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COMPUTING THE MINIMAL EFFICIENCY OF DESIGNS
BY A DIFFERENTIABLE APPROXIMATION

OF ΦEk
-OPTIMALITY CRITERIA

L. BUŠOVÁ

Abstract. Consider the linear regression model with uncorrelated errors and an

experimental design ξ. In the paper, we propose a numerical method for calculating

the minimal efficiency of ξ in the class O of orthogonally invariant information crite-

ria. For this purpose, we introduce the concept of Φ
(m)
k,p -optimality criteria. Then we

show that Φ
(m)
Ek

criteria can be differentiably approximated by Φ
(m)
k,p criteria, there-

fore it allows us to use standard numerical procedures to arrive at boundaries for

Φ
(m)
Ek

optimal values, and hence at the intervals for the minimal efficiency of designs

under the class of all orthogonally invariant information criteria. The approach is

then illustrated on the polynomial model of degrees 2, . . . , 8.

1. Introduction

The aim of this article is to numerically calculate boundaries for the minimal ef-
ficiency of designs with respect to the class of orthogonally invariant information
criteria O, containing many well-known criteria, e.g. all Kiefer’s Φp-optimality cri-
teria (see e.g. [8, p. 94 ] or [9, p. 139]). For this purpose, it turns out to be useful
to study partial sums of eigenvalues of information matrices. As an example, the
sums of k smallest (or largest) eigenvalues can be used to characterize universal
optimality in the class O, as was shown in the article of Bondar [1]. The sums of
k smallest eigenvalues, viewed as special orthogonally invariant information func-
tions Φ(m)

Ek
, are studied in [3]. The main result of the paper [3] is that minimal

efficiency of a given design with respect to O can be calculated using the optimal
values of Φ(m)

Ek
-criteria. In some simpler models, the optimal values can be calcu-

lated exactly, with the help of equivalence theorem for criteria of Φ(m)
Ek

-optimality
based on special results from convex analysis (see [7]). Moreover, boundaries for
the optimal values of Φ(m)

Ek
-criteria can be calculated from Φp-optimal designs (see

[4]), but these boundaries are mostly very conservative. In general, calculation of
the Φ(m)

Ek
-optimal values and the minimal efficiency of designs is difficult, mainly

because the criteria are nondifferentiable, and the standard routines for calculat-
ing the optimal designs cannot be applied. In our article, we solve this problem
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numerically by replacing Φ(m)
Ek

-criteria with suitable differentiable approximations.

Consider the linear regression model

y(x) = fT (x)θ + ε(1)

on a compact experimental domain X ⊆ Rn, where f : X → Rm is a vector of
known continuous regression functions, θ ∈ Rm is a vector of unknown parameters,
and ε is a random error. The errors are assumed to be uncorrelated for different
observations.

By an experimental design we understand a probability measure ξ on X with
a finite support Xξ = {x ∈ X , ξ(x) > 0}. By Ξ we denote the set of all designs
on X . The value ξ(x) is understood as the relative frequency of replications to be
taken in x. To be able to determine the quality of the design, we need to define
an optimality criterion measuring the amount of information about parameters
that can be gained from the experiment based on the design. As it is usual in the
optimal design literature, we will focus our attention on the information which is
contained in the positive semidefinite information matrix defined as

M(ξ) =
∑

x∈Xξ

f(x)fT (x)ξ(x)

for ξ ∈ Ξ.
Optimality criterion Φ is a real-valued function defined on the set Sm

+ of all posi-
tive semidefinite matrices of type m × m. A design ξ∗ is Φ-optimal iff
ξ∗ = arg maxξ∈Ξ Φ(M(ξ)), and M(ξ∗) is called a Φ-optimal information matrix.
Through the article, we will use the following special type of optimality criteria.

Function Φ : Sm
+ → 〈0,∞) is called an information function ([9]), if it is not

identically zero and if it satisfies the following conditions:
• isotonicity:

D − C ∈Sm
+ ⇒ Φ(C) ≤ Φ(D) ∀C,D ∈ Sm

+

• concavity:

Φ(αC + (1− α)D) ≥ αΦ(C) + (1− α)Φ(D) ∀C,D ∈ Sm
+ , α ∈ (0, 1)

• positive homogeneity:

Φ(αC) = αΦ(C) ∀C ∈ Sm
+ , α ≥ 0

• upper semicontinuity: the sets {C ∈ Sm
+ ; Φ(C) ≥ c} are closed for all c ∈ R

In this class we can find almost all commonly used criteria in their concave and
positive homogeneous versions.

If Φ is an information function, then a Φ-optimal design ξ∗ always exists and
Φ(M(ξ∗)) > 0 ([9, p. 117]).

From the practical point of view, interesting characteristics of a design is its
quality compared to the Φ-optimal design. The measure of this quality is called
the Φ-efficiency of the design ξ.
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The Φ-efficiency of the design ξ is defined as follows ([9, p. 115]):

eff(M(ξ) | Φ) =
Φ(M(ξ))

maxζ∈Ξ Φ(M(ζ))
.(2)

Our aim in the article will be to propose a numerical method of computing
minimal efficiency of a design ξ with respect to the wide class of all orthogonally
invariant information criteria which will be defined in the next section.

2. The class of orthogonally invariant information criteria

Definition 2.1. We define the class O of all orthogonally invariant information
criteria as the set of information functions Φ : Sm

+ → 〈0,∞) which satisfy the
condition of orthogonal invariance, i.e. Φ(UCUT ) = Φ(C) for all C ∈ Sm

+ and
orthogonal matrices U of type m×m.

This class encompasses many well-known optimality criteria, e.g. Kiefer’s Φp

criteria with their widely used special cases: D, A, and E criteria, as well as their
convex combinations.

Definition 2.2. For m-dimensional model and p ∈ 〈−∞, 1〉 the Kiefer’s crite-
rion Φ(m)

p : Sm
+ → 〈0,∞) is defined as follows:

Φ(m)
p (M) =



(
1
m

m∑
i=1

λp
i (M)

)1/p

if p∈(−∞, 0) andM is regular or if p∈(0, 1〉(
m∏

i=1

λi(M)

)1/m

if p = 0

λ1(M) if p = −∞
0 if p ∈ (−∞, 0) and M is singular

where λ(A) = (λ1(A), λ2(A), . . . , λm(A))T is the vector of all eigenvalues of A in
nondecreasing order defined on the set Sm

+ , i.e.

0 ≤ λ1(A) ≤ λ2(A) ≤ . . . ≤ λm(A).

Note that Φ is orthogonally invariant iff its value depends only on the eigenval-
ues of the matrix, i.e. iff λ(M1) = λ(M2) ⇒ Φ(M1) = Φ(M2).

For finding the minimal efficiency of a design in the set of all orthogonally
invariant information criteria we will use the Φ(m)

Ek
-optimality criteria, introduced

in [3].

Definition 2.3. Φ(m)
Ek

: Sm
+ → 〈0,∞) is an optimality criterion defined as the

sum of k smallest eigenvalues of the information matrix:

Φ(m)
Ek

(M) =
k∑

i=1

λi(M).(3)



158 L. BUŠOVÁ

Theorem 2.1. The minimal efficiency theorem ([3]). Let ξ ∈ Ξ. Then

inf
Φ∈O

eff(M(ξ) | Φ) = min
k=1,...,m

eff(M(ξ) | Φ(m)
Ek

).(4)

A consequence of the theorem is that for finding the minimal efficiency of the
design ξ on the whole class O we only need to find the minimal efficiencies for
Φ(m)

Ek
, k = 1, . . . ,m. This can be difficult because for k < m the criteria Φ(m)

Ek
are

not differentiable everywhere and standard numerical procedures can be impossible
to apply.

In the article, we solve the problem by implementing a special class of criteria,
which will be used as a differentiable approximation of the Φ(m)

Ek
criteria.

3. Φ(m)
k,p -optimality criteria

Definition 3.1. For m-dimensional model, integer k ∈ {1, . . . ,m}, and p ∈
〈−∞, 0〉 we define the criterion Φ(m)

k,p : Sm
+ → 〈0,∞) as follows:

if rank(M) ≥ m− k + 1,

Φ(m)
k,p (M) =



(m

k

)−1 ∑
1≤i1<...<ik≤m

 k∑
j=1

λij
(M)

p1/p

if p ∈ (−∞, 0)

 ∏
1≤i1<...<ik≤m

k∑
j=1

λij (M)

(m
k )−1

if p = 0

k∑
j=1

λj(M) if p = −∞

if rank(M) < m− k + 1, then Φ(m)
k,p (M) = 0

Substituting for k = 1 we get Kiefer’s Φ(m)
p criteria and for p = −∞ we get

Φ(m)
Ek

criteria.

3.1. Properties of Φ(m)
k,p criteria

In this subsection, we will prove that Φ(m)
k,p criteria belong to the class O and we

will derive the gradient of Φ(m)
k,p .
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Definition 3.2. For p ∈ 〈−∞, 0〉, s ∈ N we define a function ϕ
(s)
p : 〈0,∞)s →

〈0,∞) :

ϕ(s)
p (λ1, . . . , λs) =



(
1
s

s∑
i=1

λp
i

)1/p

if p ∈ (−∞, 0) and λi > 0 ∀i(
s∏

i=1

λi

)1/s

if p = 0

min(λ1, . . . , λs) if p = −∞

0 if p ∈ (−∞, 0) and λi = 0 for some i

Lemma 3.1. The function ϕ
(s)
p is continuous and concave on 〈0,∞)s.

Proof. To prove continuity of ϕ
(s)
p , we will use the continuity of Φ(s)

p criteria,
which is a well-known fact in optimal design. The function diag(·) : 〈0,∞)s →
Ss

+, mapping the vector a onto a diagonal matrix of type s × s with diagonal
elements equal to the components of a, is continuous on 〈0,∞)s. Because ϕ

(s)
p (λ) =

Φ(s)
p (diag(λ)) ∀λ ∈ 〈0,∞)s, ϕ

(s)
p is composed of two continuous functions, i.e ϕ

(s)
p

is continuous itself.
Next, we show that ϕ

(s)
p : 〈0,∞)s → 〈0,∞) is concave. Let Ψ(s)

p (M) = Φ(s)
p (M)

for M ∈ Ss
+ and Ψ(s)

p (M) = −∞ for M ∈ Ss\Ss
+, where Ss is the set of all

symmetric matrices of type s × s. Using the concavity of Φ(s)
p , it is easy to show

that Ψ(s)
p is concave on the linear space Ss. Moreover, the function diag : Rs → Ss

is linear. Hence the composition Ψ(s)
p ◦diag : Rs → R∪{−∞} is a concave function

([11, p. 38]) (the linear space Ss
+ can be considered as R(s2+s)/2). But ϕ

(s)
p is a

restriction of Ψ(s)
p ◦ diag on the set 〈0,∞)s, therefore ϕ

(s)
p is concave itself. �

Lemma 3.2.

Φ(m)
k,p (M) = ϕ

(m
k )

p (L(m)
k (λ(M))), ∀M ∈ Sm

+

where L
(m)
k : Rm → R(m

k ) is a linear function such that

L
(m)
k : (λ1, . . . , λm) → (

∑
j∈I1

λj , . . . ,
∑

j∈I(m
k )

λj)

I1, . . . , I(m
k ) are all subsets of {1, . . . ,m} with k elements.

Theorem 3.1. The optimality criterion Φ(m)
k,p belongs to the class of orthogo-

nally invariant information criteria.

Proof.
1. Isotonicity and orthogonal invariance follow from [3, Proposition 1].
2. Positive homogeneity: it is obvious that for every M ∈ Sm

+ and for every
α > 0: λ(αM) = αλ(M). Hence positive homogeneity follows directly from
the definition of Φ(m)

k,p criteria.
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3. Continuity: the function λ : Sm
+ → Rm

+ is continuous ([6, p. 540]). The

function ϕ
(m

k )
p is continuous (Lemma 3.1), as well as the function L

(m)
k ,

because it is linear. As it is evident from Lemma 3.2, Φ(m)
k,p is composed of

continuous functions ϕ
(m

k )
p , L

(m)
k and λ which means that Φ(m)

k,p is continuous
itself.

4. Concavity: ϕ
(m

k )
p is concave, therefore ϕ

(m
k )

p ◦ L
(m)
k is concave. Using the

Davis theorem [2] and Lemma 3.2, it follows that Φ(m)
k,p is concave.

�

Now we will use [2] to derive a formula for the gradient of the function Φ(m)
k,p .

Note that by a symmetric function we mean a function f : Rn → Rn with a
property f(x) = f(y), if the vector y ∈ Rn is a permutation of the vector x ∈ Rn.

Lemma 3.3. [2, p. 105] Let f : 〈0,∞)s → 〈0,∞) be symmetric, concave, and
differentiable function on (0,∞)s and let Φ : Ss

++ → 〈0,∞) be defined as Φ = f ◦λ.
Then Φ is differentiable on Ss

++ and:

5Φ(M) = U diag(5f(λ(M)))UT(5)

where U is a matrix, for which M = U diag(λ(M))UT and 5f denotes the gradient
of f .

Theorem 3.2. Let k ∈ {1, . . . ,m}, p ∈ (−∞, 0), rank(M) ≥ m−k+1. Denote
for 1 ≤ i ≤ m:

δi,k(λ) =
∑

1≤i1<...<ik≤m
i∈{i1,...,ik}

 k∑
j=1

λij

p−1

, λ ∈ (0,∞)m.

Then the gradient of the function Φ(m)
k,p is:

5Φ(m)
k,p (M)

= (Φ(m)
k,p (M))1−p

(
m

k

)−1

U · diag (δ1,k(λ(M)), . . . , δm,k(λ(M))) · UT
(6)

where U is a matrix, for which M = U diag(λ(M))UT .

Proof. First we will calculate the gradient of f = ϕ
(m

k )
p ◦ L

(m)
k .

∂f(λ(M))
∂λl(M)

=
1
p

(m

k

)−1 ∑
1≤i1<...<ik≤m

 k∑
j=1

λij
(M)

p
1
p−1

p

(
m

k

)−1

δl,k(λ(M))

=
(

ϕ
(m

k )
p ◦ L

(m)
k (λ(M))

)1−p(
m

k

)−1

δl,k(λ(M)).
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Therefore

5f(λ(M)) =
(

ϕ
(m

k )
p ◦ L

(m)
k (λ(M))

)1−p(
m

k

)−1

(δ1,k(λ(M)), . . . , δm,k(λ(M)))T
.

Now we can calculate the gradient of Φ according to Lemmas 3.2 and 3.3:

5Φ(m)
k,p (M) = U(diag5f(λ(M)))UT

= (Φ(m)
k,p (M))1−p

(
m

k

)−1

U diag (δ1,k(λ(M)), . . . , δm,k(λ(M)))UT .

�

3.2. Boundaries for Φ(m)
Ek

-optimal values

In this subsection, we prove some relationships between Φ(m)
Ek

and Φ(m)
k,p criteria,

which will be used to numerically determine the boundaries for Φ(m)
Ek

-efficiencies

based on Φ(m)
k,p -efficiencies.

Theorem 3.3. Let k ∈ {1, . . . ,m} and let rank(M) ≥ m− k + 1. Then for all
p ∈ (−∞, 0):

1 ≤
Φ(m)

k,p (M)

Φ(m)
Ek

(M)
≤
(

m

k

)−1/p

.(7)

Proof. Let n =
(
m
k

)
and p < 0. Let aj =

∑
i∈Ij

λi(M) for j = 1, . . . , n, where
I1, . . . , In are all subsets of {1, . . . ,m} with k elements and I1 = {1, . . . , k}. Note
that a1 ≤ aj for all j and a1 > 0, because rank(M) ≥ m− k + 1.
Note also that

Φ(m)
k,p (M)

Φ(m)
Ek

(M)
=
(

m

k

)−1/p


∑

1≤i1<...<ik≤m

 k∑
j=1

λij
(M)

p

(
k∑

i=1

λi(M)

)p



1/p

=
(

m

k

)−1/p(
1 +

(
a2

a1

)p

+ . . . +
(

an

a1

)p)1/p

.

(8)

At the same time we have(
m

k

)1/p

≤
(

1 +
(

a2

a1

)p

+ . . . +
(

an

a1

)p)1/p

≤ 1(9)

because 0 ≤
(

aj

a1

)p

≤ 1 for all j = 1, . . . , n and p < 0. Combining (8) and (9) we
get both inequalities of the theorem. �
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Note that the Theorem 3.3 implies that Φ(m)
k,p converges for p → −∞ to Φ(m)

Ek

uniformly on the set of all information matrices.
More importantly, we have the following corollary:

Corollary 3.1. ∀M ∈ Sm
+ , ∀k ∈ {1, . . . ,m}, ∀p ∈ (−∞, 0):

eff(M | Φ(m)
Ek

) ≥
(

m

k

)1/p

eff(M | Φ(m)
k,p ).

Proof. If eff(M | Φ(m)
k,p ) = 0, the proof is trivial.

Let eff(M | Φ(m)
k,p ) > 0. Then Φ(m)

k,p (M) > 0, i.e. rank(M) ≥ m− k + 1. Let Mk,p

be a Φ(m)
k,p -optimal matrix and let MEk

be a ΦEk
-optimal matrix. Then:

eff(M | Φ(m)
Ek

)

eff(M | Φ(m)
k,p )

=
Φ(m)

Ek
(M)

Φ(m)
Ek

(MEk
)
·
Φ(m)

k,p (Mk,p)

Φ(m)
k,p (M)

=
Φ(m)

Ek
(M)

Φ(m)
k,p (M)

·
Φ(m)

k,p (Mk,p)

Φ(m)
k,p (MEk

)
·
Φ(m)

k,p (MEk
)

Φ(m)
Ek

(MEk
)
≥
(

m

k

)1/p

since the first factor in this product is greater than or equal to
(
m
k

)1/p from the
right inequality of Theorem 3.3, the second factor is greater than or equal to 1,
because Mk,p is Φk,p-optimal, and the third factor is greater than or equal to 1
from the left inequality of Theorem 3.3. �

4. Algorithm for computing the boundaries of Φ(m)
Ek

-optimal values

The following theorem tells us that for finding a design whose Φ(m)
Ek

-efficiency is

at least α, we only need to find a design whose Φ(m)
k,p -efficiency is at least β > α,

where p ≤ lnα/β

(
m
k

)
. But the criterion Φ(m)

k,p is differentiable, therefore such design
can be constructed using standard iterative algorithms.

Theorem 4.1. If eff(M(ξ) | Φ(m)
k,p ) ≥ β for some design ξ and p ≤ lnα/β

(
m
k

)
,

p ∈ (−∞, 0), then eff(M(ξ) | Φ(m)
Ek

) ≥ α

Proof. We can easily see that p ≤ lnα/β

(
m
k

)
implies α ≤ β

(
m
k

)1/p.
Using Corollary 3.1 we obtain

eff(M(ξ) | Φ(m)
Ek

) ≥
(

m

k

)1/p

eff(M(ξ) | Φ(m)
k,p ) ≥

(
m

k

)1/p

β ≥ α.

�

Now we can proceed to constructing the boundaries for Φ(m)
Ek

-optimal values.

In the first step, we will iteratively compute Φ(m)
k,p -optimal design.

The following algorithm is based on the algorithms described in [8, chapter V].
As an input, we need:
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• the required Φ(m)
Ek

efficiency α, from which using the Theorem 4.1, we get
β and p

• model function f
• experimental domain X
• starting information matrix M1 ∈ Sm

++

• k (the parameter of Φ(m)
Ek

)

The sequence of the information matrices {Mi} is constructed in the following
way:

1. let i = 1
2. if

Φ(m)
k,p (Mi)

maxx∈X fT (x)5 Φ(m)
k,p (Mi)f(x)

> β,

stop
else go to 4.

3. compute the information matrix Mi+1 according to the formula

Mi+1 =
i

i + 1
Mi +

1
i + 1

f(xi+1)fT (xi+1)

where xi+1 = arg maxx∈X fT (x)5 Φ(m)
k,p (Mi)f(x)

let i = i + 1
4. go to 3.

Note: If the inequality in 2. holds, then eff(M(ξi) | Φ(m)
k,p ) > β.

Let M be a matrix obtained by iterative computation of the Φ(m)
k,p -optimal design

described above. Then the lower and upper boundaries for Φ(m)
Ek

-optimal values
are as follows:

• lower boundary: Φ(m)
Ek

(M)

• 1st upper boundary: Φ(m)
k,p (M)/β follows from

eff(M | Φ(m)
k,p ) ≥ β ⇒

Φ(m)
k,p (M)

Φ(m)
k,p (Mk,p)

≥ β

⇒ Φ(m)
k,p (Mk,p) ≤

Φ(m)
k,p (M)

β
,

(10)

where Mk,p is a Φ(m)
k,p -optimal matrix. Therefore:

Φ(m)
Ek

(M) ≤ ΦEk
(M (m)

Ek
) ≤ Φ(m)

k,p (MEk
) ≤ Φ(m)

k,p (Mk,p) ≤
Φ(m)

k,p (M)
β

• 2nd upper boundary:

max fT (x)Y f(x),
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where Y is the subgradient of Φ(m)
Ek

in the point M obtained as follows:
Y =

∑k
i=1 uiu

T
i , ui is an eigenvector of M corresponding to the eigen-

value λi(M) (it follows from the form of the subdifferential of ΦEk
and the

theorem on the boundary of Φ(m)
Ek

-efficiency in [5])

5. Example: Polynomial model on 〈−1, 1〉

The polynomial model for the measurement in the point x is defined as

y(x) = θ0 + θ1x + θ2x
2 + . . . + θdx

d + ε

where d is the degree of the model and θ0, . . . , θd are the parameters of the model,
i.e. the number of parameters is m = d+1. Thus we have f(x) = (1, x, x2, . . . , xd).
Suppose the measurements are carried out on the set X = 〈−1, 1〉. We will estimate
the O-minimal efficiency of the D-optimal, E-optimal and uniform arcsine designs.

Note: The uniform arcsine design is understood to be the uniform design on
the points of the arcsine support in the sense of the definition in [9, p. 217]. The
construction of D-optimal design is based on [9, Chapter 9]. The construction of
E-optimal design follows from the theorems in [10] and [9, Part 9.13].

The results were obtained in the following way:

Table 1. Lower and upper boundaries for Φ
(m)
Ek

-optimal values for the degrees d = 2, . . . , 8 of

polynomial regression and k = 1, . . . , d + 1. Optimum values are indicated by bold face. The
upper boundaries are computed as the minimum of the 1st and 2nd upper boundaries in (10).

k/degree 2 3 4 5

1 0.194595 0.201389 0.039198 0.042363 0.007482 0.008072 0.001413 0.001577

2 0.976261 1.043871 0.192313 0.201618 0.039069 0.042727 0.007562 0.008249

3 2.852 3 1.98444 2.208806 0.32073 0.347491 0.082466 0.090713

4 3.804006 4 1.957065 2.110195 0.31006 0.354067

5 4.754523 5 2.978997 3.346387

6 5.704555 6

k/degree 6 7 8

1 0.000263 0.000287 4.86E-05 5.43E-05 8.83E-06 9.86E-06

2 0.001426 0.001579 0.000267 0.000283 4.75E-05 5.31E-05

3 0.018261 0.019762 0.003891 0.004303 0.000807 0.000891

4 0.083396 0.090054 0.018156 0.020106 0.00389 0.00431

5 0.408581 0.45114 0.127203 0.1391 0.03028 0.032078

6 2.940145 3.163073 0.428754 0.468567 0.126843 0.139165

7 6.654964 7 3.977078 4.469847 0.509199 0.53346

8 7.607143 8 3.918662 4.218915

9 8.565743 9
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Table 2. Lower and upper boundaries for the minimal efficiencies of arcsine, D-optimal, and
E-optimal designs for various degrees of polynomial regression.

k/degree 2 3 4 5

arcsine 0.7257 0.751 0.5573 0.6202 0.5858 0.6257 0.4683 0.526

D-optim 0.7257 0.751 0.5513 0.6137 0.5723 0.6078 0.4505 0.506

E-optim 0.5747 0.6145 0.3589 0.3995 0.4104 0.4425 0.3142 0.3529

k/degree 6 7 8

arcsine 0.502 0.528 0.4168 0.4685 0.4408 0.4632

D-optimal 0.4801 0.5049 0.3966 0.4457 0.4189 0.4401

E-optimal 0.3525 0.3792 0.2838 0.319 0.3095 0.3276

• we computed the D-optimal design ξ∗D, E-optimal design ξ∗E and uniform
arcsine design ξ∗A

• using the eigenvalues of M(ξ∗D), M(ξ∗E) and M(ξ∗A) we determined the
values of Φ(m)

Ek
criteria

• then we calculated the Φ(m)
Ek

-optimal design with the help of the Theorem 4.1

(putting β = 0.95 and α = 0.9) and determined boundaries for Φ(m)
Ek

-
optimal values (Table 1)

• finally, we constructed the intervals containing the minimal efficiencies
ξ∗D, ξ∗E , ξ∗A according to O (Table 2)

Figure 1. The boundaries for minimal efficiencies of the arcsine, D-optimal and E-optimal

designs for various degrees of polynomial regression. The vertical lines denote the interval from
the lower to the upper boundary of the corresponding minimal efficiency. To improve readability,

the graphs of individual design are slightly shifted.
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Note: The minimal efficiencies for the degrees 2, 3, 4, which were computed
precisely in [3], are in agreement with our numerical boundaries in the Table 2.

References

1. Bondar J. V., Universal optimality of experimental designs: definitions and a criterion, The

Canadian Journal of Statistics 11(4) (1983), 325–331.

2. Borwein J. M., Lewis A. S., Convex analysis and nonlinear optimization, Theory and ex-
amples, CMS Books in Mathematics, Springer-Verlag, New York 2000.

3. Harman R., Minimal efficiency of designs under the class of orthogonally invariant infor-

mation criteria, Metrika 60 (2004), 137–153.
4. , Lower bounds on efficiency ratios based on Φp-optimal designs, Proceedings from

the conference MODA7, Kapellerput Heeze 2004.
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