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CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE
MAPPINGS IN BANACH SPACES

YONGFU SU, XIAOLONG QIN and MEIJUAN SHANG

Abstract. Let E be a uniformly convex Banach space, and let K be a nonempty convex closed sub-
set which is also a nonexpansive retract of E. Let T : K → Ebe an asymptotically nonexpansive mapping
with {kn} ⊂ [1,∞) such thatP∞

n=1(kn − 1) < ∞ and let F (T ) be nonempty, where F (T ) denotes the fixed points set of T . Let
{αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be real sequences in [0, 1] such that
αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and ε ≤ αn, α′n, α′′n ≤ 1− ε for all n ∈ N and some
ε > 0, starting with arbitrary x1 ∈ K, define the sequence {xn} by setting8><>:

zn = P (α′′nT (PT )n−1xn + β′′nxn + γ′′nwn),

yn = P (α′nT (PT )n−1zn + β′nxn + γ′nvn),

xn+1 = P (αnT (PT )n−1yn + βnxn + γnun),

with the restrictions
P∞

n=1 γn < ∞,
P∞

n=1 γ′n < ∞ and
P∞

n=1 γ′′n < ∞, where {wn}, {vn} and {un} are

bounded sequences in K. (i) If E is real uniformly convex Banach space satisfying Opial′s condition,
then weak convergence of {xn} to some p ∈ F (T ) is obtained; (ii) If T satisfies condition (A), then {xn}
convergence strongly to some p ∈ F (T ).
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1. Introduction and Preliminaries

Let E be a real Banach space, K be a nonempty subset of X and F (T ) denote the set of fixed
points of T . A mapping T : K → K is said to be asymptotically nonexpansive if there exists a
sequence {kn} of positive real numbers with kn → 1 as n →∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ K.

This class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [2] in 1972.
They proved that, if K is a nonempty bounded closed convex subset of a uniformly convex Banach
space E, then every asymptotically nonexpansive self-mapping T of K has a fixed point. Moreover,
the fixed point set F (T ) of T is closed and convex.

Recently, Chidume et al. have introduced another new concept about asymptotically nonexpan-
sive mappings

Definition 1.1 ([1]). Let E be a real normed linear space, K a nonempty subset of E. Let
P : E → K be the nonexpansive retraction of E onto K. A map T : K → E is said to be an
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) and kn → 1 as n → ∞ such
that the following inequality holds:

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖, ∀x, y ∈ K, n ≥ 1.

T is called uniformly L-lipschitzian if there exists L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖, ∀x, y ∈ K, n ≥ 1.

Many authors have contributed by their efforts to investigate the problem of finding a fixed point
of asymptotically nonexpansive mappings and non-self asymptotically nonexpansive mappings. In
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[5], [6], Schu introduced a modified Mann iteration process to approximate fixed points of asymptot-
ically nonexpansive self-maps defined on nonempty closed convex and bounded subsets of a Hilbert
space H. More precisely, he proved the following theorems.

Theorem JS1 ([5]). Let H be a Hilbert space, K a nonempty closed convex and bounded subset of
H, and T : K → K be a completely continuous asymptotically nonexpansive mapping with sequence
{kn} ⊂ [1,∞), kn → 1 and

∑∞
n=1(k

2
n − 1) < ∞. Let {αn}∞n=1 be a real sequence in [0,1] satisfying

the condition ε ≤ αn ≤ 1− ε for all n ≥ 1 and for some ε > 0. Then the sequence {xn} generated
from arbitrary x1 ∈ K by

xn+1 = (1− αn)xn + αnTnxn, n ≥ 1,

converges strongly to a fixed point of T.

Theorem JS2 ([6]). Let E be a uniformly convex Banach space satisfying Opial’s condition, K
a nonempty closed convex and bounded subset of E, and T : K → K an asymptotically nonexpansive
mapping with sequence {kn} ⊂ [1,∞), kn → 1 and

∑∞
n=1(k

2
n − 1) < ∞. Let {αn}∞n=1 be a real

sequence in [0, 1] satisfying the condition 0 < a ≤ αn ≤ b < 1, for all n ≥ 1 and some a, b ∈ (0, 1).
Then the sequence {xn} generated from arbitrary x1 ∈ K by

xn+1 = (1− αn)xn + αnTnxn, n ≥ 1,

converges weakly to a fixed point of T .
In [4], Rhoades extended Theorem JS1 to a uniformly convex Banach space using a modified

Ishikawa iteration method. In [3], Osilike and Aniagbosor proved that the theorems of Schu and
Rhoades remain true without the boundedness condition imposed on K, provided that F (T ) =
{x ∈ K : Tx = x} 6= ∅.

http://www.river-valley.com
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In [9], Tan and Xu introduced a modified Ishikawa processes to approximate fixed points of
nonexpansive mappings defined on nonempty closed convex bounded subsets of a uniformly convex
Banach space E. More precisely, they proved the following theorem.

Theorem TX ([9]). Let E be a uniformly convex Banach space which satisfies Opial’s condition or
has a Frechet differentiable norm. Let C be a nonempty closed convex bounded subset of E, T : C →
C a nonexpansive mapping and {αn}, {βn} be real sequences in [0, 1] such that

∑∞
n=1 αn(1−αn) =

∞,
∑∞

n=1 βn(1− αn) = ∞. Then the sequence {xn} generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1(1.1)

converges weakly to a fixed point of T .

In the above results, T remains a self-mapping of a nonempty closed convex subset K of a
uniformly convex Banach space, however if, the domain K of T is a proper subset of E (and this
is the case in several applications), and T maps K into E, then iteration processes of Mann and
Ishikawa may fail to be well defined.

In 2003, Chidume et al. [1] studied the iteration scheme defined by

x1 ∈ K, xn+1 = P ((1− αn)xn + αnT (PT )n−1xn), n ≥ 1.

In the framework of a uniformly convex Banach space, where K is a nonempty closed convex
nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction.
T : K → E is an asymptotically nonexpansive non-self map with sequence {kn} ⊂ [1,∞), kn → 1.
{αn}∞n=1 is a real sequence in [0, 1] satisfying the condition ε ≤ αn ≤ 1 − ε for all n ≥ 1 and for
some ε > 0. They proved strong and weak convergence theorems for asymptotically nonexpansive
nonself-maps.

http://www.river-valley.com
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Recently, Naseer Shahzad [7] studied the sequence {xn} defined by

x1 ∈ K, xn+1 = P ((1− αn)xn + αnTP [(1− βn)xn + βnTxn]),

where K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach
space E with P as a nonexpansive retraction. He proved weak and strong convergence theorems
for non-self nonexpansive mappings in Banach spaces.

Motivated by the Chidume et al. [1], Nasser Shahzad [7] and some others, the purpose of
this paper is to construct an iterative scheme for approximating a fixed point of asymptotically
nonexpansive non-self maps (provided that such a fixed point exists ) and to prove some strong and
weak convergence theorems for such maps.

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. In this
paper, the following iteration scheme is studied

x1 ∈ K

zn = P (α′′nT (PT )n−1xn + β′′nxn + γ′′nwn)
yn = P (α′nT (PT )n−1zn + β′nxn + γ′nvn)
xn+1 = P (αnT (PT )n−1yn + βnxn + γnun)

(1.2)

where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} are real sequences in (0, 1) such
that αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1.

Our theorems improve and generalize some previous results to some extent.
Let E be a real Banach space. A subset K of E is said to be a retract of E if there exists a

continuous map P : E → E such that Px = x for all x ∈ K. A map P : E → E is said to be a
retraction if P 2 = P . It follows that if a map P is a retraction, then Py = y for all y in the range
of P .

http://www.river-valley.com
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A mapping T with domain D(T ) and range R(T ) in E is said to be demiclosed at p if whenever
{xn} is a sequence in D(T ) such that {xn} converges weakly to x∗ ∈ D(T ) and {Txn} converges
strongly to p, then Tx∗ = p.

Recall that the mapping T : K → E with F (T ) 6= ∅ where K is a subset of E, is said to satisfy
condition A [8] if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that for all x ∈ K

‖x− Tx‖ ≥ f(d(x, F (T )),

where d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.
In order to prove our main results, we shall make use of the following Lemmas.

Lemma 1.1 (Schu [6].). Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤
q < 1 for all n ∈ N . Suppose further that {xn} and {yn} are sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and
lim

n→∞
‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.2 ([1] Demiclosed principle for nonself-map). Let E be a uniformly convex Banach
space, K a nonempty closed convex subset of E. Let T : K → E be an asymptotically nonexpansive
mapping with {kn} ⊂ [1,∞) and kn → 1 as n →∞. Then I − T is demiclosed with respect to zero.

Lemma 1.3 (Tan and Xu [9]). Let {rn}, {sn} and {tn} be three nonnegative sequences satisfying
the following condition

rn+1 ≤ (1 + sn)rn + tn, ∀n ≥ 1.

If
∑∞

n=1 sn < ∞ and
∑∞

n=1 tn < ∞, then limn→∞ rn exists.

http://www.river-valley.com
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2. Main results

Lemma 2.1. Let E be a uniformly convex Banach space and K a nonempty closed convex subset
which is also a nonexpansive retract of E. Let T : K → E be an asymptotically nonexpansive map-
ping with {kn} ⊂ [1,∞) such that∑∞

n=1(kn−1) < ∞. Let {xn} be the sequence defined by the recursion (1.2) taking arbitrary x1 ∈ K,
with the restrictions

∑∞
n=1 γ′′n < ∞,

∑∞
n=1 γ′n < ∞ and

∑∞
n=1 γn < ∞. Then limn→∞ ‖xn − p‖

exists, for any p ∈ F (T ), where F (T ) denotes the nonempty fixed point set of T .

Proof. Since {wn}, {vn} and {un} are bounded sequences in C, for any given p ∈ F (T ), we can
set

M1 = sup{‖un − p‖ : n ≥ 1}, M2 = sup{‖vn − p‖ : n ≥ 1},
M3 = sup{‖wn − p‖ : n ≥ 1}, M = max{Mi : i = 1, 2, 3}.

It follows from (1.2) that

‖zn − p‖ = ‖P (α′′nT (PT )n−1xn + β′′nxn + γ′′nwn)− p‖
≤ ‖α′′nT (PT )n−1xn + β′′nxn + γ′′nwn − p‖
≤ α′′n‖T (PT )n−1xn − p‖+ β′′n‖xn − p‖+ γ′′n‖wn − p‖
= α′′n‖T (PT )n−1xn − T (PT )n−1p‖+ β′′n‖xn − p‖+ γ′′n‖wn − p‖
≤ α′′nkn‖xn − p‖+ β′′n‖xn − p‖+ γ′′n‖wn − p‖
≤ α′′nkn‖xn − p‖+ (1− α′′n)‖xn − p‖+ γ′′n‖wn − p‖
≤ kn‖xn − p‖+ γ′′nM,

which implies that

‖zn − p‖ ≤ kn‖xn − p‖+ γ′′nM.(2.1)

http://www.river-valley.com
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From (1.2) and (2.1) we get

‖yn − p‖ = ‖P (α′nT (PT )n−1zn + β′nxn + γ′nvn)− p‖
≤ ‖α′nT (PT )n−1zn + β′nxn + γ′nvn − p‖
≤ α′n‖T (PT )n−1zn − p‖+ β′n‖xn − p‖+ γ′n‖vn − p‖
= α′n‖T (PT )n−1zn − T (PT )n−1p‖+ β′n‖xn − p‖+ γ′n‖vn − p‖
≤ α′nkn‖zn − p‖+ β′n‖xn − p‖+ γ′n‖vn − p‖
≤ α′nkn‖zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − p‖
≤ α′nkn(kn‖xn − p‖+ γ′′nM) + (1− α′n)‖xn − p‖+ γ′n‖vn − p‖
≤ k2

n‖xn − p‖+ knγ′′nM + γ′nM,

which inplies that

‖yn − p‖ ≤ k2
n‖xn − p‖+ knγ′′nM + γ′nM.(2.2)

Again, from (1.2) and (2.2) we have

‖xn+1 − p‖ = ‖P (αnT (PT )n−1yn + βnxn + γnun)− p‖
= ‖αnT (PT )n−1yn + βnxn + γnun − p‖
≤ αn‖T (PT )n−1yn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αn‖T (PT )n−1yn − T (PT )n−1p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αnkn‖yn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αnkn‖yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − p‖
≤ αnkn(k2

n‖xn − p‖+ knγ′′nM + γ′nM) + (1− α′n)‖xn − p‖+ γnM

≤ k3
n‖xn − p‖+ k2

nγ′′nM + knγ′nM + γnM.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 19

Go Back

Full Screen

Close

Quit

Therefore

‖xn+1 − p‖ ≤ (1 + (k3
n − 1))‖xn − p‖+ (k2

nγ′′n + knγ′n + γ′n)M.(2.3)

Note that
∑∞

n=1(kn − 1) < ∞ is equivalent to
∑∞

n=1(k
3
n − 1) < ∞, therefore by Lemma 1.3,

limn→∞ ‖xn − p‖ exists for all p ∈ F (T ). This completes the proof. �

Lemma 2.2. Let E be a normed linear space, K a nonempty closed convex subset which is also
a nonexpansive retract of E, T : K → E a uniformly L-Lipschitzian mapping. Let {xn} be the
sequence defined by the recursion (1.2) taking arbitrary x1 ∈ K, with the restrictions

∑∞
n=1 γ′′n < ∞,∑∞

n=1 γ′n < ∞ and
∑∞

n=1 γn < ∞ and set Cn = ‖xn−T (PT )n−1xn‖, ∀n ≥ 1. If limn→∞ Cn = 0,
then limn→∞ ‖xn − Txn‖ = 0.

Proof. Since {un}, {vn} and {wn} are bounded, it follows from Lemma 2.1 that {un − xn},
{vn − xn}, {wn − xn} are all bounded, now, we set

r1 = sup{‖un − xn‖ : n ≥ 1}, r2 = sup{‖vn − xn‖ : n ≥ 1},
r3 = sup{‖wn − xn‖ : n ≥ 1}, r4 = sup{‖vn−1 − xn‖ : n ≥ 1},
r5 = sup{‖un−1 − T (PT )n−2xn‖ : n ≥ 1}, r = max{ri : i = 1, 2, 3, 4, 5}.

It follows from (1.2) that

‖xn+1 − xn‖ ≤ ‖αnT (PT )n−1yn + βnxn + γnun − xn‖
≤ ‖T (PT )n−1yn − xn‖+ γnr

≤ ‖T (PT )n−1xn − xn‖+ ‖T (PT )n−1yn − T (PT )n−1xn‖+ γnr

≤ Cn + L‖yn − xn‖+ γnr

≤ Cn + L‖α′nT (PT )n−1zn + β′nxn + γ′nvn − xn‖+ γnr

http://www.river-valley.com
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≤ Cn + L‖T (PT )n−1zn − xn‖+ γ′nLr + γnr

≤ Cn + L‖T (PT )n−1xn − xn‖+ L‖T (PT )n−1zn − T (PT )n−1xn‖
+ γ′nLr + γnr

≤ Cn + LCn + L2‖zn − xn‖+ γ′nLr + γnr

≤ Cn + LCn + L2‖α′′nT (PT )n−1xn + β′′nxn + γ′′nwn − xn‖
+ γ′nLr + γnr

= Cn(1 + L + L2) + γ′′nL2r + γ′nLr + γnr(2.4)

and

‖yn−1 − xn‖ ≤ ‖α′n−1T (PT )n−2zn−1 + β′n−1xn−1 + γ′n−1vn−1 − xn‖
≤ ‖T (PT )n−2zn−1 − xn‖+ ‖xn−1 − xn‖+ γ′n−1r

≤ ‖T (PT )n−2xn−1 − xn−1‖+ ‖T (PT )n−2zn−1 − T (PT )n−2xn−1‖
+ 2‖xn−1 − xn‖+ γ′n−1r

≤ Cn−1 + LCn−1 + Lγ′′n−1r + 2‖xn−1 − xn‖+ γ′n−1r.(2.5)

Substituting (2.4) into (2.5) we obtain

‖yn−1 − xn‖ ≤ Cn−1(3 + 3L + 2L2) + (1 + 2L)r(Lγ′′n−1 + γ′n−1)

+ 2γ′n−1r.
(2.6)

On the other hand, from (2.4) and (2.6) we have

‖xn − (PT )n−1xn‖
≤ ‖αn−1T (PT )n−2yn−1 + βn−1xn−1 + γn−1un−1 − T (PT )n−2xn‖

http://www.river-valley.com
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≤ ‖T (PT )n−2yn−1 − T (PT )n−2xn‖+ ‖xn−1 − T (PT )n−2xn‖
+ γn−1r

≤ L‖yn−1 − xn‖+ ‖xn−1 − T (PT )n−2xn−1‖
+ ‖T (PT )n−2xn−1 − T (PT )n−2xn‖+ γn−1r

≤ L‖yn−1 − xn‖+ Cn−1 + L‖xn−1 − xn‖+ γn−1r

≤ LCn−1(4 + 4L + 3L2) + Cn−1 + L2rγ′′n−1(1 + 3L)

+ 3Lrγ′n−1(1 + L) + (1 + L)rγn−1.(2.7)

It follows from (2.7) that

‖xn − Txn‖ ≤ ‖xn − T (PT )n−1xn‖+ ‖T (PT )n−1xn − Txn‖
≤ Cn + L‖(PT )n−1xn − xn‖
≤ Cn + L2Cn−1(4 + 4L + 3L2) + LCn−1 + L3rγ′′n−1(1 + 3L)

+ 3L2rγ′n−1(1 + L) + L(1 + L)rγn−1.

It follows from limn→∞ Cn = 0,
∑∞

n=1 γ′′n < ∞,
∑∞

n=1 γ′n < ∞ and
∑∞

n=1 γn < ∞ that

lim
n→∞

‖xn − Txn‖ = 0.

This completes the proof. �

Theorem 2.1. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be an asymptotically non-
expansive mapping with {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (T ) 6= ∅. Let

{αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be real sequences in [0, 1] such that
αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and ε ≤ αn, α′n, α′′n ≤ 1 − ε for all n ∈ N and

http://www.river-valley.com
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some ε > 0. Let {xn} be the sequence defined by the recursion (1.2) taking arbitrary x1 ∈ K. Then
limn→∞ ‖xn − Txn‖ = 0.

Proof. Take p ∈ F (T ), by Lemma 2.1 we know, limn→∞ ‖xn−p‖ exists. Let limn→∞ ‖xn−p‖ = c.
If c = 0, then by the continuity of T the conclusion follows. Now suppose c > 0. We claim
limn→∞ ‖Txn − xn‖ = 0. Taking limsup on both the sides in the inequality (2.1), we have

lim sup
n→∞

‖zn − p‖ ≤ c.(2.8)

Similarly, taking limsup on both sides of the inequality (2.2), we have

lim sup
n→∞

‖yn − p‖ ≤ c.(2.9)

Next, we consider

‖T (PT )n−1yn − p + γn(un − xn)‖ ≤ ‖T (PT )n−1yn − p‖+ γn‖un − xn‖
≤ kn‖yn − p‖+ γnr.

Taking limsup on both the sides in the above inequality and using (2.9) we get

lim sup
n→∞

‖T (PT )n−1yn − p + γn(un − xn)‖ ≤ c.

and
‖xn − p + γn(un − xn)‖ ≤ ‖xn − p‖+ γn‖un − xn‖

≤ ‖xn − p‖+ γnr,

which imply that
lim sup

n→∞
‖xn − p + γn(un − xn)‖ ≤ c.

http://www.river-valley.com
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Again, lim
n→∞

‖xn+1 − p‖ = c means that

lim inf
n→∞

‖αn(T (PT )n−1yn − p + γn(un − xn))

+ (1− αn)(xn − p + γn(un − xn))‖ ≥ c.
(2.10)

On the other hand, using (2.1) yields

‖αn(T (PT )n−1yn − p + γn(un − xn)) + (1− αn)(xn − p + γn(un − xn))‖
≤ αn‖T (PT )n−1yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − xn‖
≤ αnkn‖yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − xn‖
≤ αnkn(k2

n‖xn − p‖+ knγ′′nr + γ′nr) + (1− αn)‖xn − p‖+ γn‖un − xn‖
≤ k3

n‖xn − p‖+ k2
nγ′′nr + knγ′nr + γnr.

Therefore,

lim sup
n→∞

‖αn(T (PT )n−1yn − p + γn(un − xn))

+ (1− αn)(xn − p + γn(un − xn))‖ ≤ c.
(2.11)

Combining (2.10) with (2.11) we obtain

lim
n→∞

‖αn(T (PT )n−1yn − p + γn(un − xn))

+ (1− αn)(xn − p + γn(un − xn))‖ = c.

By applying Lemma 1.1, we have

lim
n→∞

‖T (PT )n−1yn − xn‖ = 0.(2.12)
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Notice that
‖xn − p‖ ≤ ‖T (PT )n−1yn − xn‖+ ‖T (PT )n−1yn − p‖

≤ ‖T (PT )n−1yn − xn‖+ kn‖yn − p‖,
which yields

c ≤ lim inf
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖yn − p‖ ≤ c.

This implies that
lim

n→∞
‖yn − p‖ = c.

Again, lim
n→∞

‖yn − p‖ = c gives

lim inf
n→∞

‖α′n(Tzn − p + γ′n(vn − xn))

+ (1− α′n)(xn − p + γ′n(vn − xn))‖ ≥ c.
(2.13)

Similarly, we have

‖α′n(T (PT )n−1zn − p + γ′n(vn − xn)) + (1− α′n)(xn − p + γ′n(vn − xn))‖
≤ α′n‖T (PT )n−1zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤ α′nkn‖zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤ α′nkn(kn‖xn − p‖+ γ′′nr) + (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤ k2

n‖xn − p‖+ knγ′′nr + γ′nr.

Therefore,

lim sup
n→∞

‖α′n(T (PT )n−1zn − p + γ′n(vn − xn))

+ (1− α′n)(xn − p + γ′n(vn − xn))‖ ≤ c.
(2.14)
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Combining (2.13) with (2.14) yields that

lim
n→∞

‖α′n(T (PT )n−1zn − p + γ′n(vn − xn))

+ (1− α′n)(xn − p + γ′n(vn − xn))‖ = c.
(2.15)

On the other hand, we have

‖T (PT )n−1zn − p + γ′n(vn − xn)‖ ≤ ‖T (PT )n−1zn − p‖+ γ′n‖vn − xn‖
≤ kn‖zn − p‖+ γ′nr

Taking limsup on both sides of the above inequality and using (2.1), we have

lim sup
n→∞

‖T (PT )n−1zn − p + γ′n(vn − xn)‖ ≤ c(2.16)

and
‖xn − p + γ′n(vn − xn)‖ ≤ ‖xn − p‖+ γ′n‖vn − xn‖

≤ ‖xn − p‖+ γ′nr,

which yields

lim sup
n→∞

‖xn − p + γ′n(vn − xn)‖ ≤ c.(2.17)

Applying Lemma 1.1, it follows from (2.15), (2.16) and (2.17) that

lim
n→∞

‖T (PT )n−1zn − xn‖ = 0.(2.18)

Notice that
‖xn − p‖ ≤ ‖T (PT )n−1zn − xn‖+ ‖T (PT )n−1zn − p‖

≤ ‖T (PT )n−1zn − xn‖+ kn‖zn − p‖.
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We have
c ≤ lim inf

n→∞
‖zn − p‖ ≤ lim sup

n→∞
‖zn − p‖ ≤ c.

That implies that

lim
n→∞

‖zn − p‖ = c.(2.19)

By the same method, we have

lim
n→∞

‖α′′n(T (PT )n−1xn − p + γ′′n(wn − xn))

+ (1− α′′n)(xn − p + γ′′n(wn − xn))− p‖ = c.
(2.20)

Moreover,

‖T (PT )n−1xn − p + γ′′n(wn − xn)‖ ≤ ‖T (PT )n−1xn − p‖+ γ′′n‖wn − xn‖
≤ kn‖xn − p‖+ γ′′nr

which implies that

lim sup
n→∞

‖T (PT )n−1xn − p + γ′′n(wn − xn)‖ ≤ c.(2.21)

It follows from
‖xn − p + γ′′n(wn − xn)‖ ≤ ‖xn − p‖+ γ′′n‖wn − xn‖

≤ ‖xn − p‖+ γ′′nr.

we obtain

lim sup
n→∞

‖xn − p + γ′′n(wn − xn)‖ ≤ c.(2.22)

Combining (2.20), (2.21) with (2.22) yields

lim
n→∞

‖T (PT )n−1xn − xn‖ = 0.(2.23)
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Since T is uniformly L-Lipschitzian for some L > 0, it follows form Lemma 2.2 that

lim
n→∞

‖xn − Txn‖ = 0.

This completes the proof. �

Theorem 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space E
satisfying Opial’s condition. Suppose that T : K → E is an asymptotically nonexpansive mapping
with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞, kn → 1 as n →∞. Let {xn} be defined

by (1.2), where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} are real sequences in
[0, 1] such that αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and ε ≤ αn, α′n, α′′n ≤ 1− ε for all
n ∈ N and some ε > 0. Then {xn} converges weakly to a fixed point of F (T ).

Proof. For any p ∈ F (T ), it follows from Lemma 2.1 that limn→∞ ‖xn−p‖ exists. We now prove
that {xn} has a unique weak subsequential limit in F (T ). Firstly, let p1 and p2 be weak limits
of subsequences {xnk

} and {xnj} of {xn}, respectively. By Lemmas 2.1 and 2.2, we know that
p ∈ F (T ). Secondly, let us assume p1 6= p2, then by Opial’s condition, we obtain

lim
n→∞

‖xn − p1‖ = lim
k→∞

‖xnk
− p1‖ < lim

k→∞
‖xnk

− p2‖ = lim
j→∞

‖xnj
− p2‖

< lim
k→∞

‖xnk
− p1‖ = lim

n→∞
‖xn − p1‖

which is a contradiction. Hence p1 = p2. Then {xn} converges weakly to a fixed point of T . The
proof is complete. �

Next, we shall prove a strong convergence theorem.

Theorem 2.3. Let E be a uniformly convex Banach space and K a nonempty closed convex
subset which is also a nonexpansive retract of E. Let T : K → E be a nonexpansive mapping with
p ∈ F (T ) := {x ∈ K : Tx = x}. Let {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n}
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be real sequences in [0, 1] such that αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and and
ε ≤ αn, α′n, α′′n ≤ 1 − ε for all n ∈ N and some ε > 0. Let {xn} be the sequence defined by the
recursion (1.2) taking arbitrary x1 ∈ K. Suppose T satisfies condition (A). Then {xn} converges
strongly to a fixed point of T .

Proof. By Lemma 2.1, limn→∞ ‖xn − p‖ exists for all p ∈ F = F (T ). Let limn→∞ ‖xn − p‖ = c
for some c ≥ 0. If c = 0, there is nothing to prove. Suppose c > 0. By Theorem 2.1, limn→∞ ‖Txn−
xn‖ = 0, and (2.5) give

inf
p∈F

‖xn+1 − p‖ ≤ inf
p∈F

(1 + (k3
n − 1))‖xn − p‖+ (k2

nγ′′n + knγ′n + γn)M.

This means that

d(xn+1, F ) ≤ (1 + (k3
n − 1))d(xn, F ) + (k2

nγ′′n + knγ′n + γn)M.

Thus limn→∞ d(xn, F ) exists by virtue of Lemma 1.3. Now by condition (A), limn→∞ f(d(xn, F )) =
0. Since f is a nondecreasing function and f(0) = 0, therefore limn→∞ d(xn, F ) = 0. Now we can
take a subsequence {xnj} of {xn} and sequence {yj} ⊂ F such that ‖xnj − yj‖ < 2−j . Then
following the method in the proof of Tan and Xu [9], we get that {yj} is a Cauchy sequence in
F and so it converges. Let yj → y. Since F is closed, therefore y ∈ F and then xnj

→ y. As
limn→∞ ‖xn − p‖ exists, xn → y ∈ F = F (T ) thereby completing the proof. �
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