ≤
⊗
j∈Rt

τj .

In each of both cases the assertion follows. �

Since the structure of a matrix A which has SLI columns is very simple

A ∼



ε σ . . . σ

σ ε . . . σ

. . . . . . . . . . . . .

σ σ . . . ε

σ σ . . . σ

. . . . . . . . . . . . .

σ σ . . . σ


straightforwartly from definitions the following assertion results.

Theorem 5. Let S = {a1, . . . , an}. Then (S, I) is matroid where I is a family

of SLI subset of S.

To summarise the results of this article we give the following table.

Independence The order Complexity Matroid

WLI m ≥ n O(mn) hereditary system

RLI m = n O(n2)

SLI m ≥ n O(mn) matroid

Table 1.

In conclusion two examples.

Example 1. Let B = [0, 1] ⊂ R and

S =


 1

0

0.4

 ,

 0.3

1

0

 ,

 1

0

0


and I be a family of WLI subsets of S. Then this example shows that (S, I) is not

matroid since A =

{(
1

0

0.4

)
,

(
0.3

1

0

)}
and B =

{(
1

0

0

)}
are maximal independent

sets and their cardinality are not equal.
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Example 2. Let B = [0, 1] ⊂ R

S =

{(
1

0

)
,

(
0

1

)}
and I be a family of RLI subsets of S. Then for this example (S, I) is not

hereditary system since the condition (i) of the definition of matroids is not fulfilled

using of Theorem 2.
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2. Butkovič P., Cechlárová K. and Szabó P., Strong linear independences in bottleneck algebra,
Linear Algebra Apll. 94 (1987), 133–155.
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4. Cechlárová K. and Plávka J., Linear independence in Bottleneck algebras, Fuzzy Sets and
Systems, (to appear).

5. Cuninghame-Green R. A., Minimax Algebra, Lecture Notes in Econ. and Math. Systems 166
(1979), Springer-Verlag, Berlin.

6. Gondran M. and Minoux M., L’independance lineaire dans les dioides, Bull. Direction etudes
recherches sér. C Math.Informat (1978), 38–48.

7. Kim K. H., Boolean Matrix Theory and Applications, Marcel Dekker, New York.
8. Jian-Lin Li, The smallest solution of max-min fuzzy equations, Fuzzy Sets and Systems 41

(1990), 317–327.
9. Wagneur E., Moduloids and pseudomodules, 1.Dimension theory, Discrete Math. 98 (1991),

57–73.
10. Zimmermann U., Linear and Combinatorial Optimization in Ordered Algebraic Structures,

vol. 10, North Holland, Amsterddam, 1981.

J. Plávka, Department of Mathematics, Technical University, Hlavná 6, 040 01 Košice, Slovakia


