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A NOTE ON THE CIRCUMFERENCE OF GRAPHS

L. STACHO

Abstract. The well-known Bondy’s Theorem [1] guarantees (in terms of vertex
degrees) a sufficiently “large” cycle in a block. We show that adding a condition on
connectivity of these blocks yields an improvement of the lower bound in Bondy’s
Theorem.

Introduction

Throughout, the graphs considered are finite, simple, undirected and of order

n ≥ 3. The degree dG(v) (or simply d(v)) of a vertex v in a graph G is the

number of edges in G incident with v. A graph G is called k-solid if for each

i-cut {u1, u2, . . . , ui} of G, i ≤ k, it holds that G − {u1, u2, . . . , ui} has at most

two components. The maximum cycle length in G is the circumference c(G).

If c(G) = n, G is said to be Hamiltonian. The characterization of Hamiltonian

graphs is apparently a very hard problem, though various sufficient conditions are

known (cf. [3] for a survey). Many of these conditions are based on vertex degrees;

such as the following result of Bondy.

Theorem 1 [1]. Let G be a block with vertex degrees d1 ≤ d2 ≤ · · · ≤ dn.

If

dj ≤ j, dk ≤ k, (j 6= k) =⇒ dj + dk ≥ c,

then G has a cycle of length at least min(c, n).

A special case (if we set c = n) of this result has been generalized in [2], [4] and

[5]. The aim of this paper is to strengthen the general Bondy’s result by adding a

condition on connectivity of blocks. Our main result is
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Theorem 2. Let G be a 4-solid block with vertex degrees d1 ≤ d2 ≤ · · · ≤ dn.

If

(1) dj ≤ j, dk ≤ k, (j 6= k) =⇒
dj + dk ≥ c, and(
dn−b c2 c ≥ c

)
∨
(
dn−c >

c

2

)
,

then G has a cycle of length at least min(c+ 1, n).

For the reader’s convenience we start with some definitions and notations. Let

Pi be a path. For simplicity, we will refer to the first vertex of Pi as fi and to

the last vertex of Pi as li. Following this, if P = (f, x1, x2, . . . , xk, l), then the

reverse path to P is the path P = (f, xk, xk−1, . . . , x1, l), where f = l and l = f .

When u, v ∈ V (P ) and u precedes v on P we write u ≺P v. The subpath of

P starting at u and ending at v will be denoted by [u, v]; similarly, [u, v]i will

denote the section of Pi. We write p(v) and s(v) for the predecessor and successor

of v on P , respectively. If Pi and Pj are two paths for which li = fj , then the

composition Pi · Pj is the path [fi, p(li)]i followed by Pj . A path P has length

`(P ) = |V (P )|− 1; a cycle C has length `(C) = |V (C)|. Let P, Pi and Pj be paths

such that V (P )∩V (Pi) = {fi, li}, V (P )∩V (Pj) = {fj, lj} and V (Pi)∩V (Pj) = ∅.
Then Pi overlaps with Pj on P if fi ≺P fj ≺P li ≺P lj .

We will need the following Lemma which has been proved in [1].

Lemma 1 [1]. Let G be a block and let P be any path in G. Then for some

m ≥ 1, there is a sequence of m pairwise edge-disjoint paths P1, . . . , Pm, satisfying

f1 = f, lm = l, V (P ) ∩ V (Pi) = {fi, li}, 1 ≤ i ≤ m,

and such that, for 1 ≤ i < m− 1, Pi overlaps with Pi+1 on P .

Proof of Theorem 2.

By Theorem 1, G has a cycle of length at least min(c, n). Suppose by way of

contradiction that c(G) = c < n; we will refer to the cycle of length c as C. Then

there are n− c vertices which do not lie on C.

Let P be a path of maximum length in G, chosen so that the sum of degrees

d(f)+d(l) is as large as possible. Let d(f) = j, d(l) = k, with j ≤ k, and let J and

K be the sets of vertices adjacent to f and l, respectively. Let p(J) = {p(v) | v ∈
J}. Then d(x) ≤ d(f) = j for each x ∈ p(J), since otherwise we can find a longest

path with larger sum of degrees of its endvertices. Therefore the j vertices of p(J)

have degrees at most j so that dj ≤ j. Analogously we have dk ≤ k, and so by (1)

d(f) + d(l) = j + k ≥ dj + dk ≥ c.

Let the path P have length `(P ) = p. We claim that p ≥ c + 1. This is true

if there is at least one edge between vertices which do not lie on C (which follows
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from the connectivity of G). So, let us assume that there is no edge between these

vertices. Now, the degree of each of these vertices is at most c
2 .

It follows from (1) that either dn−b c2 c ≥ c or dn−c >
c
2 . In the first case each of

the b c2c+ 1 vertices of degree at least c must lie on C and at least two of them are

consecutive on C. Both these vertices must be adjacent to at least one vertex not

on C. The claim follows immediately. In the second case there are at least c + 1

vertices of degree greater than c
2 . Thus, at least one of these vertices does not lie

on C, a contradiction. This proves our claim.

Choose the minimum possible system of paths P1, . . . , Pm satisfying Lemma 1.

From the maximality of P , the paths P1 and Pm both have length 1.

(i) m = 1. Then the edge (l, f) ∈ E(G) and the cycle P · (l, f) has length

p+ 1 ≥ c+ 2.

(ii) m = 2. Choose the paths P1 and P2 so that the length of the path [f2, l1] is as

small as possible. Suppose that `([f2, l1]) ≥ p−c+3. Let H ′ be the graph induced

by the set of vertices V ([f1, f2]) ∪ V ([l1, l2]) and H = H ′ + (f2, l1)− (f1, l1). The

order of H is at most |V (P )| − |V ([s(f2), p(l1)])| ≤ p + 1 − p + c − 2 = c − 1.

From the maximality of P , dH(f1) = dG(f1) − 1 and dH(l2) = dG(l2), and hence

dH(f1) + dH(l2) ≥ c − 1. Let J ′, K ′ be sets of vertices adjacent to f1, l2, in

H, respectively; and let p(J ′) = {p(v) | v ∈ J ′}. For x ∈ p(J ′) ∩ K ′, the paths

P ′1 = (f1, s(x)) and P ′2 = (x, l2) satisfy conditions of Lemma 1 with `([f ′2, l
′
1]) = 1,

contradicting the choice of P1, P2. Obviously, |p(J ′)| = dH(f1). It follows that

dH(l2) ≤ c − 2 − dH(f1), a contradiction. Therefore `([f2, l1]) ≤ p − c + 2. If

`([f2, l1]) ≤ p − c + 1, then the cycle P1 · [l1, l2] · P2 · [f1, f2] has length at least

|V (P )| − |V ([s(f2), p(l1)])| ≥ p+ 1− p+ c = c+ 1.

Now suppose that `([f2, l1]) = p− c+ 2 ≥ 3. First consider the following three

cases. Let N(x) denote the neighbourhood of the vertex x in G.

(a) there is u ∈ N(f1), v ∈ N(l2) such that p(l1) ≺P v and v ≺P u;

Assume that vertices u, v are chosen in such way that `([v, u]) is as small as possi-

ble. Consider the graphH ′, induced by the set of vertices V ([f1, f2])∪V ([l1, s(v)])∪
V ([u, l2]). Let H = H ′+(f2, l1)+(s(v), u)−(f1, l1). Since `([v, u]) ≥ p−c+2 ≥ 3,

the order of H is at most |V (P )| − |V ([s(f2), p(l1)])| − |V ([s(s(v)), p(u)])| ≤ p +

1− p+ c− 1− p+ c = 2c− p ≤ c− 1. One can show by a method similar to the

above that there are two consecutive vertices p(x) and x such that p(x) ∈ N(l2)

and x ∈ N(f1), a contradiction.

(b) there is u ∈ N(f1), v ∈ N(l2) such that u ≺P s(f2) and v ≺P u;

This case can be handled similarly to the case (a).

(c) there are vertices u, v ∈ N(f1), such that v ≺P u, u ≺P s(f2) or p(l1) ≺P v,

`([v, u]) ≥ 2 and no vertex from V ([v, u])− {u, v} is adjacent to f1;

Without loss of generality assume that u ≺P s(f2) (the case p(l1) ≺P v is

analogous). Assume that vertices u, v are chosen in such way that `([v, u]) is as
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small as possible. By (a) and (b) no vertex from V ([v, u]) − {u} is adjacent to

l2. Let H ′ be the graph induced by the set V ([f1, v]) ∪ V ([u, f2]) ∪ V ([l1, l2]) and

let H = H ′ + (v, u) + (f2, l1) − (f1, l1). Since `([v, u]) ≥ 2, the order of H is at

most |V (P )| − |V ([s(f2), p(l1)])| − |V ([s(v), p(u)])| ≤ p+ 1− p+ c− 1− 1 = c− 1.

Again it can be shown that there are two consecutive vertices p(x) and x such that

p(x) ∈ N(l2) and x ∈ N(f1), a contradiction.

Now, there is only one case left for the neighbours of the vertex f1, namely,

when its neighbours are vertices s(f1), s(s(f1)), . . . , s(s(. . . s(f1))) = x, l1, s(l1),

. . . , s(s(. . . s(l1))) = y. It follows from d(f1) + d(l2) ≥ c and from |V (P )| −
|V ([s(f2), p(l1)])| = p + 1 − p + c − 1 = c that the neighbours of l2 are p(l2),

p(p(l2)), . . . , p(p(. . . p(l2))), y, f2, p(f2), . . . , x. In what follows we show that

G′ = G−{f2, l1, x, y} has at least three components, a contradiction. The first of

them, say A, will be induced by vertices f1, s(f1), . . . , p(x), s(l1), s(s(l1)), . . . ,

p(y). The second one, say B, will be formed by vertices s(x), s(s(x)), . . . , p(f2),

s(y), s(s(y)), . . . , l2. From the fact that there is at least one vertex, say z, for

which f2 ≺P z ≺P l1, there is at least one more component.

Now we prove that A is indeed a component of G′. Assume that there is an

edge ab, where

1. f1 ≺P a ≺P x and b /∈ V (P ). Then the path (b, a) · [f1, a] · (f1, s(a)) · [s(a), l2]

has length p+ 1, a contradiction.

2. f1 ≺P a ≺P x and x ≺P b ≺P f2. Then the cycle (a, b) · [b, l2] · (l2, p(b)) ·
[s(a), p(b)] · (s(a), f1) · [f1, a] has length p+ 1 > c+ 1, a contradiction.

3. f1 ≺P a ≺P x and f2 ≺P b ≺P l1. Then the cycle (a, b) · [b, l2] ·(l2, f2) · [s(a), f2] ·
(s(a), f1) · [f1, a] has length at least c+ 1, a contradiction.

4. f1 ≺P a ≺P x and y ≺P b ≺P l2. Then the cycle (a, b) · [b, l2] · (l2, p(b)) ·
[s(a), p(b)] · (s(a), f1) · [f1, a] has the length p+ 1 > c+ 1, again a contradiction.

5. l1 ≺P a ≺P y and b /∈ V (P ). Then the path (b, a) · [f1, a] · (f1, s(a)) · [s(a), l2]

has the length p+ 1, a contradiction.

6. l1 ≺P a ≺P y and x ≺P b ≺P f2. Then the cycle (a, b) · [f1, b] · (f1, s(a)) ·
[s(a), l2] · (l2, s(b)) · [s(b), a] has the length p+ 1 > c+ 1, again a contradiction.

7. l1 ≺P a ≺P y and f2 ≺P b ≺P l1. Then (a, b) · [b, p(a)] · (p(a), f1) · [f1, f2] ·
(f2, l2) · [a, l2] has length at least c+ 1 a contradiction.

8. l1 ≺P a ≺P y and y ≺P b ≺P l2. Then the cycle (a, b) · [b, l2] · (l2, p(b)) ·
[s(a), p(b)] · (s(a), f1) · [f1, a] has length p+ 1 > c+ 1, which is final contradiction.

Thus A is a component of G′. The fact that B is a component of G′ can be

proved similarly. The existence of the third component confirms that G is not

4-solid, a contradiction.

(iii) m ≥ 3. From the minimality of m it holds that u ∈ J implies u ≺P s(f3) and

v ∈ K implies p(lm−2) ≺P v. Choose P1 and Pm so that `([f1, l1]) and `([fm, lm])
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are as small as possible. If m is odd, then the cycle P1 · [l1, f3] · P3 · [l3, f5] · . . . ·
[lm−2, fm] · Pm · [lm−1, lm] · Pm−1 · [lm−3, fm−1] · Pm−3 · . . . · P2 · [f1, f2] has length

at least c + 1. If m is even, then the cycle P1 · [l1, f3] · P3 · [l3, f5] · . . . · Pm−1 ·
[lm−1, lm] ·Pm · [lm−2, fm] ·Pm−2 · . . . ·P2 · [f1, f2] has length at least c+ 1. Indeed,

in both cases these cycles contain all vertices of J and K together with f and l.

Moreover, |J ∩K| ≤ 1 and |J |+ |K| ≥ c. This proves the Theorem. �
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