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g-NATURAL METRICS ON TANGENT BUNDLES
AND JACOBI OPERATORS

S. DEGLA and L. TODJIHOUNDE

Abstract. Let (M, g) be a Riemannian manifold and G a nondegenerate g-natural

metric on its tangent bundle TM . In this paper we establish a relation between the

Jacobi operators of (M, g) and that of (TM, G).
In the case of a Riemannian surface (M, g), we compute explicitly the spectrum

of some Jacobi operators of (TM, G) and give necessary and sufficient conditions

for (TM, G) to be an Osserman manifold.

0. Introduction

In [1] the authors introduced g-natural metrics on the tangent bundle TM of
a Riemannian manifold (M, g) as metrics on TM which come from g through
first order natural operators defined between the natural bundle of Riemannian
metrics on M and the natural bundle of (0, 2)-tensors fields on the tangent bundles.
Classical well-known metrics like Sasaki metric (cf. [14] , [6]) or Cheeger-Gromoll
metrics (cf. [3] , [11]) are examples of natural metrics on the tangent bundle. By
associating the notion of F -tensors fields they got a characterization of g-natural
metrics on TM in terms of the basis metric g and of some functions defined on
the set of positive real numbers and obtained necessary and sufficient conditions
for g-natural metrics to be either nondegenerate or Riemannian (see [8] for more
details on natural operators and F -tensors fields).

Some geometrical properties of g-natural metrics are inherited from the basis
metric g and conversely (cf. [1], [2], [7], [10]). We will investigate in this paper
the property of being Osserman which is closely related to the spectrum of Jacobi
operators.

Recall that for a tangent vector X ∈ TxM with x ∈M , the Jacobi operator JX
is defined as the linear self-adjoint map

JX : TxM → TxM
Y 7→ JX(Y ) := R(X,Y )X ,
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where R denotes the Riemannian curvature operator of (M, g). Osserman mani-
folds are defined as follows:

Definition 0.1.

1. Let x ∈ M . (M, g) is Osserman at x if, for any unit tangent vector
X ∈ TxM , the eigenvalues of the Jacobi operator JX do not depend on X.

2. (M, g) is pointwise Osserman if it is Osserman at any point of M .
3. (M, g) is globally Osserman manifold if, for any point x ∈M and any unit

tangent vector X ∈ TxM , the eigenvalues of the Jacobi operator JX depend
neither on X nor on x.

Globally Osserman manifolds are obviously pointwise Osserman.

Remark 0.1. For any point x ∈ M the map defined on TxM by X 7−→ JX
satisfies the identity JλX = λ2JX , ∀ λ ∈ R. So the spectrum of JλX is, up to the
factor 1

λ2 , the same as that one of JX . Thus (M, g) is Osserman at x ∈M if and
only if for any vector X ∈ TxM with X 6= 0 and for any eigenvalue λ(X) of JX ,
the quotient λ(X)

g(X,X) does not depend on X.

Flat manifolds or locally symmetric spaces of rank one are examples of globally
Osserman manifolds since the local isometry group acts transitively on the unit
tangent bundle, and hence the eigenvalues of the Jacobi operators are constant on
the unit tangent bundle.

Osserman conjectured that the converse holds; that is all Osserman manifolds
are locally symmetric of rank one. The Osserman conjecture was proved in many
special cases (cf. [4], [12], [13], [15]).

Using the fact that (M, g) is totally geodesic in (TM,G) (cf. [1]) we show that
any eigenvalue of a Jacobi operator of (M, g) is an eigenvalue of a Jacobi operator
of its g-natural tangent bundle (TM,G). Furthermore, we investigate the Jacobi
operators of g-natural metrics on tangent bundles of Riemannian surfaces, and
we compute their spectrums explicitly. Then we establish necessary and sufficient
conditions for g-natural tangent bundles of Riemannian surfaces to be Osserman
manifolds.

1. Preliminaries

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection of g. The
tangent space of TM at a point (x, u) ∈ TM splits into the horizontal and vertical
subspaces with respect to ∇

T(x,u)TM = H(x,u)M ⊕ V(x,u)M.

A system of local coordinates (U ; xi, i = 1, . . . ,m) in M induces on TM a system
of local coordinates

(
π−1(U) ; xi, ui, i = 1, . . . ,m

)
. Let X =

∑m
i=1X

i ∂
∂xi

be the
local expression in U of a vector field X on M . Then, the horizontal lift Xh and
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the vertical lift Xv of X are given, with respect to the induced coordinates, by:

Xh =
∑
i

Xi ∂

∂xi
−
∑
i,j,k

Γijku
jXk ∂

∂ui
and(1)

Xv =
∑
i

Xi ∂

∂ui
,(2)

where the Γijk are the Christoffel’s symbols defined by g.
Next, we introduce some notations which will be used to describe vectors ob-

tained from lifted vectors by basic operations on TM . Let T be a tensor field of
type (1, s) on M . If X1, X2, . . . , Xs−1 ∈ TxM, then h{T (X1, . . . , u, . . . ,Xs−1)}
and v{T (X1, . . . , u, . . . ,Xs−1)}) are horizontal and vertical vectors respectively at
the point (x, u) which are defined by

h{T (X1, . . . , u, . . . ,Xs−1)} =
∑

uλ
(
T (X1, . . . ,

∂

∂xλ |x
, . . . , Xs−1)

)h
v{T (X1, . . . , u, . . . ,Xs−1)} =

∑
uλ
(
T (X1, . . . ,

∂

∂xλ |x
, . . . , Xs−1)

)v
.

In particular, if T is the identity tensor of type (1, 1), then we obtain the geodesic

flow vector field at (x, u), ξ(x,u) =
∑
λ u

λ
(

∂
∂xλ

)h
(x,u)

, and the canonical vertical

vector at (x, u), U(x,u) =
∑
λ u

λ
(

∂
∂xλ

)v
(x,u)

.

Also h{T (X1, . . . , u, . . . , u, . . . , Xs−t)} and v{T (X1, . . . , u, . . . , u, . . . , Xs−t)} are
defined in a similar way.

Let us introduce the notations

h{T (X1, . . . , Xs)} =: T (X1, . . . , Xs)h(3)

and

v{T (X1, . . . , Xs)} =: T (X1, . . . , Xs)v.(4)

Thus h{X} = Xh and v{X} = Xv for each vector field X on M .
From the preceding quantities, one can define vector fields on TU in the follow-

ing way: If u =
∑
i u

i
(

∂
∂xi

)
x

is a given point in TU and X1, . . . , Xs−1 are vector
fields on U , then we denote by

h{T (X1, . . . , u, . . . ,Xs−1)} (respectively v{T (X1, . . . , u, . . . ,Xs−1)})

the horizontal (respectively vertical) vector field on TU defined by

h{T (X1, . . . , u, . . . ,Xs−1)} =
∑
λ

uλT

(
X1, . . . ,

∂

∂xλ
, . . . , Xs−1

)h
(resp. v{T (X1, . . . , u, . . . ,Xs−1)} =

∑
λ

uλT

(
X1, . . . ,

∂

∂xλ
, . . . , Xs−1

)v
).
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Moreover, for vector fields X1, . . . , Xs−t on U , where s, t ∈ N∗ (s > t), the vec-
tor fields h{T (X1, . . . , u, . . . , u, . . . , Xs−t)} and v{T (X1, . . . , u, . . . , u, . . . , Xs−t)}
on TU , are defined by similar way.

Now, for (r, s) ∈ N2, we denote by πM : TM → M the natural projection and
by F the natural bundle defined by

FM = π∗M (T ∗ ⊗ . . .⊗ T ∗︸ ︷︷ ︸
r times

⊗T ⊗ . . .⊗ T︸ ︷︷ ︸
s times

)M →M,

Ff(Xx, Sx) = (Tf ·Xx, (T ∗ ⊗ . . .⊗ T ∗ ⊗ T ⊗ . . .⊗ T )f · Sx)
(5)

for x ∈ M , Xx ∈ TxM , S ∈ (T ∗ ⊗ . . . ⊗ T ∗ ⊗ T ⊗ . . . ⊗ T )M and any local
diffeomorphism f of M .

We call the sections of the canonical projection FM → M F -tensor fields of
type (r, s). So, if we denote the product of fibered manifolds by ⊕, then the
F -tensor fields are mappings A : TM ⊕ TM ⊕ . . .⊕ TM︸ ︷︷ ︸

s times

→ t
x∈M

⊗r TxM which

are linear in the last s summands and such that π2 ◦A = π1, where π1 and π2 are
respectively the natural projections of the source and target fiber bundles of A.
For r = 0 and s = 2, we obtain the classical notion of F -metrics. So, F -metrics
are mappings TM ⊕ TM ⊕ TM → R which are linear in the second and the third
arguments.

Moreover, let us fix (x, u) ∈ TM and a system of normal coordinates S :=
(U ; xi , i = 1, . . . ,m) of (M, g) centered at x. Then we can define on U the vector
field U :=

∑
i u

i ∂
∂xi

, where (u1, . . . , um) are the coordinates of u ∈ TxM with
respect to its basis ( ∂

∂xi |x
; i = 1, . . . ,m).

Let P be an F -tensor field of type (r, s) on M . Then on U we can define an
(r, s)-tensor field PSu (or Pu if there is no risk of confusion) associated with u and
S by

Pu(X1, . . . , Xs) := P (Uz;X1, . . . , Xs),(6)

for all (X1, . . . , Xs) ∈ TzM and all z ∈ U .
On the other hand, if we fix x∈M and s vectors X1, . . . , Xs in TxM , then we can

define a C∞-mapping P(X1,...,Xs) : TxM →⊗rTxM , associated with (X1, . . . , Xs)
by

P(X1,...,Xs)(u) := P (u; X1, . . . , Xs),(7)

for all u ∈ TxM .
Let s, t where s > t be two non-negative integers, T be a (1, s)-tensor field on

M and PT be an F -tensor field of type (1, t) of the form

PT (u;X1, . . . , Xt) = T (X1, . . . , u, . . . , u, . . . , Xt),(8)

for all (u;X1, . . . , Xt) ∈ TM ⊕ . . . ⊕ TM , i.e., u appears s − t times at positions
i1, . . . , is−t in the expression of T . Then
– PTu is a (1, t)-tensor field on a neighborhood U of x in M , for all u ∈ TxM ;
– PT(X1,...,Xt)

is a C∞-mapping TxM → TxM , for all X1, . . . , Xt in TxM .
Furthermore, it holds:
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Lemma 1.1 ([2]).
1) The covariant derivative of PTu with respect to the Levi-Civita connection

of (M, g) is given by(
∇XPTu

)
(X1, . . . , Xt) = (∇XT )(X1, . . . , u, . . . , u, . . . , Xt),(9)

for all vectors X,X1, . . . , Xt∈TxM , where u appears at positions i1, . . . , is−t
in the right-hand side of the preceding formula.

2) The differential of PT(X1,...,Xt)
at u ∈ TxM , is given by

d
(
PT(X1,...,Xt)

)
u

(X) = T (X1, . . . , X, . . . , u, . . . , Xt) + . . .

+ T (X1, . . . , u, . . . ,X, . . . ,Xt),
(10)

for all X ∈ TxM .

2. g-natural metrics on tangent bundles

Definition 2.1. Let (M, g) be a Riemannian manifold. A g-natural metric on
the tangent bundle of M is a metric on TM which is the image of g by a first order
natural operator defined from the natural bundle of Riemannian metrics S2

+T
∗ on

M into the natural bundle of (0, 2)-tensor fields (S2T ∗)T on the tangent bundles
(cf. [1] , [2]).

Tangent bundles equipped with g-natural metrics are called g-natural tangent
bundles.

The following result gives the classical expression of g-natural metrics

Proposition 2.1 ([1]). Let (M, g) be a Riemannian manifold and G a g-natural
metric on TM . There exist six smooth functions αi, βi : R+ → R, i = 1, 2, 3,
such that for any x ∈M , all vectors u and X, Y ∈ TxM , we have

G(x,u)

(
Xh, Y h

)
= (α1 + α3)(t)gx(X,Y ) + (β1 + β3)(t)gx(X,u)gx(Y, u),

G(x,u)

(
Xh, Y v

)
= α2(t)gx(X,Y ) + β2(t)gx(X,u)gx(Y, u),

G(x,u)

(
Xv, Y h

)
= α2(t)gx(X,Y ) + β2(t)gx(X,u)gx(Y, u),

G(x,u) (Xv, Y v) = α1(t)gx(X,Y ) + β1(t)gx(X,u)gx(Y, u),

where t = gx(u, u), Xh and Xv respectively, are the horizontal lift and the vertical
lift of the vector X ∈ TxM at the point (x, u) ∈ TM .

Notation 2.1.
• φi(t) = αi(t) + tβi(t), i = 1, 2, 3,
• α(t) = α1(t)(α1 + α3)(t)− α2

2(t),
• φ(t) = φ1(t)(φ1 + φ3)(t)− φ2

2(t)
for all t ∈ R+.

For a g-natural metric to be nondegenerate or Riemannian, there are some
conditions to be satisfied by the functions αi and βi of Proposition 2.1. It holds:
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Proposition 2.2 ([1]). A g-natural metric G on the tangent bundle of a Rie-
mannian manifold (M, g) is:

(i) nondegenerate if and only if the functions αi, βi, i = 1, 2, 3 defining G are
such that

α(t)φ(t) 6= 0(11)

for all t ∈ R+.
(ii) Riemannian if and only if the functions αi, βi, i = 1, 2, 3 defining G, satisfy

the inequalities {
α1(t) > 0, φ1(t) > 0,
α(t) > 0, φ(t) > 0,(12)

for all t ∈ R+.
For dim M = 1, this system reduces to α1(t) > 0 and α(t) > 0 for all

t ∈ R+.

Before giving the formulas relating both Levi-Civita connexions ∇ of (M, g)
and ∇ of (TM,G), let us introduce the following notations:

Notation 2.2. For a Riemannian manifold (M, g), we set:

T 1(u;Xx, Yx) = R(Xx, u)Yx, T 2(u;Xx, Yx) = R(Yx, u)Xx ,

T 3(u;Xx, Yx) = R(Xx, Yx)u, T 4(u;Xx, Yx) = g(R(Xx, u)Yx, u)u ,
T 5(u;Xx, Yx) = g(Xx, u)Yx, T 6(u;Xx, Yx) = g(Yx, u)Xx ,

T 7(u;Xx, Yx) = g(Xx, Yx)u, T 8(u;Xx, Yx) = g(Xx, u)g(Yx, u)u,

(13)

where (x, u) ∈ TM , Xx, Yx ∈ TxM and R is the Riemannian curvature of g.

For the g-natural metric G being defined by the functions αi, βi of Proposi-
tion 2.1, the following equations hold.

Proposition 2.3 ([7]). Let (x, u) ∈ TM and X,Y ∈ X(M). We have(
∇XhY h

)
(x,u)

= (∇XY )h(x,u) + h{A(u;Xx, Yx)}+ v{B(u;Xx, Yx)}(14) (
∇XhY v

)
(x,u)

= (∇XY )v(x,u) + h{C(u;Xx, Yx)}+ v{D(u;Xx, Yx)}(15) (
∇XvY h

)
(x,u)

= h{C(u;Yx, Xx)}+ v{D(u;Yx, Xx)}(16) (
∇XvY v

)
(x,u)

= h{E(u;Yx, Xx)}+ v{F (u;Yx, Xx)}(17)

where P (u;Xx, Yx) =
∑8
i=1 f

P
i (|u|2)T i(u;Xx, Yx) for P = A,B,C,D,E, F , and

the functions fPi defined as in [7].

In [1] the authors notified that the Riemannian manifod (M, g), considered as
an embedded submanifold in its g-natural tangent bundle (TM,G) by the null
section, is always totally geodesic.

Indeed the null section S0 of X(M) is defined by
S0 : M → TM

x 7→ (x, 0x),
(18)
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which determines an embedding of M in TM .
Its differential at any point x ∈M is given by

dS0|x : TxM → T(x, 0x)TM

Xx 7→ Xh
(x,0x).

(19)

Then according to (14) and (19), we have

∇S0∗XS0∗Y = ∇Xh◦S0(Y h ◦ S0) = S0∗(∇XY ),(20)

for all X,Y ∈ X(M).
Thus from the relation (20) we get the next proposition.

Proposition 2.4. [1] Any Riemannian manifold (M, g) is totally geodesic in
its tangent bundle TM equipped with a non-degenerate g-natural metric G.

Remark 2.1. If G is nondegerate, then the orthogonal of S0(M) ≡ M in
(TM,G) is given by

TxM
⊥G = {Hh

(x,0x) + V v(x,0x) ∈ T(x, 0x)TM ;

H,V ∈ TxM and (α1 + α3)H + α2V = 0x},
(21)

where the functions αi, i = 1, 2, 3 are evaluated at 0.

3. Jacobi operators and Osserman g-natural tangent bundles

In the above section, we mentioned that (M, g) is totally geodesic in (TM,G). By
using this observation we get the following result:

Proposition 3.1. Assume that dimM ≥ 2 and x ∈ M . If λ is an eigenvalue
of a Jacobi operator JX for X ∈ S(TxM), then λ is an eigenvalue of the Jacobi
operator J̄Xh(x,0x)

of G at the point (x, 0x) ∈ TM .

Proof. In (TxM, gx) let us choose an orthonormal basis (X1, . . . Xm) such as
X1 = X and an orthonormal basis (V1, . . . Vm) in TxM

⊥G .
Then (Xh

1 |(x,0x), . . . , X
h
m|(x,0x), V1, . . . , Vm) is an orthogonal basis of T(x,0x)TM .

Since (M, g) is totally geodesic in (TM,G) and J̄Xh(x,0x)
is self-adjoint, the matrix

of J̄Xh(x,0x)
in this basis has the form

(
J1 0
0 J2

)
, where J1 is the matrix of JX

in the basis (X1, . . . Xm), and J2 is a square matrice of order m. Thus if λ is an
eigenvalue of JX , then λ is an eigenvalue of J̄Xh(x,0x)

. �

We come to following corollary.

Corollary 3.1. If (TM,G) is pointwise Osserman manifold (respectively glob-
ally Osserman manifold), then the same holds for (M, g).

Now we shall give the explicit expression of J̄ in terms of the Levi-Civita con-
nexion ∇ and the curvature tensor R of (M, g) and some F -tensors on M .

Let (x, u) ∈ TM and X̄ = Hh
(x,u) + V v(x,u) ∈ T(x,u)TM with H ∈ TxM and

V ∈ TxM . In the following we give an expression of the Jacobi operator J̄X̄ of
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(TM,G). Firstly, let us consider the following F -tensors which are defined in
terms of the F -tensors A, B, C, D, E and F of Proposition 2.3 such as we have
at any point x ∈M :

P 1
(A,B,C)(u;H,Y, V ) = B(u;H,A(u;Y,H))−B(u;Y,A(u;H,H))

+B(u;H,C(u;Y, V ))− 2B(u;Y,C(u;H,V ))(22)

P 2
(A,C,D,F )(u;H,Y, V ) = D(u;A(u;Y,H), V ) +D(u;C(u;Y, V ), V )

−D(u;Y, F (u;V, V )),(23)

P 3
(B,C,D)(u;H,Y, V ) = C(u;H,B(u;Y,H))− C(u;Y,B(u;H,H))

+ C(u;H,D(u;Y, V ))− 2C(u;Y,D(u;H,V )),(24)

P 4
(A,B,D,E,F )(u;H,Y, V ) = F (u;V,B(u;Y,H)) + F (u;V,D(u;Y, V ))

−A(u;Y,E(u;V, V )),(25)

P 5
(C,E)(u;H,Y, V ) = C(u;H,R(H,Y )u) + E(u;R(H,Y )u, V ),(26)

P 6
(A,C)(u;H,Y, V ) = d

(
A(Y,H)

)
u

(V ) + d
(
C(Y,V )

)
u

(V ),(27)

Q1
(A,B,C,D,F )(u;H,Y, V ) = A(u;H,C(u;H,Y )) +A(u;H,E(u;Y, V ))

− F (u;Y,B(u;H,H))− 2F (u;Y,D(u;H,V )),(28)

Q2
(D,E,F )(u;H,Y, V ) = E(u;V,D(u;H,Y )) + E(u;V, F (u;Y, V ))

− E(u;Y, F (u;V, V )),(29)

Q3
(A,B,C)(u;H,Y, V ) = D(u;C(u;H,Y ), V )− 2D(u;C(u;H,V ), Y )

+D(u;E(u;Y, V ), V )−D(u;E(u;V, V ), Y ),(30)

Q4
(A,C,D,F )(u;H,Y, V ) = C(u;H,D(u;H,Y )) + C(u;H,F (u;Y, V ))

− C(u;A(u;H,H), Y ),(31)

Q5
(C)(u;H,Y, V ) = d

(
C(H,Y )

)
u

(V )− 2d
(
C(H,V )

)
u

(Y ),(32)

Q6
(A,E)(u;H,Y, V ) = d

(
E(Y,V )

)
u

(V )− d
(
E(V,V )

)
u

(Y )

− d
(
A(H,H)

)
u

(Y )(33)

for all u,H, Y, V ∈ TxM .
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The Jacobi operator J̄X̄ is then determined by

J̄X̄
(
Y h
)

= h{R(H,Y )H + [(∇HAu) (Y,H)− (∇YAu) (H,H)]

+ [(∇HCu) (Y, V )− (∇Y Cu) (H,V )]

− (∇Y Cu) (H,V )− (∇Y Eu) (V, V )

+ P 1
(A,A,C)(u;H,Y, V ) + P 2

(A,C,C,F )(u;H,Y, V )

+ P 3
(B,C,D)(u;H,Y, V ) + P 4

(A,B,D,E,E)(u;H,Y, V )

+ P 5
(C,E)(u;H,Y, V ) + P 6

(A,C)(u;H,Y, V )}
+

v{R(H,Y )V + [(∇HBu) (Y,H)− (∇YBu) (H,H)]

+ [(∇HDu) (Y, V )− (∇YDu) (H,V )]

− (∇YDu) (H,V )− (∇Y Fu) (V, V )

+ P 1
(A,B,C)(u;H,Y, V ) + P 2

(A,C,D,F )(u;H,Y, V )

+ P 3
(B,D,D)(u;H,Y, V ) + P 4

(B,B,D,E,F )(u;H,Y, V )

+ P 5
(D,F )(u;H,Y, V ) + P 6

(B,D)(u;H,Y, V )}

(34)

and
J̄X̄ (Y v) = h{(∇HCu) (H,Y ) + (∇HEu) (Y, V )

+Q1
(A,B,C,D,E)(u;H,Y, V ) +Q2

(D,E,F )(u;H,Y, V )

+Q3
(C,C,E)(u;H,Y, V ) +Q4

(A,C,D,F )(u;H,Y, V )

+Q5
(C)(u;H,Y, V ) +Q6

(A,E)(u;H,Y, V )}
+

v{(∇HDu) (H,Y ) + (∇HFu) (Y, V )

+Q1
(B,B,C,D,F )(u;H,Y, V ) +Q2

(D,F,F )(u;H,Y, V )

+Q3
(C,D,E)(u;H,Y, V ) +Q4

(A,D,D,F )(u;H,Y, V )

+Q5
(D)(u;H,Y, V ) +Q6

(B,F )(u;H,Y, V )}

(35)

for any Y ∈ TxM where the horizontal lift and vertical lift are taken at (x, u).

4. Osserman g-natural tangent bundles of Riemannian surfaces

Let (M, g) be a connected Riemannian surface, x ∈M and (U, (x1, x2)) a normal
coordinates system on (M, g) centred at x. For any vector X = X1∂x1 +X2∂x2 ∈
TxM , let us set

iX = −X2∂x1 +X1∂x2 .(36)

Then the Riemannian curvature is given by

R(X,Y )Z = k(x)g(iX,Y )iZ(37)

for all vectors X,Y, Z ∈ TxM , where k denotes the Gaussian curvature of (M, g).
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We have the following result

Proposition 4.1. Let H ∈ TxM such that Hh
(x,0x) is a unit tangent vector in

(T(x,0x)TM,G(x,0x)). Then the spectrum of the Jacobi operator J̄Hh(x,0x)
is given

by the set{
0,

k(x)
(α1 + α3)(0)

, −f
B
6 + k(x)(fB1 + fB2 )(0)

(α1 + α3)(0)
, − (fB4 + fB5 + fB6 )(0)

(α1 + α3)(0)

}
.(38)

Proof. Since H 6= 0x, (Hh
(x,0x), (iH)h(x,0x), H

v
(x,0x), (iH)v(x,0x) ) is a basis in

T(x,0x)TM and according to (34) and (35), we have

J̄Hh(x,0x)

(
Hh

(x,0x)

)
= 0x(39)

J̄Hh(x,0x)

(
(iH)h(x,0x)

)
=

k(x)
(α1 + α3)(0)

(iH)h(x,0x)(40)

J̄Hh(x,0x)

(
Hv

(x,0x)

)
= − (fA4 + fA5 + fA6 )(0)Hh

(x,0x)(41)

− (fB4 + fB5 + fB6 )(0)Hv
(x,0x)

J̄Hh(x,0x)

(
(iH)v(x,0x)

)
= − [fA6 (0) + k(x)(fA1 + fA2 )(0)](iH)h(x,0x)(42)

− [fB6 (0) + k(x)(fB1 + fB2 )(0)](iH)v(x,0x).

Then the matrix of the operator J̄Hh(x,0x)
in the basis (Hh

(x,0x), (iH)h(x,0x), H
v
(x,0x),

(iH)v(x,0x) ) is 
0 0 − δA(0)

(α1+α3)(0) 0

0 k(x)
(α1+α3)(0) 0 − ηA(0)

(α1+α3)(0)

0 0 − δB(0)
(α1+α3)(0) 0

0 0 0 − ηB(0)
(α1+α3)(0)

(43)

where we set

δP (0) = (fP4 + fP5 + fP6 )(0)(44)

ηP (0) = −fP6 (0) + k(x)(fP1 + fP2 )(0)(45)

for P = A, B. This is a triangular matrix and then we get the result. �

Similary arguments and Proposition 4.1 lead to the following conclusion:

Corollary 4.1. Let dimM = 2. If (TM,G) is a pointwise Riemannian Osser-
man manifold, then (M, g) has constant Gauss curvature.

Proof. Let x ∈ M and V be a vector in TxM such that g(V, V ) = 1
α1(0) .

Then V v(x,0x) is a unit vector in (T(x,0x)TM,G(x,0x)) and (V h(x,0x), (iV )h(x,0x), V
v
(x,0x),

(iV )v(x,0x) ) is a basis of T(x,0x)TM .
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By computing the matrix of the Jacobi operator J̄V v(x,0x)
in this basis, as in the

proof of Proposition 4.1 we get
δC(0)
α1(0) 0 0 0

0 fC6 (0)
α1(0) 0 (fE6 −f

E
7 )(0)

α1(0)
δD(0)
α1(0) 0 0 0

0 fD6 (0)
α1(0) 0 (fF6 −f

F
7 )(0)

α1(0)

 ,(46)

where we put

δP (0) = (fP4 + fP5 + fP6 )(0), P = C,D.(47)

Hence if (TM,G) is pointwise Riemannian Osserman manifold, according to Propo-
sition 4.1 the quotient k(x)

(α1+α3)(0) is necessarly an eigenvalue of the matrix (46) that
does not depend on x. So the Gaussian curvature k is constant. This completes
the proof. �

Let us consider the orthonormal frame bundle O(M) over (M, g). It is a sub-
bundle of the tangent bundle TM and a g-natural metric on O(M) is the restric-
tion of a g-natural metric on TM . In [10] the authors proved that if (M, g) has
constant sectional curvature, then an orthonormal frame bundle equipped with a
g-natural metric is always locally homogeneous (cf. [10, Corollary 4.5]). From
this observation and Proposition 4.1, we get the following corollary.

Corollary 4.2. Let (M, g) a connected Riemannian surface, and G̃ a g-natural
metric on its orthonormal frame bundle O(M). Then (O(M), G̃) is globally Os-
serman if and only if it is pointwise Osserman.

Proof. If (O(M), G̃) is pointwise Osserman, then by Corollary 4.1, (M, g) is
of constant Gaussian curvature and by [10, Corollary 4.5], (O(M), G̃) is locally
homogenous. Hence the spectrum of its Jacobi operators is the same for all points
and then (O(M), G̃) is globally Osserman. �

In the sequel we assume that (M, g) is of constant Gaussian curvature k. Then
the following proposition holds.

Proposition 4.2. Let (M, g) be a connected Riemannian surface with constant
Gaussian curvature and (x, u) ∈ TM with u 6= 0x. Put t = g(u, u). Then the
family (uh, (iu)h, uv, (iu)v) is a basis of T(x,u)TM and the non-vanishing entries
of the matrix (Jij)1≤i,j≤4 of the Jacobi operator J̄uh(x,u)

with respect to this basis
are:
J22 = t2{(fA5 − kfA1 )[(fA4 − kfA2 )− (fA4 + fA5 + fA6 + tfA7 )]

+ (fC4 − kfC2 )(fB5 + k(1− fB1 ))

− (fC5 − kfC1 )(fB4 + fB5 + fB6 + tfB7 )}+ kt

J42 = t2{(fA5 − kfA1 )(fB4 − kfB2 )− (fA4 + fA5 + fA6 + tfA7 )(fB5 − kfB1 )

+ (fD4 − kfD2 )(fB5 + k(1− fB1 ))− (fB4 + fB5 + fB6 + tfB7 )(fD5 − kfD1 )}

(48)
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J13 = t2[(fC4 + fC5 + fC6 + tfC7 )(fD4 + fD5 + fD6 + tfD7 )

− (fB4 + fB5 + fB6 + tfB7 )(fE4 + fE5 + fE6 + tfE7 )]

− t[(fA4 + fA5 + fA6 + 3tfA7 ) + 2t(fA4
′
+ fA5

′
+ fA6

′
+ tfA7

′
)],

J33 = t2{(fB4 + fB7 + fB6 + tfB7 )

· [(fC4 + fC5 + fC6 + tfC7 )− (fF4 + fF5 + fF6 + tfF7 )]

+ (fD4 + fD5 + fD6 + tfD7 )

· [(fD4 + fD5 + fD6 + tfD7 )− (fA4 + fA5 + fA6 + tfA7 )]}

− t[(fB4 + fB5 + fB6 + 3tfB7 ) + 2t(fB4
′
+ fB5

′
+ fB6

′
+ tfB7

′
)],

(49)

J24 = t2{(fC4 − kfC2 )[(fA4 − kfA2 ) + (fD4 − kfD2 )]

− (fC4 − kfC2 )(fA4 + fA5 + fA6 + tfA7 )

− (fE5 − kfE1 )(fB4 + fB5 + fB6 + tfB7 )}
− t[(fA6 + tfA7 ) + k(fA1 + fA2 )],

J44 = t2{(fD4 − kfD2 )2 + (fB4 − kfB2 )(fC4 − kfC2 )

− (fD4 − kfD2 )(fA4 + fA5 + fA6 + tfA7 )

− (fF5 − kfF1 )(fB4 + fB5 + fB6 + tfB7 )}
− t[(fB6 + tfB7 ) + k(fB1 + fB2 )].

(50)

Remark 4.1. 1. It is easy to check that

(φ1 + φ3)J13 + φ2J33 = 0,(51)

α2(J44 − J22) + (α1 + α3)J24 = α1J42.(52)

2. The following vectors

v1 =
1√

t(φ1 + φ3)(t)
uh,(53)

v2 =

√
(φ1 + φ3)(t)

tφ(t)
uv − φ2(t)√

tφ(t)(φ1 + φ3)(t)
uh,(54)

v3 =
1√

t(α1 + α3)(t)
(iu)h,(55)

v4 =

√
(α1 + α3)(t)

tα(t)
(iu)v − α2(t)√

tα(t)(α1 + α3)(t)
(iu)h,(56)

where the lifts are taken at (x, u), determine an orthonormal basis of
(T(x,u)TM, G(x,u)).
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Proposition 4.3. Let (x, u) ∈ TM such that u 6= 0x and t = g(u, u). Then
the spectrum of Jacobi operator J̄uh(x,u)

is given by the set{
0, J33,

(J22 + J44) +
√

∆
2

,
(J22 + J44)−

√
∆

2

}
,(57)

where ∆ =
(
J22 − J44 + 2

α2

α1 + α3
J42

)2

+ 4
α

(α1 + α3)2
J2

42.

Proof. According to Remark 4.1 and Proposition 4.2, the matrix of J̄uh(x,u)
in

the orthonormal basis (v1, v2, v3, v4) is given by
0 0 0 0
0 J33 0 0
0 0 (J22 + α2

α1+α3
J42)

√
α

α1+α3
J42

0 0
√
α

α1+α3
J42 (J44 − α2

α1+α3
J42)

 .(58)

So by computing the eigenvalues of this matrix, we obtain the proof. �

Using Proposition 4.3 and by notifying that G(uh, uh) = t(φ1 + φ3)(t) with
t = g(u, u), we obtain the following results:

Theorem 4.1. (TM,G) is a pointwise Osserman manifold if and only if
1. (M, g) has constant Gauss curvature k.
2. The eigenvalues of its Jacobi operators on the unit tangent bundle S(TTM)

are the functions (λi)i=1,2,3 defined on TM by

λ0(x, u) = 0,

λ1(x, u) =
J33

t(φ1 + φ3)
,

λ2(x, u) =
(J22 + J44) +

√
∆

2t(φ1 + φ3)
,

λ3(x, u) =
(J22 + J44)−

√
∆

2t(φ1 + φ3)
,

(59)

if u 6= 0x
and

λ0(x, 0x) =0,

λ1(x, 0x) =− (fB4 + fB5 + fB6 )(0)
(α1 + α3)(0)

,

λ2(x, 0x) =
k

(α1 + α3)(0)
,

λ3(x, 0x) =− fB6 + k(fB1 + fB2 )(0)
(α1 + α3)(0)

.

(60)
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Theorem 4.2. (TM,G) is a globally Osserman manifold if and only if
1. (M, g) has constant Gauss curvature k.
2. The eigenvalues of its Jacobi operators on the unit tangent bundle S(TTM)

are the real numbers (λ̃i)i=1,2,3 given by

λ̃0 = 0,

λ̃1 = − (fB4 + fB5 + fB6 )(0)
(α1 + α3)(0)

,

λ̃2 =
k

(α1 + α3)(0)
,

λ̃3 = −f
B
6 + k(fB1 + fB2 )(0)

(α1 + α3)(0)
.

(61)

In the following we apply the result in Theorem 4.2 to the Sasaki metric and to
the Cheeger-Gromoll metric on the tangent bundle.

Applications:
1. Let G be the Sasaki metric on the tangent bundle TM . In this case the

functions αi and βi of Proposition 2.1 are given by

α1 = 1; α2 = α3 = 0 and
β1 = β2 = β3 = 0.

The eigenvalues λ̃0, λ̃1, λ̃2, λ̃3 of Theorem 4.2 are

λ̃0 = λ̃1 = 0; λ̃2 = k; λ̃3 = 0.

2. Let G be the Cheeger-Gromoll metric on the tangent bundle TM . Then the
functions αi and βi of Proposition 2.1 are given by

α1 = β1 =
1

1 + 2t
; α2 = β2 = 0; and

α3 =
2t

1 + 2t
; β3 = − 1

1 + 2t
.

The eigenvalues λ̃0, λ̃1, λ̃2, λ̃3 of Theorem 4.2 are in this case

λ̃0 = λ̃1 = 0; λ̃2 = k; λ̃3 = 0.

We can conclude that the tangent bundle TM with the Sasaki metric or the
Cheeger-Gromoll metric is globally Ossermann if and only if (M, g) is of cons-
tant Gaussian curvature k and the eigenvalues of its Jacobi operators are 0 (with
multiplicity three) and k.

The following consequence for the sectional curvature of g-natural metrics can
be derived from Theorem 4.2.

Corollary 4.3. Only flat g-natural metrics on the tangent bundle of a Rie-
mannian surface (M, g) are of constant sectional curvature.
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Proof. Let G be a g-natural metric on TM of constant sectional curvature.
Then (TM,G) is globally Osserman. But then also (M, g) is flat (cf. [7]) and ac-
cording to (61), the eigenvalue λ̄2 = k

(α1+α3)(0) of the Jacobi operators of (TM,G)
is like the eigenvalue λ̄0 equal to zero. Thus 0 is an eigenvalue of the Jacobi
operators of (TM,G) with multiplicity at least two. Hence (TM,G) is flat. �

Remark 4.2. This corollary extends Proposition 4.3 in [7] to the case where
dimM = 2.
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