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MEASURABILITY OF SOME SETS OF

BOREL MEASURABLE FUNCTIONS ON [0, 1]

M. ŠMÍDEK

Abstract. In the paper we show that the space of injective Borel measurable
functions and the space of functions, which norm attains supremum at exactly one
point, with supremum metric are coanalyticly hard by using the space of trees.

In this paper we show that the set of injective functions is not Suslin in the space

of Borel measurable functions f : [0, 1] −→ [0, 1] with the supremum metric. This

answers a question of A. H. Stone posed after the problem of [DS], whether the

set of injective functions is Borel measurable in the space of Lebesgue measurable

functions f : [0, 1] −→ [0, 1] with the supremum metric, was solved by Miroslav

Chleb́ık.

We say that M is a Polish space if M is a complete separable metric space.

Let M be a topological space and P be a metric space. Then Bb(M , P ) de-

notes the space of all bounded Borel measurable functions f : M −→ P with

the supremum metric. The space of continuous bounded functions is denoted by

Cb(M,P ) for P = R it is a normed linear space endowed with the supremum

norm. Further, we put MB(M,R) =
{
f ∈ Bb(M,R); ∃!x ∈ M : |f(x)| = ‖f‖

}
,

MC (M,R) = MB(M,R) ∩ Cb(M,R), IB(M,P ) =
{
f ∈ Bb(M,P ); f is injective

}
,

and IC (M,P ) = IB(M,P ) ∩ Cb(M,P ).

Let N = NN denote the Baire space of sequences of natural numbers and S =⋃∞
n=1Nn ∪ {∅} denote the set of all finite sequences of element of N.

For s = (s1, . . . , si) ∈ S let |s| = i denote the length of sequence s and for

µ = (µ1, µ2, . . . ) ∈ N and k ∈ N let µ|k = (µ1, . . . , µk) ∈ S denote the first k

members of the sequence µ. We say that t = (t1, . . . , ti) ∈ S is a extension of

s = (s1, . . . , sj) ∈ S if j ≤ i and (t1, . . . , tj) = s. By the metric on the Baire space

we understand %(µ, ν) =
(
min{k ∈ N; µ|k 6= ν|k}

)−1
for µ 6= ν and %(µ, µ) = 0.

For s ∈ S denoteN (s) = {ν ∈ N ; ν
∣∣|s| = s}. Let G ⊂ N be an open nonempty set

in N , then spaces N , N ×N and G are homeomorphic, denote N ∼ N ×N ∼ G.

Let M be a metric space. We say that S ⊂ M is a Suslin set if it can be

written in the form S =
⋃
ν∈N

⋂
n∈N F (ν|n), where F (s) ⊂M is closed for s ∈ S.
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The set C ⊂ M is co-Suslin if M \ C is Suslin. The preimages of Suslin sets

under a Borel measurable mapping are Suslin.

Let A be a subset of a metric space M . We say that a point x ∈ M is a

condensation point of the set A if, for every neighbourhood U of the point

x, A ∩ U is uncountable. The set A is condensed if it is nonempty and each of

its points is a condensation point. For separable A, let B be a set of all conden-

sation points of A. Then the set B is condensed and the set A \ B is countable,

[K, Chapter 2.B, §23, III, p. 260].

Proposition 1. For every separable absolute Borel metric space A (i.e. Borel

in its completion), which is condensed, there is a continuous one-to-one mapping

f of N onto A.

The proof of this proposition in the special case A ⊂ R is in [S]. To prove

Proposition 1 in the general case we follow closely the procedure of [S] using the

following two lemmas. The proof of Lemma B can follow the case M = R from

[S] (Lemma 3) almost word by word and we omit it.

Lemma A. Let M be a metric space, a subset A of the space M be an injective

continuous image of the space N and x ∈M be a condensation point of the set A.

Then A ∪ {x} is an injective continuous image of N .

Lemma B. Let M be a Polish space and A be a condensed Borel measurable

subset of M . Then there exists a family of pairwise disjoint sets (An)
n∈N ⊂ M

which are condensed, Borel measurable, dense in A and A =
⋃
n≥1An.

Proof of Proposition 1. Let us denote M = Ã. Let (An)n∈N ⊂ M be a fam-

ily from Lemma B. There exists sets Dn ⊂ M and Bn ⊂ M such that An =

Bn ∪Dn, Dn are at most countable and Bn are continuous injective images of N ,

[K, Chapter 3, §37, II, consequence 1c, p. 462]. Denote D =
⋃
n≥1Dn and

{x1, x2, . . . } = D finite or infinite sequence and Cn = Bn ∪ {xn} for n ∈ N if

card D = ∞ and, if card D = n0, Cn = Bn for n > n0. The sets Dn are at most

countable, An are condensed and dense in A, hence Bn are condensed and dense

in A. Then each point of D is a condensation point of Bn. Then, by Lemma A,

the set Cn is injective continuous image of N . And now we easily obtain that

A =
⋃
n∈NCn is injective continuous image of the space N as N ∼ N (k) for every

k ∈ N . �

Proof of Lemma A. Let x /∈ A, otherwise the proof is easy, and f : N −→M be

an injective continuous mapping such that f(N ) = A. Since x is a condensation

point of A, there exists a sequence (xn)
n∈N ⊂ A such that xn → x. Denote

νn = f−1(xn), rn = 1
3%
(
xn, {x} ∪

⋃
i6=n{xi}

)
, where % is metric of the space M .

Then An = U (xn, rn) (open ball of centre xn and radius rn) are pairwise

disjoint. As rn → 0, for arbitrary sequence yn ∈ An, we get yn → x. Since f is
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continuous, there is a sequence (ln)
n∈N ⊂ N so that f

(
N (νn|ln)

)
⊂ An. Denote

Hn = N (νn|ln) for n ≥ 1 and H0 = N \
⋃
n≥1Hn. For n ≥ 1, the set Hn is open

and closed, hence H0 is closed.

The set H0 is open. If it was not open, then there exist (ni)i∈N ⊂ N, (µi)i∈N ⊂ N
and µ ∈ N such that µ ∈ H0, µi ∈ Hni and µi → µ. If there is an m ∈ N so

that ni < m for each i ∈ N, then (µi)i∈N ⊂
⋃m
j=1Hj . Hence µ ∈

⋃m
j=1 Hj , and

µ /∈ H0 as the set
⋃m
j=1 Hj is closed. Thus there exists a subsequence nij → ∞.

Since f(µij ) ∈ Anij , we get f(µij )→ x, and it implies f(µ) = x and x ∈ A what

is contradiction. The sets Hn are open, hence Hn ∼ N for each n ≥ 0.

Let us choose an arbitrary µ ∈ N and denote Kn = N (µ|n) \ N (µ|n + 1) for

n ≥ 0. The sets Kn are pairwise disjoint open sets and
⋃
n≥0Kn = N \{µ}. Hence

Kn ∼ N and Kn ∼ Hn, denote by ϕn : Kn −→ Hn some homeomorphism. Now

let us define a mapping g : N \ {µ} −→ M by g(%) = f(ϕn(%)) for % ∈ Kn. The

mapping g is injective, continuous on N \ {µ} and g(N \ {µ}) = f(N ) = A. It is

easy to see that we can extend the function g to the point µ by g(µ) = x and g is

continuous. �
A metric space C is called coanalyticly hard if for every Polish space P

and every its co-Suslin subset E ⊂ P there exists a Borel measurable mapping

f : P −→ C̃ into the completion C̃ of the space C such that E = f−1(C).

Recall that usually a subset C of Polish space M is said to be coanalyticly

hard (in M), if for every Polish space P and every its co-Suslin subset E ⊂ P

there exists a Borel measurable mapping f : P −→M so that E = f−1(C), [KL].

A subset C of a Polish space P is coanalyticly hard if and only if C is a coanalyticly

hard space.

Moreover, C is a coanalyticly hard space if and only if it contains a separable

subset E such that C ∩ E
C̃

is a coanalyticly hard subset of Polish space E
C̃

. If

C is coanalyticly hard space, then by Lemma 4 bellow the set L of well-founded

trees is coanalyticly hard and co-Suslin in the Polish space T . Hence there is Borel

measurable mapping f : T −→ C̃ such that f−1(C) = L. By [F, Theorem 1] a

set E = f(T ) is separable and by Lemma 3 bellow the set C ∩E
C̃

is coanalyticly

hard.

Lemma 2. Let M be a complete metric space and A ⊂ M be a coanalyticly

hard space. Then A is not the Suslin subset of M .

Proof. There exists a co-Suslin set C ⊂ N , which is not Suslin in N ,

[K, Chapter 3, §38, VI, p. 472]. Since A is a coanalyticly hard space and M

is a complete metric space, there exists a Borel measurable mapping f : N −→M

such that C = f−1(A). If A was Suslin in M , f−1(A) = C would be Suslin in N .�
Lemma 3. Let f : P −→ M be a Borel measurable mapping of a complete

metric space P to a metric space M and B ⊂ M be a set such that f−1(B) = A

is a coanalyticly hard space. Then B is a coanalyticly hard space.
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Proof. Let E be a co-Suslin subset of a Polish space L. Then there exists Borel

measurable mapping g : L −→ P so that E = g−1(A). Let us define a mapping h

from L into the completion M̃ of the space M by h = f ◦ g. The mapping h is

Borel measurable and h−1(B) = g−1(A) = E. We need to find a Borel measurable

mapping h̃ : L −→ B
M̃

such that h̃−1(B) = E.

There is a point x ∈ B
M̃

\B, otherwise the set B is closed in M̃ , hence f−1(B) =

A is Borel measurable which is a contradiction with Lemma 1. Let us define the

mapping h̃ : L −→ B
M̃

by h̃(z) = h(z) if h(z) ∈ B
M̃

and h̃(z) = x otherwise. �

We say that T ⊂ S is a tree if for every t ∈ T and for every s ∈ S such that

t is an extension of s, s ∈ T . Let us denote the space of trees by T . Recall that

the space T is a compact metric space endowed with such a metric that Tn → T

in its metric means that s ∈ T if and only if there exists n0 ∈ N so that s ∈ Tn for

n ≥ n0. The space T corresponds to the stopping times defined in [D, p. 235].

For s ∈ S, ν ∈ N and T ∈ T let us denote:

T (s) = {T ∈ T ; s ∈ T} and T (ν) =
⋂
n

T (ν|n),

T (ν) =∞ if ν|i ∈ T for every i ∈ N and

T (ν) = min{i; ν|i /∈ T} otherwise.

We put P = {T ∈ T ; ∃ ν ∈ N : T (ν) =∞} the set of ill-founded trees, L = T \ P
the set of well-founded trees, M = {T ∈ T ; ∃! ν ∈ N : T (ν) = ∞ }, and, finely,

Bk(T ) = {s; s ∈ T & |s| ≤ k}. The family {T (s); s ∈ S} ∪ {T \ T (s); s ∈ S} is

a countable subbasis of topology of T .

Lemma 4. The spaces L, M and L ∪M are coanalyticly hard and they are

co-Suslin subsets of T .

Proof. Let us denote F = {(ν, T ) ∈ N × T ; T (ν) = ∞} and π : T × N −→ T
be the projection. The set F is obviously closed in the space T × N . Since

π(F ) = P = T \ L and the spaces T and T ×N are Polish, the set L is co-Suslin,

[K, Chapter 3, §39, II, p. 493].

Denote f = π � F . Then M =
{
T ∈ T ; card

(
f−1(T )

)
= 1

}
is co-Suslin in

space T , [K, Chapter 3, §39, VII, p. 504]. The set L ∪M is the union of two

co-Suslin sets, hence it is co-Suslin.

For every co-Suslin subset E of a Polish space P , exists a upper semicontinuous

mapping f : P −→ T such that f−1(P) = P \E, [D, p. 239]. Since mapping f is

Borel measurable and f−1(L) = E, the space L is coanalyticly hard.

Let us define a continuous mapping H : T −→ T by

H(T ) =
{

(2, s); s ∈ T
}
∪
⋃
i∈N

µ|i,
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where µ = (1, 1, . . . ). It holds that L = H−1(M) and, moreover, H(T ) ⊂ P ,

hence H−1(M∪ L) = H−1(M) = L. Since L is coanalyticly hard, both sets M
and L ∪M are coanalyticly hard. �

Let us define a mapping Φ: Cb(N ,R) −→ T by

Φ(f) =
{
s ∈ S;

∥∥f � N (s)
∥∥ = ‖f‖

}
.

Obviously Φ(f) ∈ T for f ∈ Cb(N ,R).

Lemma 5. The mapping Φ is Borel measurable of the first class.

Proof. Since the family {T (s); s ∈ S} ∪ {T \ T (s); s ∈ S} forms a countable

subbasis of topology T , it is sufficient to prove that, for every s ∈ S, the set

Φ−1(T (s)) is closed. Let fn ∈ Φ−1(T (s)) and fn ⇒ f . For arbitrary ε > 0, there

exists an i ∈ N such that ‖fi−f‖ <
ε
3 . Since, for every n ∈ N,

∥∥fn � N (s)
∥∥ = ‖fn‖,

there exists a µ ∈ N (s) such that ‖fi‖ −
∣∣fi(µ)

∣∣ < ε
3 . Hence∣∣∣∣∣f(µ)

∣∣−‖f‖∣∣∣ ≤ ∣∣∣∣∣f(µ)
∣∣−∣∣fi(µ)

∣∣∣∣∣+∣∣∣∣∣fi(µ)
∣∣−‖fi‖∣∣∣+∣∣∣‖fi‖−‖f‖∣∣∣ < 2‖fi−f‖+

ε

3
< ε.

For every ε > 0, we found a µ ∈ N (s) such that ‖f‖ −
∣∣f(µ)

∣∣ < ε. It means that∥∥f � N (s)
∥∥ = ‖f‖, and f ∈ Φ−1(T (s)). �

Proposition 6. The sets MC(N ,R) and IC(N ,R) are co-Suslin in the space

Cb(N ,R).

Proof. It is easy to see that Φ−1(M) = MC(N ,R) because
∣∣f(µ)

∣∣ = ‖f‖ if and

only if Φ(f)(µ) =∞. The mapping is Borel measurable and T \M is Suslin. So

Φ−1(T \M) = Cb(N ,R) \ Φ−1(M) = Cb(N ,R) \MC(N ,R)

is Suslin in MC(N ,R).

The spaces N × N and N are homeomorphic, let ϕ : N −→ N × N be a

homeomorphism. Let us denote D = {(ν, ν) ∈ N ×N ; ν ∈ N}. As N \ ϕ−1(D) is

an open set in N , the spaces N and N \ϕ−1(D) are homeomorphic, let ψ : N −→
N \ ϕ−1(D) be a homeomorphism.

Now, let us define a continuous mapping F1 : Cb(N ,R) −→ Cb(N ,R) by

F1(f)(ν) =
∣∣∣f ◦ π1 ◦ ϕ ◦ ψ(ν)− f ◦ π2 ◦ ϕ ◦ ψ(ν)

∣∣∣,
where π

1
is the projection on the first coordinate and π

2
on the second coordinate

of the space N ×N .

It is easy to see that a function f ∈ Cb(N ,R) is injective if and only if the func-

tion F1(f) does not attain zero. Moreover, for every f ∈ Cb(N ,R), infν∈N F1(f)(ν)



252 M. ŠMÍDEK

= 0 because there exist (µn)
n∈N ⊂ N and µ ∈ N such that µn 6= µ and µn → µ.

For νn = ψ−1(ϕ−1(µ, µn)), it is F1(f)(νn) =
∣∣∣f(µ)− f(µn)

∣∣∣→ 0.

Let us define a continuous mapping F ′1 : Cb(N ,R) −→ Cb(N ,R) by F ′1(f)(ν) =

‖f‖−f(ν) and denote F2 = F ′1◦F1. A function f ∈ Cb(N ,R) is injective if and only

if the function F2(f) does not attain its norm. Hence F−1
2 (MC (N ,R)) = IC(N ,R)

and because F2 is a continuous mapping, the set

F−1
2

(
Cb(N ,R) \MC(N ,R)

)
= Cb(N ,R) \ IC (N ,R)

is Suslin. �

Let us define a mapping Θ: T −→ RN . Given T ∈ T and ν ∈ N put

Θ(T )(ν) = 2−T (ν) if T (ν) <∞ and

Θ(T )(ν) = 0 otherwise.

The mapping Θ is obviously injective. For S, T ∈ T , S 6= T , there exists a ν ∈ N
so that S(ν) 6= T (ν), thus Θ(S)(ν) 6= Θ(T )(ν).

Lemma 7. For every T ∈ T , Θ(T ) ∈ Cb(N ,R). The mapping Θ is Borel

measurable of the first class.

Proof. Let T ∈ T and ν, νn ∈ N , νn → ν, denote f = Θ(T ). For any k ∈ N
there exists n0 ∈ N such that νn|k = ν|k for n ≥ n0. If T (ν) ≤ k, then f(νn) =

f(ν). If T (ν) > k or T (ν) = ∞, then f(νn) < 2−k and f(ν) < 2−k. Therefore in

both cases we have
∣∣f(νn)− f(ν)

∣∣ < 2 · 2−k for n ≥ n0. Hence f(νn)→ f(ν) and

f ∈ Cb(N ,R).

Now we show that Θ(T ) is separable. Let T ∈ T , k ∈ N be arbitrary. For every

ν ∈ N it holds that 0 ≤ Θ
(
Bk(T )

)
(ν) − f(ν) ≤ 2−k−1. Thus Θ(R) is dense in

Θ(T ), where R = {T ∈ T ; ∃n ∈ N : ∀ s ∈ T : |s| ≤ n} is a countable set.

Since
{
U
(
Θ(T ), 2−k

)
; T ∈ R, k ∈ N

}
is a countable basis of Θ(T ), it is

obviously sufficient to prove that, for every T ∈ T and k ∈ N, Θ−1
(
U
(
Θ(T ), 2−k

))
is closed. Denote f = Θ(T ), U = U

(
f, 2−1−k

)
and

A =
{
S ∈ T ; Bk(S) = Bk(T )

}
=
{
S ∈ T ; ∀ ν ∈ N ∀ j ≤ k : ν|j ∈ S ⇐⇒ ν|j ∈ T

}
.

A tree S ∈ T belongs to A if and only if, for every ν ∈ N , min
(
k, S(ν) − 1

)
=

min
(
k, T (ν)− 1

)
. This is equivalent to

∣∣∣2k−S(ν) − 2k−T (ν)
∣∣∣ < 1

2 and hence also to∣∣∣Θ(S)(ν)−Θ(T )(ν)
∣∣∣ =

∣∣∣2−S(ν) − 2−T (ν)
∣∣∣ < 2−1−k.
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Both happens if and only if S ∈ Θ−1(U). Thus A = Θ−1(U).

It remains to prove that the set A is closed. Let Sn → S and Bk(Sn) = Bk(T ).

We will prove that Bk(S) = Bk(T ). Let s ∈ S be so that |s| ≤ k. If s ∈ S, then,

for some n ∈ N, it is s ∈ Sn, hence s ∈ T . Conversely, if s ∈ T , then, for every

n ∈ N, it is s ∈ Sn, hence s ∈ S. That means Bk(S) = Bk(T ). �
Proposition 8. The spaces MC (N ,R) and IC (N ,R) are coanalyticly hard.

Proof. Let us define an injective Borel measurable mapping Ψ1 : T −→ Cb(N ,R)

by Ψ1(T )(ν) = 1 − 2−ν
1

Θ(T )(ν) for ν = (ν1, ν2, . . . ) ∈ N . It is ‖Ψ1(T )‖ = 1 for

every T ∈ T . Because Ψ1(T ) ∈MC(N ,R) if and only if T ∈M, it holds that

MC(N ,R) ∩Ψ1(T ) = Ψ1(M) and Ψ−1
1 (MC(N ,R)) =M.

The space M is coanalyticly hard, hence MC(N ,R) is coanalyticly hard.

Let ϕ : N −→ (1, 2) be an injective continuous function. Let us define an injec-

tive Borel measurable mapping Ψ2 : T −→ Cb(N ,R) by Ψ2(T )(ν) = ϕ(ν)Θ(T )(ν).

Let T ∈ T be an arbitrary tree and denote f = Ψ2(T ).

We show that if a function f attains zero in at most one point, then f is

injective. It means that a function Ψ2(T ) is injective if and only if T ∈ L ∪M.

For suppose not. Then there exist sequences µ, ν ∈ N such that µ 6= ν and

f(µ) = f(ν) 6= 0. Since f(µ) 6= 0 6= f(ν) it must be Θ(T )(µ) 6= 0 6= Θ(T )(ν).

Moreover ϕ is injective, it means that Θ(T )(µ) 6= Θ(T )(ν). Thus there exist

i, j ∈ N so that i 6= j, Θ(T )(µ) = 2−i and Θ(T )(ν) = 2−j, hence f(µ) ∈
(
2−i, 21−i

)
and f(ν) ∈

(
2−j, 21−j

)
, which are two disjoint intervals, but f(µ) = f(ν).

This means that Ψ−1
2

(
IC (N ,R)

)
= L ∪M. Thus the space IC(N ,R) is coana-

lyticly hard. �
Proposition 9. Let M and L be absolute Borel, separable, uncountable spaces.

Then the spaces MB(M,R) and IB(M,L) are coanalyticly hard. Thus the sets

MB(M,R) and IB(M,L) are not Suslin subsets of Bb(M,R) and Bb(M,L).

Proof. Let M1 ⊂ M and L1 ⊂ L be some countable sets, M2 ⊂ M \M1 and

L2 ⊂ L\L1 be sets of points from the setsM\M1 and L\L1 which are condensation

points of M and L. There exist injective continuous mappings ϕ1 : N −→ M2,

ψ1 : N −→ L2 and g : N −→ R so that ϕ1(N ) = M2, ψ1(N ) = L2 and g(N ) = R,

Let D ⊂ N be a countable closed set. The spaces N and N \D are homeomorphic;

let η : N \ D −→ N be a homeomorphism. Denote ϕ = ϕ1 ◦ η and ψ = ψ1 ◦ η.

As the sets M \M2 and L \ L2 are countable, we can define the mapping ϕ and

ψ on the set D such that ϕ(N ) = M , ψ(N ) = L. Then the mappings ϕ and

ψ are Borel measurable. As ϕ−1 and g−1 are Borel measurable ([K, Chapter 3,

§39, V, Theorem 3, p. 500]), we can define an injective Borel measurable mapping

F : Cb(N ,R) −→ Bb(M,L) by F (f) = ψ ◦ g−1 ◦ f ◦ ϕ−1. As the mappings ϕ−1,

g−1 and ψ are injective, F−1(IB(M,L)) = IC (N ,R), and it means that the space

IB(M,L) is coanalyticly hard.
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ForMB(M,R) we define the mapping F by F (f) = f ◦ϕ−1. Again, it holds that

F−1(MB(M,L)) = MC(N ,R), and the space MB(M,R) is coanalyticly hard. �

This paper was written on base of my thesis. I would like to thank my supervisor

Petr Holický for his helpful comments.
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[F] Froĺık Z., A Measurable Map with Analytic Domain and Metrizable Range is Quotient,
Bulletin of the American Mathematical Society 76 no. 5, 1112–1117.

[JR] Rogers C. A. and Jayne J. E., K-analytic Sets, Analytic Sets, Academic press, 1980,
pp. 1–181.

[K] Kuratovskij K., Topologija, Izdavatelstvo Mir, Moskva, 1966. (Russian)
[KL] Kechris A. S. and Louveau A., Descriptive Set Theory and Sructure of Sets of Uniqueness,

London Math. Soc. Lecture Note Ser., vol. 128, Cambridge Univ. press, 1987.
[S] Sierpinski W., Sur les images continues et biunivoques de l’ensemble de tous les nombres

irrationnels, Mathematica (Cluj) 1 (1929), 18–21.
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