A NOTE ON THE CIRCUMFERENCE OF GRAPHS

L. STACHO

Abstract

The well-known Bondy's Theorem [1] guarantees (in terms of vertex degrees) a sufficiently "large" cycle in a block. We show that adding a condition on connectivity of these blocks yields an improvement of the lower bound in Bondy's Theorem.

Introduction

Throughout, the graphs considered are finite, simple, undirected and of order $n \geq 3$. The degree $d_{G}(v)$ (or simply $d(v)$) of a vertex v in a graph G is the number of edges in G incident with v. A graph G is called k-solid if for each i-cut $\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$ of $G, i \leq k$, it holds that $G-\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$ has at most two components. The maximum cycle length in G is the circumference $c(G)$. If $c(G)=n, G$ is said to be Hamiltonian. The characterization of Hamiltonian graphs is apparently a very hard problem, though various sufficient conditions are known (cf. [3] for a survey). Many of these conditions are based on vertex degrees; such as the following result of Bondy.

Theorem 1 [1]. Let G be a block with vertex degrees $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. If

$$
d_{j} \leq j, d_{k} \leq k, \quad(j \neq k) \Longrightarrow d_{j}+d_{k} \geq c
$$

then G has a cycle of length at least $\min (c, n)$.
A special case (if we set $c=n$) of this result has been generalized in [2], [4] and [5]. The aim of this paper is to strengthen the general Bondy's result by adding a condition on connectivity of blocks. Our main result is

[^0]Theorem 2. Let G be a 4-solid block with vertex degrees $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. If

$$
d_{j} \leq j, d_{k} \leq k,(j \neq k) \Longrightarrow \begin{align*}
& d_{j}+d_{k} \geq c, \quad \text { and } \\
& \left(d_{n-\left\lfloor\frac{c}{2}\right\rfloor} \geq c\right) \vee\left(d_{n-c}>\frac{c}{2}\right) \tag{1}
\end{align*}
$$

then G has a cycle of length at least $\min (c+1, n)$.
For the reader's convenience we start with some definitions and notations. Let P_{i} be a path. For simplicity, we will refer to the first vertex of P_{i} as f_{i} and to the last vertex of P_{i} as l_{i}. Following this, if $P=\left(f, x_{1}, x_{2}, \ldots, x_{k}, l\right)$, then the reverse path to P is the path $\bar{P}=\left(\bar{f}, x_{k}, x_{k-1}, \ldots, x_{1}, \bar{l}\right)$, where $\bar{f}=l$ and $\bar{l}=f$. When $u, v \in V(P)$ and u precedes v on P we write $u \prec_{P} v$. The subpath of P starting at u and ending at v will be denoted by $[u, v]$; similarly, $[u, v]_{i}$ will denote the section of P_{i}. We write $p(v)$ and $s(v)$ for the predecessor and successor of v on P, respectively. If P_{i} and P_{j} are two paths for which $l_{i}=f_{j}$, then the composition $P_{i} \cdot P_{j}$ is the path $\left[f_{i}, p\left(l_{i}\right)\right]_{i}$ followed by P_{j}. A path P has length $\ell(P)=|V(P)|-1$; a cycle C has length $\ell(C)=|V(C)|$. Let P, P_{i} and P_{j} be paths such that $V(P) \cap V\left(P_{i}\right)=\left\{f_{i}, l_{i}\right\}, V(P) \cap V\left(P_{j}\right)=\left\{f_{j}, l_{j}\right\}$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\emptyset$. Then P_{i} overlaps with P_{j} on P if $f_{i} \prec_{P} f_{j} \prec_{P} l_{i} \prec_{P} l_{j}$.

We will need the following Lemma which has been proved in [1].
Lemma 1 [1]. Let G be a block and let P be any path in G. Then for some $m \geq 1$, there is a sequence of m pairwise edge-disjoint paths P_{1}, \ldots, P_{m}, satisfying

$$
f_{1}=f, l_{m}=l, V(P) \cap V\left(P_{i}\right)=\left\{f_{i}, l_{i}\right\}, \quad 1 \leq i \leq m
$$

and such that, for $1 \leq i<m-1, P_{i}$ overlaps with P_{i+1} on P.
Proof of Theorem 2.
By Theorem 1, G has a cycle of length at least $\min (c, n)$. Suppose by way of contradiction that $c(G)=c<n$; we will refer to the cycle of length c as C. Then there are $n-c$ vertices which do not lie on C.

Let P be a path of maximum length in G, chosen so that the sum of degrees $d(f)+d(l)$ is as large as possible. Let $d(f)=j, d(l)=k$, with $j \leq k$, and let J and K be the sets of vertices adjacent to f and l, respectively. Let $p(J)=\{p(v) \mid v \in$ $J\}$. Then $d(x) \leq d(f)=j$ for each $x \in p(J)$, since otherwise we can find a longest path with larger sum of degrees of its endvertices. Therefore the j vertices of $p(J)$ have degrees at most j so that $d_{j} \leq j$. Analogously we have $d_{k} \leq k$, and so by (1) $d(f)+d(l)=j+k \geq d_{j}+d_{k} \geq c$.

Let the path P have length $\ell(P)=p$. We claim that $p \geq c+1$. This is true if there is at least one edge between vertices which do not lie on C (which follows
from the connectivity of G). So, let us assume that there is no edge between these vertices. Now, the degree of each of these vertices is at most $\frac{c}{2}$.

It follows from (1) that either $d_{n-\left\lfloor\frac{c}{2}\right\rfloor} \geq c$ or $d_{n-c}>\frac{c}{2}$. In the first case each of the $\left\lfloor\frac{c}{2}\right\rfloor+1$ vertices of degree at least c must lie on C and at least two of them are consecutive on C. Both these vertices must be adjacent to at least one vertex not on C. The claim follows immediately. In the second case there are at least $c+1$ vertices of degree greater than $\frac{c}{2}$. Thus, at least one of these vertices does not lie on C, a contradiction. This proves our claim.

Choose the minimum possible system of paths P_{1}, \ldots, P_{m} satisfying Lemma 1. From the maximality of P, the paths P_{1} and P_{m} both have length 1 .
(i) $m=1$. Then the edge $(l, f) \in E(G)$ and the cycle $P \cdot(l, f)$ has length $p+1 \geq c+2$.
(ii) $m=2$. Choose the paths P_{1} and P_{2} so that the length of the path $\left[f_{2}, l_{1}\right]$ is as small as possible. Suppose that $\ell\left(\left[f_{2}, l_{1}\right]\right) \geq p-c+3$. Let H^{\prime} be the graph induced by the set of vertices $V\left(\left[f_{1}, f_{2}\right]\right) \cup V\left(\left[l_{1}, l_{2}\right]\right)$ and $H=H^{\prime}+\left(f_{2}, l_{1}\right)-\left(f_{1}, l_{1}\right)$. The order of H is at most $|V(P)|-\left|V\left(\left[s\left(f_{2}\right), p\left(l_{1}\right)\right]\right)\right| \leq p+1-p+c-2=c-1$. From the maximality of $P, d_{H}\left(f_{1}\right)=d_{G}\left(f_{1}\right)-1$ and $d_{H}\left(l_{2}\right)=d_{G}\left(l_{2}\right)$, and hence $d_{H}\left(f_{1}\right)+d_{H}\left(l_{2}\right) \geq c-1$. Let J^{\prime}, K^{\prime} be sets of vertices adjacent to f_{1}, l_{2}, in H, respectively; and let $p\left(J^{\prime}\right)=\left\{p(v) \mid v \in J^{\prime}\right\}$. For $x \in p\left(J^{\prime}\right) \cap K^{\prime}$, the paths $P_{1}^{\prime}=\left(f_{1}, s(x)\right)$ and $P_{2}^{\prime}=\left(x, l_{2}\right)$ satisfy conditions of Lemma 1 with $\ell\left(\left[f_{2}^{\prime}, l_{1}^{\prime}\right]\right)=1$, contradicting the choice of P_{1}, P_{2}. Obviously, $\left|p\left(J^{\prime}\right)\right|=d_{H}\left(f_{1}\right)$. It follows that $d_{H}\left(l_{2}\right) \leq c-2-d_{H}\left(f_{1}\right)$, a contradiction. Therefore $\ell\left(\left[f_{2}, l_{1}\right]\right) \leq p-c+2$. If $\ell\left(\left[f_{2}, l_{1}\right]\right) \leq p-c+1$, then the cycle $P_{1} \cdot\left[l_{1}, l_{2}\right] \cdot \overline{P_{2}} \cdot \overline{\left[f_{1}, f_{2}\right]}$ has length at least $|V(P)|-\left|V\left(\left[s\left(f_{2}\right), p\left(l_{1}\right)\right]\right)\right| \geq p+1-p+c=c+1$.

Now suppose that $\ell\left(\left[f_{2}, l_{1}\right]\right)=p-c+2 \geq 3$. First consider the following three cases. Let $N(x)$ denote the neighbourhood of the vertex x in G.
(a) there is $u \in N\left(f_{1}\right), v \in N\left(l_{2}\right)$ such that $p\left(l_{1}\right) \prec_{P} v$ and $v \prec_{P} u$;

Assume that vertices u, v are chosen in such way that $\ell([v, u])$ is as small as possible. Consider the graph H^{\prime}, induced by the set of vertices $V\left(\left[f_{1}, f_{2}\right]\right) \cup V\left(\left[l_{1}, s(v)\right]\right) \cup$ $V\left(\left[u, l_{2}\right]\right)$. Let $H=H^{\prime}+\left(f_{2}, l_{1}\right)+(s(v), u)-\left(f_{1}, l_{1}\right)$. Since $\ell([v, u]) \geq p-c+2 \geq 3$, the order of H is at most $|V(P)|-\left|V\left(\left[s\left(f_{2}\right), p\left(l_{1}\right)\right]\right)\right|-|V([s(s(v)), p(u)])| \leq p+$ $1-p+c-1-p+c=2 c-p \leq c-1$. One can show by a method similar to the above that there are two consecutive vertices $p(x)$ and x such that $p(x) \in N\left(l_{2}\right)$ and $x \in N\left(f_{1}\right)$, a contradiction.
(b) there is $u \in N\left(f_{1}\right), v \in N\left(l_{2}\right)$ such that $u \prec_{P} s\left(f_{2}\right)$ and $v \prec_{P} u$;

This case can be handled similarly to the case (a).
(c) there are vertices $u, v \in N\left(f_{1}\right)$, such that $v \prec_{P} u, u \prec_{P} s\left(f_{2}\right)$ or $p\left(l_{1}\right) \prec_{P} v$, $\ell([v, u]) \geq 2$ and no vertex from $V([v, u])-\{u, v\}$ is adjacent to f_{1};

Without loss of generality assume that $u \prec_{P} s\left(f_{2}\right)$ (the case $p\left(l_{1}\right) \prec_{P} v$ is analogous). Assume that vertices u, v are chosen in such way that $\ell([v, u])$ is as
small as possible. By (a) and (b) no vertex from $V([v, u])-\{u\}$ is adjacent to l_{2}. Let H^{\prime} be the graph induced by the set $V\left(\left[f_{1}, v\right]\right) \cup V\left(\left[u, f_{2}\right]\right) \cup V\left(\left[l_{1}, l_{2}\right]\right)$ and let $H=H^{\prime}+(v, u)+\left(f_{2}, l_{1}\right)-\left(f_{1}, l_{1}\right)$. Since $\ell([v, u]) \geq 2$, the order of H is at $\operatorname{most}|V(P)|-\left|V\left(\left[s\left(f_{2}\right), p\left(l_{1}\right)\right]\right)\right|-|V([s(v), p(u)])| \leq p+1-p+c-1-1=c-1$. Again it can be shown that there are two consecutive vertices $p(x)$ and x such that $p(x) \in N\left(l_{2}\right)$ and $x \in N\left(f_{1}\right)$, a contradiction.

Now, there is only one case left for the neighbours of the vertex f_{1}, namely, when its neighbours are vertices $s\left(f_{1}\right), s\left(s\left(f_{1}\right)\right), \ldots, s\left(s\left(\ldots s\left(f_{1}\right)\right)\right)=x, l_{1}, s\left(l_{1}\right)$, $\ldots, s\left(s\left(\ldots s\left(l_{1}\right)\right)\right)=y$. It follows from $d\left(f_{1}\right)+d\left(l_{2}\right) \geq c$ and from $|V(P)|-$ $\left|V\left(\left[s\left(f_{2}\right), p\left(l_{1}\right)\right]\right)\right|=p+1-p+c-1=c$ that the neighbours of l_{2} are $p\left(l_{2}\right)$, $p\left(p\left(l_{2}\right)\right), \ldots, p\left(p\left(\ldots p\left(l_{2}\right)\right)\right), y, f_{2}, p\left(f_{2}\right), \ldots, x$. In what follows we show that $G^{\prime}=G-\left\{f_{2}, l_{1}, x, y\right\}$ has at least three components, a contradiction. The first of them, say A, will be induced by vertices $f_{1}, s\left(f_{1}\right), \ldots, p(x), s\left(l_{1}\right), s\left(s\left(l_{1}\right)\right), \ldots$, $p(y)$. The second one, say B, will be formed by vertices $s(x), s(s(x)), \ldots, p\left(f_{2}\right)$, $s(y), s(s(y)), \ldots, l_{2}$. From the fact that there is at least one vertex, say z, for which $f_{2} \prec_{P} z \prec_{P} l_{1}$, there is at least one more component.

Now we prove that A is indeed a component of G^{\prime}. Assume that there is an edge $a b$, where

1. $f_{1} \prec_{P} a \prec_{P} x$ and $b \notin V(P)$. Then the path $(b, a) \cdot\left[f_{1}, a\right] \cdot\left(f_{1}, s(a)\right) \cdot\left[s(a), l_{2}\right]$ has length $p+1$, a contradiction.
2. $f_{1} \prec_{P} a \prec_{P} x$ and $x \prec_{P} b \prec_{P} f_{2}$. Then the cycle $(a, b) \cdot\left[b, l_{2}\right] \cdot\left(l_{2}, p(b)\right) \cdot$ $\overline{[s(a), p(b)]} \cdot\left(s(a), f_{1}\right) \cdot\left[f_{1}, a\right]$ has length $p+1>c+1$, a contradiction.
3. $f_{1} \prec_{P} a \prec_{P} x$ and $f_{2} \prec_{P} b \prec_{P} l_{1}$. Then the cycle $(a, b) \cdot\left[b, l_{2}\right] \cdot\left(l_{2}, f_{2}\right) \cdot \overline{\left[s(a), f_{2}\right]}$. $\left(s(a), f_{1}\right) \cdot\left[f_{1}, a\right]$ has length at least $c+1$, a contradiction.
4. $f_{1} \prec_{P} a \prec_{P} x$ and $y \prec_{P} b \prec_{P} l_{2}$. Then the cycle $(a, b) \cdot\left[b, l_{2}\right] \cdot\left(l_{2}, p(b)\right) \cdot$ $\overline{[s(a), p(b)]} \cdot\left(s(a), f_{1}\right) \cdot\left[f_{1}, a\right]$ has the length $p+1>c+1$, again a contradiction.
5. $l_{1} \prec_{P} a \prec_{P} y$ and $b \notin V(P)$. Then the path $(b, a) \cdot \overline{\left[f_{1}, a\right]} \cdot\left(f_{1}, s(a)\right) \cdot\left[s(a), l_{2}\right]$ has the length $p+1$, a contradiction.
6. $l_{1} \prec_{P} a \prec_{P} y$ and $x \prec_{P} b \prec_{P} f_{2}$. Then the cycle $(a, b) \cdot \overline{\left[f_{1}, b\right]} \cdot\left(f_{1}, s(a)\right)$. $\left[s(a), l_{2}\right] \cdot\left(l_{2}, s(b)\right) \cdot[s(b), a]$ has the length $p+1>c+1$, again a contradiction.
7. $l_{1} \prec_{P} a \prec_{P} y$ and $f_{2} \prec_{P} b \prec_{P} l_{1}$. Then $(a, b) \cdot[b, p(a)] \cdot\left(p(a), f_{1}\right) \cdot\left[f_{1}, f_{2}\right]$. $\left(f_{2}, l_{2}\right) \cdot \overline{\left[a, l_{2}\right]}$ has length at least $c+1$ a contradiction.
8. $l_{1} \prec_{P} a \prec_{P} y$ and $y \prec_{P} b \prec_{P} l_{2}$. Then the cycle $(a, b) \cdot\left[b, l_{2}\right] \cdot\left(l_{2}, p(b)\right) \cdot$ $\overline{[s(a), p(b)]} \cdot\left(s(a), f_{1}\right) \cdot\left[f_{1}, a\right]$ has length $p+1>c+1$, which is final contradiction.

Thus A is a component of G^{\prime}. The fact that B is a component of G^{\prime} can be proved similarly. The existence of the third component confirms that G is not 4-solid, a contradiction.
(iii) $m \geq 3$. From the minimality of m it holds that $u \in J$ implies $u \prec_{P} s\left(f_{3}\right)$ and $v \in K$ implies $p\left(l_{m-2}\right) \prec_{P} v$. Choose P_{1} and P_{m} so that $\ell\left(\left[f_{1}, l_{1}\right]\right)$ and $\ell\left(\left[f_{m}, l_{m}\right]\right)$
are as small as possible. If m is odd, then the cycle $P_{1} \cdot\left[l_{1}, f_{3}\right] \cdot P_{3} \cdot\left[l_{3}, f_{5}\right] \cdot \ldots$. $\left[l_{m-2}, f_{m}\right] \cdot P_{m} \cdot \overline{\left[l_{m-1}, l_{m}\right]} \cdot \overline{P_{m-1}} \cdot \overline{\left[l_{m-3}, f_{m-1}\right]} \cdot \overline{P_{m-3}} \cdot \ldots \cdot \overline{P_{2}} \cdot \overline{\left[f_{1}, f_{2}\right]}$ has length at least $c+1$. If m is even, then the cycle $P_{1} \cdot\left[l_{1}, f_{3}\right] \cdot P_{3} \cdot\left[l_{3}, f_{5}\right] \cdot \ldots \cdot P_{m-1}$. $\left[l_{m-1}, l_{m}\right] \cdot \overline{P_{m}} \cdot \overline{\left[l_{m-2}, f_{m}\right]} \cdot \overline{P_{m-2}} \cdot \ldots \cdot \overline{P_{2}} \cdot \overline{\left[f_{1}, f_{2}\right]}$ has length at least $c+1$. Indeed, in both cases these cycles contain all vertices of J and K together with f and l. Moreover, $|J \cap K| \leq 1$ and $|J|+|K| \geq c$. This proves the Theorem.

References

1. Bondy J. A., Large cycles in graphs, Discrete Math. 1, No. 2 (1971), 121-132.
2. Chvátal V., On hamilton's ideas, J. Comb. Theory B 12 (1972), 163-168.
3. Gould R. J., Updating the hamiltonian problem - a survey, J. Graph Theory 15 (1991), 121-157.
4. Stacho L., Quantity versus elegance: a new sufficient condition for hamiltonicity, pancyclicity and bipancyclity, manuscript, 1994.
5._, Old hamiltonian ideas from a new point of view, manuscript, 1994.
L. Stacho, Institute for Informatics, Slovak Academy of Sciences, P.O. Box 56, Dúbravská Cesta 9, 84000 Bratislava 4, Slovakia; e-mail: kaifstac@savba.sk

[^0]: Received December 1, 1994; revised February 28, 1995.
 1980 Mathematics Subject Classification (1991 Revision). Primary 05C38.
 The research of author was partially supported by Grant No. 2/1138/94 "Computational models, algorithms and complexity" of Slovak Academy of Sciences and by EC Cooperative Action IC1000 "Algorithms for Future Technologies" (Project ALTEC).

