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ISOMETRIES AND ISOMORPHISMS
IN QUASI-BANACH ALGEBRAS

ZHIHUA WANG and WANXIONG ZHANG

Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability of isometries

and of homomorphisms for additive functional equations in quasi-Banach algebras.
This is applied to investigate isomorphisms between quasi-Banach algebras.

1. Introduction and preliminaries

Stability is investigated when one concerns whether a small error of parameters
causes a large deviation of the solution. Generally speaking, given a function which
satisfies a functional equation approximately called an approximate solution, we
ask: Is there a solution of this equation which is close to the approximate solution
in some accuracy? An ealier work was done by Hyers [11] in order to answer
Ulam’s question ([20]) on approximately additive mappings. Later there have
been given lots of results on stability in the Hyers-Ulam sense or some generalized
sense (see books and papers [1, 3, 8, 9, 12, 17, 18] and references therein).

G. Z. Eskandani [7] established the general solution and investigated the Hyers-
Ulam-Rassias stability of the following functional equation

m∑
i=1

f

mxi +
m∑

j=1,j 6=i

xj

+ f

(
m∑

i=1

xi

)
= 2f

(
m∑

i=1

mxi

)
(1.1)

in quasi-Banach spaces, where m ∈ N and m ≥ 2. The stability of isometries
in norms spaces and Banach spaces was investigated in several papers [4, 6, 10,
13]. However, C. Park and Th. M. Rassias [15] proved the Hyers-Ulam stability
of isometric additive functional equations in quasi-Banach spaces. C. Park [16]
studied the Hyers-Ulam stability of homomorphisms in quasi-Banach algebras.
Recently, M. S. Moslehian and Gh. Sadeghi [14] have proved the Hyers-Ulam-
Rassias stability of linear mappings in quasi-Banach modules associated to the
Cauchy functional equation and a generalized Jensen functional equation.
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The main purpose of this paper is to study the Hyers-Ulam-Rassias stabil-
ity of equation (1.1). More precisely, we prove the Hyers-Ulam-Rassias stability
of isometric additive functional equations (1.1) in quasi-Banach algebras. Fur-
thermore, we investigate the Hyers-Ulam-Rassias stability of homomorphisms in
quasi-Banach algebras associated to additive functional equations (1.1). This is
applied to investigate isomorphisms between quasi-Banach algebras.

We now give some basic facts concerning quasi-Banach spaces and some pre-
liminary results.

Definition 1.1 (cf. [5, 19]). Let X be a real linear space. A quasi-norm is a
real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and for all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x+y‖ ≤ K(‖x‖+‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X.
The smallest possible K is called the modulus of concavity of ‖ ·‖. A quasi-Banach
space is a complete quasi-normed space.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation invariant
metric on X. By the Aoki-Rolewicz theorem [19] (see also [5]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

Definition 1.2 (cf. [2]). Let (X, ‖ · ‖) be a quasi-normed space. The quasi-
normed space (X, ‖ · ‖) is called a quasi-normed algebra if X is an algebra and
there is a constant C > 0 such that ‖xy‖ ≤ C‖x‖‖y‖ for all x, y ∈ X.

A quasi-Banach algebra is a complete quasi-normed algebra. If the quasi-norm
‖ · ‖ is a p-norm, then the quasi-Banach algebra is called a p-Banach algebra.

Definition 1.3 (cf. [15]). Let X and Y be quasi-Banach algebras with norms
‖ · ‖X and ‖ · ‖Y , respectively. An additive mapping A : X → Y is called an
isometric additive mapping if the additive mapping A : X → Y satisfies

‖A(x)−A(y)‖Y = ‖x− y‖X

for all x, y ∈ X.

2. Stability of isometric additive mappings in quasi-Banach algebras

Throughout this section and Section 3, assume that X is a quasi-normed algebra
with quasi-norm ‖ · ‖X and that Y is a p-Banach algebra with p-norm ‖ · ‖Y . Let



ISOMETRIES AND ISOMORPHISMS IN QUASI-BANACH ALGEBRAS 287

K be the modulus of concavity of ‖ · ‖Y . For convenience, we use the following
abbreviation for a given mapping f : X → Y :

Df(x1, · · · , xm) =
m∑

i=1

f

mxi +
m∑

j=1,j 6=i

xj

+ f

(
m∑

i=1

xi

)
− 2f

(
m∑

i=1

mxi

)
for all xj ∈ X (1 ≤ j ≤ m). We prove the Hyers-Ulam-Rassias stability of the
isometric additive functional equation (1.1) in quasi-Banach algebras.

Theorem 2.1. Let ϕ : Xm → [0,∞) be a mapping such that

lim
n→∞

1
mn

ϕ(mnx1, · · · ,mnxm) = 0(2.1)

ϕ̃(x) :=
∞∑

i=0

1
mip

(ϕ(mix, 0, · · · , 0))p <∞(2.2)

for all x, xj ∈ X (1 ≤ j ≤ m). Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ ϕ(x1, · · · , xm)(2.3)

| ‖f(x)‖Y − ‖x‖X |≤ ϕ(x, · · · , x︸ ︷︷ ︸
m−times

)(2.4)

for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive
mapping A : X → Y such that

‖f(x)−A(x)‖Y ≤
1
m

[ϕ̃(x)]
1
p(2.5)

for all x ∈ X.

Proof. By the Eskandani’s theorem [7, Theorem 2.2], it follows from (2.1), (2.2)
and (2.3) that there exists a unique additive mapping A : X → Y satisfying (2.5).
The additive mapping A : X → Y is given by

A(x) := lim
n→∞

1
mn

f(mnx)(2.6)

for all x ∈ X.
It follows from (2.4) that

| ‖ 1
mn

f(mnx)‖Y − ‖x‖X | ≤
1
mn
| ‖f(mnx)‖Y − ‖mnx‖X |

≤ 1
mn

ϕ(mnx, · · · ,mnx︸ ︷︷ ︸
m−times

)

which tends to zero as n→∞ for all x ∈ X. So

‖A(x)‖Y = lim
n→∞

‖ 1
mn

f(mnx)‖Y = ‖x‖X

for all x ∈ X. Since A : X → Y is additive,

‖A(x)−A(y)‖Y = ‖A(x− y)‖Y = ‖x− y‖X
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for all x ∈ X. So the mapping A : X → Y is an isometry. Thus the mapping
A : X → Y is a unique isometric additive mapping satisfying (2.5). This completes
the proof of the theorem. �

Theorem 2.2. Let φ : Xm → [0,∞) be a mapping such that

lim
n→∞

mnφ(
x1

mn
, · · · , xm

mn
) = 0(2.7)

φ̃(x) :=
∞∑

i=1

mip(φ(
x

mi
, 0, · · · , 0))p <∞(2.8)

for all x, xj ∈ X (1 ≤ j ≤ m). Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ φ(x1, · · · , xm)(2.9)

| ‖f(x)‖Y − ‖x‖X |≤ φ(x, · · · , x︸ ︷︷ ︸
m−times

)(2.10)

for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive
mapping A : X → Y such that

‖f(x)−A(x)‖Y ≤
1
m

[φ̃(x)]
1
p(2.11)

for all x ∈ X.

Proof. By the Eskandani’s theorem [7, Theorem 2.3], it follows from (2.7), (2.8)
and (2.9) that there exists a unique additive mapping A : X → Y satisfying (2.11).
The additive mapping A : X → Y is given by

A(x) := lim
n→∞

mnf(
x

mn
)(2.12)

for all x ∈ X.
By (2.10), we have

| ‖mnf(
x

mn
)‖Y − ‖x‖X | ≤ mn | ‖f(

x

mn
)‖Y − ‖

x

mn
‖X |

≤ mnϕ(
x

mn
, · · · , x

mn︸ ︷︷ ︸
m−times

)

which tends to zero as n→∞ for all x ∈ X. By (2.12), we obtain

‖A(x)‖Y = lim
n→∞

‖mnf(
x

mn
)‖Y = ‖x‖X

for all x ∈ X. Hence

‖A(x)−A(y)‖Y = ‖A(x− y)‖Y = ‖x− y‖X

for all x ∈ X. So the additive mapping A : X → Y is an isometry. This completes
the proof of the theorem. �
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Corollary 2.1. Let θ, rj (1 ≤ j ≤ m) be non-negative real numbers such that
rj > 1 or 0 < rj < 1. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∑

i=1

‖xi‖ri

X

| ‖f(x)‖Y − ‖x‖X |≤ θ
m∑

i=1

‖x‖ri

X

for all x, xj ∈ X (1 ≤ j ≤ m). Then there exists a unique isometric additive
mapping A : X → Y such that

‖f(x)−A(x)‖Y ≤
θ

|mp −mpr1 |
1
p

‖x‖r1
X

for all x ∈ X.

Proof. The result follows from the proofs of Theorems 2.1 and 2.2. �

3. Stability of homomorphisms in quasi-Banach algebras

We prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach
algebras, associated to the additive functional equation (1.1).

Theorem 3.1. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ ϕ(x1, · · · , xm)(3.1)

‖f(xy)− f(x)f(y)‖Y ≤ ψ(x, y)(3.2)

for all x, y, xj ∈ X (1 ≤ j ≤ m), where ϕ : Xm → [0,∞) satisfies (2.1) and (2.2),
and ψ : X ×X → [0,∞) satisfies the following

lim
n→∞

1
mn

ψ(mnx,mny) = 0(3.3)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then there
exists a unique homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
1
m

[ϕ̃(x)]
1
p(3.4)

for all x ∈ X.

Proof. By Theorem 2.1, there exists a unique additive mapping H : X → Y
satisfying (3.4). The additive mapping H : X → Y is given by

H(x) := lim
n→∞

1
mn

f(mnx)(3.5)

for all x ∈ X. By the same reasoning as in the proof of Theorem of [17], the
mapping H : X → Y is R-linear.
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It follows from (3.2) that

‖H(xy)−H(x)H(y)‖Y = lim
n→∞

1
m2n
‖f(m2nxy)− f(mnx)f(mny)‖Y

≤ lim
n→∞

1
m2n

ψ(mnx,mny) = 0

for all x, y ∈ X. Hence, we get

H(xy) = H(x)H(y)

for all x, y ∈ X. Thus the mapping H : X → Y is a unique homomorphism
satisfying (3.4). This completes the proof of the theorem. �

Theorem 3.2. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ φ(x1, · · · , xm)(3.6)

‖f(xy)− f(x)f(y)‖Y ≤ Ψ(x, y)(3.7)

for all x, y, xj ∈ X (1 ≤ j ≤ m), where φ : Xm → [0,∞) satisfies (2.7) and (2.8),
and Ψ: X ×X → [0,∞) satisfies the following

lim
n→∞

mnΨ(
x

mn
,
y

mn
) = 0(3.8)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X, then there
exists a unique homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
1
m

[φ̃(x)]
1
p(3.9)

for all x ∈ X.

Proof. By Theorem 2.2, there exists a unique additive mapping H : X → Y
satisfying (3.9). The additive mapping H : X → Y is given by

H(x) := lim
n→∞

mnf(
x

mn
)(3.10)

for all x ∈ X. By the same reasoning as in the proof of Theorem of [17], the
mapping H : X → Y is R-linear.

It follows from (3.8) that

‖H(xy)−H(x)H(y)‖Y = lim
n→∞

m2n‖f(
xy

mn ·mn
)− f(

x

mn
)f(

y

mn
)‖Y

≤ lim
n→∞

m2nΨ(
x

mn
,
y

mn
) = 0

for all x, y ∈ X. Hence, we get

H(xy) = H(x)H(y)

for all x, y ∈ X. Thus the mapping H : X → Y is a unique homomorphism
satisfying (3.9). This completes the proof of the theorem. �
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Corollary 3.1. Let θ, δ be non-negative real numbers and let rj (1 ≤ j ≤ m),
s1, s2 be non-negative real numbers such that rj > 1, s1, s2 > 2 or 0 < rj < 1,
s1, s2 < 2. Suppose that a mapping f : X → Y satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∑

i=1

‖xi‖ri

X(3.11)

‖f(xy)− f(x)f(y)‖Y ≤ δ(‖x‖s1
X + ‖y‖s2

X )(3.12)

for all x, y, xj ∈ X (1 ≤ j ≤ m). If f(tx) is continuous in t ∈ R for each fixed
x ∈ X, then there exists a unique homomorphism H : X → Y such that

‖f(x)−H(x)‖Y ≤
θ

|mp −mpr1 |
1
p

‖x‖r1
X

for all x ∈ X.

Proof. The result follows from the proofs of Theorems 3.1 and 3.2. �

Corollary 3.2. Let θ, δ be non-negative real numbers and let rj (1 ≤ j ≤ m),

s1, s2 be non-negative real numbers such that
m∑

i=1

ri > 1, s1 + s2 > 2 or
m∑

i=1

ri < 1,

s1+s2 < 2 and rj 6= 0 for some j (2 ≤ j ≤ m). Suppose that a mapping f : X → Y
satisfies

‖Df(x1, · · · , xm)‖Y ≤ θ
m∏

i=1

‖xi‖ri

X(3.13)

‖f(xy)− f(x)f(y)‖Y ≤ δ‖x‖s1
X ‖y‖

s2
X(3.14)

for all x, y, xj ∈ X (1 ≤ j ≤ m). If f(tx) is continuous in t ∈ R for each fixed
x ∈ X, then the mapping f : X → Y is a homomorphism.

Proof. The result follows from the proofs of Theorems 3.1 and 3.2. �

4. Isomorphisms between quasi-Banach algebras

Throughout this section, assume that X is a quasi-Banach algebra with quasi-
norm ‖ · ‖X and unit e and that Y is a p-Banach algebra with p-norm ‖ · ‖Y and
unit e′. Let K be the modulus of concavity of ‖ · ‖Y .

We investigate isomorphisms between quasi-Banach algebras associated to the
additive functional equation (1.1).

Theorem 4.1. Suppose that f : X → Y is a bijective mapping satisfying (3.1)
such that

f(xy) = f(x)f(y)(4.1)

for all x, y ∈ X. If f(tx) is continuous in t ∈ R for each fixed x ∈ X and
lim

n→∞
1

mn f(mne) = e′, then the mapping f : X → Y is an isomorphism.
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Proof. By Theorem 3.1, there exists a homomorphism H : X → Y satisfying
(3.4). The mapping H : X → Y is given by

H(x) := lim
n→∞

1
mn

f(mnx)(4.2)

for all x ∈ X.
By (4.1), we have

H(x) = H(ex) = lim
n→∞

1
mn

f(mnex) = lim
n→∞

1
mn

f(mne · x)

= lim
n→∞

1
mn

f(mne)f(x) = e′f(x) = f(x)

for all x ∈ X. So the bijective mapping f : X → Y is an isomorphism. This
completes the proof of the theorem. �

Theorem 4.2. Suppose that f : X → Y is a bijective mapping satisfying
(3.6) and (4.1). If f(tx) is continuous in t ∈ R for each fixed x ∈ X and
lim

n→∞
mnf( e

mn ) = e′, then the mapping f : X → Y is an isomorphism.

Proof. By Theorem 3.2, there exists a homomorphism H : X → Y satisfying
(3.9). The mapping H : X → Y is given by

H(x) := lim
n→∞

mnf(
x

mn
)(4.3)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 4.1. This completes the

proof of the theorem. �

Corollary 4.1. Let θ, rj (1 ≤ j ≤ m) be non-negative real numbers such that
rj > 1 or 0 < rj < 1. Suppose that a bijective mapping f : X → Y satisfies
(3.11) and (4.1). If f(tx) is continuous in t ∈ R for each fixed x ∈ X and
lim

n→∞
mnf( e

mn ) = e′ or lim
n→∞

1
mn f(mne) = e′, then the mapping f : X → Y is an

isomorphism.

Proof. The result follows from the proofs of Theorems 4.1 and 4.2. �
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