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PREDICTABLE REPRESENTATION PROPERTY OF SOME HILBERTIAN
MARTINGALES

M. EL KADIRI

Abstract. We prove as for the real case that a martingale with values in a separabale real Hilbert

space is extremal if and only if it satisfies the predictable representation property.

1. Introduction.

In this article we shall use the stochastic integral with respect to a local vectorial martingale as it
is defined in [2].

Let (Ω,F , P ) be a probability space equipped with a filtration (Ft) satisfying the usual conditions,
that is, (Ft) is complete and right continuous. Let H be a real separable Hilbert space whose inner
product and norm are respectively denoted by 〈, 〉H and || ||H. The dual of H will be denoted by
H′. For every process X with values in H, we denote by (FX

t ) the complete and right continuous
filtration generated by X. We also denote by EP the expectation with respect to the probability
law P .

Let M be a continuous local (Ft)-martingale with values in H defined on (Ω,F , P ). We say
that M is (Ft)-extremal if P is an extreme point of the convex set of probabilities law on F∞ =
σ(Fs, s ≥ 0) for which M is a local (Ft)-martingale.
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We say that M has the predictable representation property with respect to the filtration (Ft) if
for every real local (Ft)-martingale N on (Ω,F∞, P ) there exists an (Ft)-predictable process (Ht)
with values in H′ such that

Nt = N0 +
∫ t

0

HsdMs

for every t ≥ 0. As in the real case, this is equivalent to the existence, for every Y ∈ L2(Ω,F∞), of
an (Ft)-predictable process (Ht) with values in H′ such that

Y = EP (Y ) +
∫ +∞

0

HsdMs

and
∫ +∞
0

||Hs||2d〈M〉s < +∞ (this can be proved in the same way as in [3, Propsition 3.2].
We say that M is extremal or has the predictable representation property if it has this property

with respect to the filtration (FM
t ).

When H = R the notions of extremal martingales and predictable representation property
coincide with the same usual ones. We recall here that this case was studied by Strook and Yor in
a remarkable paper [4].

In this paper we will prove that a local (Ft)-martingale on (Ω,F , P ) with values in H is extremal
if and only if it has the predictable representation property.

We also give some examples of extremal martingales with values in H, that are defined by
stochastic integrals of real predictable processes with respect to a cylindrical Brownian motion in
H.

In the whole paper we will fix a hilbertian basis {en : n ∈ N} of H.
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2. Preliminary results

We denote by H2
0 the space of bounded continuous real (Ft)-martingales vanishing at 0. Equipped

with the inner product

〈M,N〉H2
0

= EP (〈M,N〉∞), ∀M,N ∈ H2
0 ,

H2
0 is a Hilbert space.
If M is a continuous local (Ft)-martingale of integrable square with values in H, we denote by

〈M〉 the increasing predictable process such that ‖M‖2
H−〈M〉 is a local (Ft)-martingale. If M and

N are two local (Ft)-martingales of integrable squares, we define the process 〈M,N〉 by standard
polarisation.

If M is a bounded continuous local (Ft)-martingale with values in H, we denote by L2
p(H

′,M) the
space of (Ft)-predictable processes h = (Ht) with values in H′ such that EP (

∫ +∞
0

‖Hs‖2d〈M〉s) <

∞. We denote by H ·M the matringale (
∫ t

0
HsdMs).

For any stopping time T of the filtration (Ft) and any process X = (Xt), XT denotes the process
(Xt∧T ). We say that a stopping time T reduces a local martingale Z if ZT is a bounded martingale.

Proposition 2.1. Let M be a continuous local (Ft)-martingale with values in H, then every real
continuous local (FM

t )-martingale X = (Xt), vanishing at 0, can be uniquely written as

X = H ·M + L

where H is a (FM
t )-predictable process with values in H′ and L is a real local (FM

t )-martingale such
that, for any stopping time T such that the martingales MT and XT are bounded, LT is orthogonal
in H2

0 to the subspace

G = {H ·MT : H ∈ L2
p(H

′,MT )}.
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Proof. The unicity of the decomposition is easy, let us prove the existence. Since M and X are
local martingales, there exists a sequence (Tn) of stopping times reducing X and M ; let T be one
of them. Put

G = {H ·MT : H ∈ L2
p(H

′,MT )}.

It is then clear that G is a closed subspace of H2
0 and that we can write XT = H̄.MT + L̄, where

L̄ ∈ G⊥. For any bounded stopping time S, we have

EP (MT
S LS) = EP (MT

S EP (L∞|Fs))

= EP (MT
s L∞) = 0

since MT∧S ∈ G. Because of the unicity, H and L extend to processes satisfying the desired
conditions. �

We will also need a vectorial version of a theorem in the measure theory due to Douglas. Let
us consider the set P of sequences π = (Pn), n ≥ 1, of probability measures on (Ω,F). For any
probability measure P on (Ω,F), denote by π(P ) the element of P defined on E by Pn = P for
every n ≥ 1.

For any function f with values in H defined on a set E, let fn be the functions defined by
fn(x) = 〈f(x), en〉H for every x ∈ E.

Let L be a set of F-mesurable functions with values in H, we denote by KL the set of sequences
π = (Pn) ∈ P such that fn ∈ L1

Pn
(Ω,F) and

∫
fndPn = 0 for any f ∈ L and any n ≥ 1. It is easy

to see that the set KL is convex.
The following theorem is a vectorial version of a classical theorem in the measure theory due to

Douglas ([3, Chap. V, Theorem 4.4])
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Theorem 2.2. Let (Ω,F , P ) be a probability space, L a set of F-measurable functions with
values in H and L∗ the vector space generated by L and the constants in H. Then L∗ is dense in
L1

P (Ω,H) if and only if, π(P ) is an extreme point of KL.

Proof. The idea of the proof is the same as for the classical theorem of Douglas. Assume that L∗
is dense in L1(Ω,H), let π1 = (P 1

n) and let π2 = (P 2
n) in KL such that π(P ) = απ1 +(1−α)π2, with

0 ≤ α ≤ 1. If α 6= 0, 1, then π1, π2 and π(P ) would be identical on L∗, and therefore on L1
P (Ω,H)

by density, hence π(P ) is an extreme point of KL.
Conversely, assume that π(P ) is an extreme point of KL. Then if L∗ is not dense in L1

P (Ω,H),
there exists, following Hahn-Banach theorem, a continuous linear form ϕ not identically 0 on
L1

P (Ω,H) which vanishes on L∗. But such a form can be identified with an element of L∞(Ω,H),
hence we can find functions gn ∈ L∞P (Ω), n ∈ N, such that

φ(f) =
∑
n≥1

∫
gnfndP

for any f =
∑

n fnen ∈ L1(Ω,H). We can assume that ‖gn‖∞ ≤ 1 for any n. Put, for any
n ≥ 1, P 1

n = (1 − gn)P and P 2
n = (1 + gn)P , then π1 = (P 1

n) ∈ KL, π2 = (P 2
n) ∈ KL and

π(P ) = απ1 +(1−α)π2, but π1 6= π2, which is a contradiction with the fact that π(P ) is an extreme
point of KL. �

Remark. If H = R, then KL is simply the convex set of probability laws Q on (Ω,F) such that
L ⊂ L1

Q(Ω) and
∫

fdQ = 0 for any f ∈ L. In this case, Theorem 2.2 is reduced to the classical
Douglas Theorem.

Let X = (Xt) be an integrable process with values in H (i.e. Xt is integrable for every t). Put

L = {1A(Xt −Xs) : A ∈ FX
s , s ≤ t}.
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Then X is a martingale under the law P , with values in H, if and only if π(P ) ∈ L∗. If F = FX
∞,

this is equivalent to π(P ) is an extreme point of KL or to P is an extreme point of the set of
probability laws Q on (Ω,FX

∞), X being a local martingale of (FX) under the law Q.

Proposition 2.3. Assume that π(P ) is an extreme point of KL. Then every H-valued local
(FX

t )-martingale has a continuous version.

Proof. As in the real case it suffices to prove that for any Y ∈ L1(Ω,H), the martingale N
defined by

Nt = EP (Y |FX
t )

is continuous. It is not hard to see that this result is true if Y ∈ L∗. Now, by Theorem 2.2, if
Y ∈ L1(Ω,H), one can find a sequence (Yn) in L∗ which converges to Y in L1(Ω,H)- norm. For
any ε > 0, one has

P [sup
s≤t

‖EP (Yn|FX
s )− EP (Y |FX

s )‖H ≥ ε] ≤ ε−1EP (‖Yn − Y ‖H).

Hence, by reasoning as for the real martingales, we obtain the desired result. �

It follows easily from the above proposition that if π(P ) is an extreme point of KL, then every
local (FX

t )-martingale with values in a real separable Hilbert space K has a continuous version.

Theorem 2.4. Let M be a continuous local (Ft)-martingale defined on (Ω,F , P ) with values in
H. The following statements are equivalent:

i) M is extremal.
ii) M has the predictable representation property with respect to (FM

t ), and the σ-algebra FM
0

is P -a.s. trivial.

Proof. Put
L = {1A(Mt −Ms) : A ∈ FM

s , s ≤ t}.
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Assume first that M is extremal, that is π(P ) is an extremal point of KL, and let Y ∈ L∞P (Ω,FM
∞ ).

Then by Proposition 2.1, there exist a predictable process H = (Ht) with values in H′ and a real
continuous martingale L = (Lt) such that

EP (Y |FM
t ) = EP (Y ) +

∫ t

0

HsdMs + Lt, ∀t ≥ 0,

with 〈H · MT , L〉 = 0 for any (FM
t )-stopping time T and any K ∈ L2

P (H,MT ). By stopping and
by virtue of the relation 〈M,LT 〉 = 〈M,Y 〉T , we can assume that |L| is bounded by a constant
k > 0. Put P 1

n = (1 + L∞
2k )P and P 2

n = (1 − L∞
2k )P . Let π1 = (P 1

n) and π2
n = (P 2

n); then we have
π(P ) = 1

2π1 + 1
2π2. Hence π1 = π2 = π(P ) because of the extremality of π(P ), then L∞ = 0. We

then deduce that L = 0, furthermore

EP (Y |FM
t ) = EP (Y ) +

∫ t

0

HsdMs,

or

Y = EP (Y ) +
∫ +∞

0

HsdMs.

Conversely, if P = αP1 + (1 − α)P2, where π(P1), π(P2) ∈ KL, then the real martingale (
dP1|FM

t

dP )
admits a continuous version L because P has the predictable representation property, and L · M
is a martingale under the probability P , hence 〈M,L〉 = 0. But we have Lt = L0 +

∫ t

0
HsdMs,

henceforth 〈X, L〉t =
∫ t

0
Hsd〈X〉s. It then follows that P -a.s. we have Hs = d〈M〉s-p.s., hence∫ t

0
HsdMs = 0, for every t ≥ 0. Then L is constant, i.e. Lt = L0 for every t ≥ 0. Since FM

0 is
trivial, we have L0 = 1 and then P = P1 = P2. This proves that P is extremal. �
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3. Examples

Proposition 3.1. The cylindrical Brownian motion in H (defined on a probability space (Ω,F , P )
is an extremal martingale.

Proof. Let us remark that since H is separable, then the σ-algebra generated by the continuous
linear forms on H is identical to the Borel σ-algebra of H.

Let Q be a probability measure on FB
∞ for which B is a local martingale. Then for any non

identically 0 continuous linear form φ on H, the process φ(B) = (φ(Bt)) is a real Brownian motion
under the probabilities measures P and Q; then Q = P on Fφ(B)

∞ . Since φ is arbitrary, it follows
that Q = P on σ({φ(Bt) : t ≥ 0, φ ∈ H′} = FB

∞. Hence P is the unique probability measure on
FB
∞ for which B is a local martingale. Then the martingale B is extremal. �

Proposition 3.2. Let (Ht) be a real process (FB
t )-predictable such that P -almost every ω ∈ Ω,

the set {s ≥ 0 : Hs(ω) 6= 0} is of null Lebesgue measure, and such that EP (
∫ +∞
0

H2
s ds) < +∞.

Then the martingale M defined by Mt =
∫ t

0
HsdBs is extremal.

Proof. By replacing if necessary the Brownian motion (Bt) by the Brownian motion
(
∫ t

0
sgn(Hs)dBt), we may assume that the process (Ht) is non-negative. We have, up to a mul-

tiplicative constant,

〈M〉t =
∫ t

0

H2
s ds · I, ∀t ≥ 0,

where I is the identity operator on H (see [2]), hence the process (Ht) is (FB
t )-adapted. On the

other hand, we have

Bt =
∫ t

0

1
Hs

dMs,

http://www.river-valley.com
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hence B is (FM
t )-adapted. Then (FM

t ) = (FB
t ). If N = (Nt) is a real FM

t -martingale, we have,
following the above proposition,

Nt = c +
∫ t

0

XsdBs, ∀t ≥ 0,

where X = (Xt) is a (FB
t )-predictable process with values in H and c is a constant, hence

Nt = c +
∫ t

0

Xs

Hs
dMs, ∀t ≥ 0.

Then M is extremal by Theorem 2.4. �

Let (Ht) be as in the above proposition. Then for P -almost every ω ∈ Ω, the mapping from H in
H defined by x 7→ Ht(ω)x is for almost every t ≥ 0 (in the Lebesgue measure sense) an isomorphism
from H into itself. This suggests the following problem:

Problem: Let H and K be two real separable Hilbert spaces, (Bt) a cylindrical Brownian motion
in H, and let (Ht) be a predictable process with values in L(H,K) such that the stochastic integral∫ t

0
HsdBs is well defined and that for any t ≥ 0, and P -almost any ω ∈ Ω, Ht is for almost every

t ≥ 0 an isomorphism from H in K. Is H ·B extremal?
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