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CURVES WHOSE SECANT DEGREE IS ONE
IN POSITIVE CHARACTERISTIC

E. BALLICO

Abstract. Here we study (in positive characteristic) integral curves X ⊂ Pr with

secant degree one, i.e., for which a general P ∈ Seck−1(X) is in a unique k-secant
(k − 1)-dimensional linear subspace.

1. Introduction

Let K be an algebraically closed base field. Let X ⊂ Pr be an integral and
non-degenerate closed subvariety. For each x ∈ {0, . . . , r}, let G(x, r) denote the
Grassmannian of all x-dimensional linear subspaces of Pr. For each integer k ≥ 1
let σk(X) denote the closure in Pr of the union of all A ∈ G(k − 1, r) spanned by
k points of X (the variety σk(X) is sometimes called the (k − 1)-secant variety
of X and written Seck−1(X), but we prefer to call it the k-secant variety of X).
The integral variety σk(X) may be obtained in the following way. Assume that
X is non-degenerate. For any closed subscheme E ⊆ Pr let 〈E〉 denote its linear
span. Let V (X, k) ⊆ G(k − 1, r) denote the closure in G(k − 1, r) of the set of all
A ∈ G(k − 1, r) spanned by k-points of X. Set

S[X, k] := {(P,A) ∈ Pr ×G(k − 1, r) : P ∈ A,A ∈ V (X, k)}.

Let p1 : Pr×G(k− 1, r)→ Pr denote the projection onto the first factor. We have
σk(X) = p1(S[X, k]). Set mX,k := p1|S[X,k]. If σk(X) has the expected dimension
k · (dim(X) + 1)− 1 (i.e., if mX,k is generically finite), then we write ik(X) for the
inseparable degree of mX,k and sk(X) for its separable degree. For any P ∈ Xreg,
let TPX ⊂ Pr denote the tangent space to X at P . If k ≥ 2, we say that X is
k-unconstrained if

dim(〈TP1X ∪ · · · ∪ TPk
X〉) = dim(σk(X))

for a general (P1, . . . , Pk) ∈ Xk. Terracini’s lemma says that

dim(〈TP1X ∪ · · · ∪ TPk
X〉) ≤ dim(σk(X)))
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and that in characteristic zero equality always holds ([1, §1] or [3, §2]). The case
k = 2 of this notion was introduced in [3]. A non-degenerate curve Y ⊂ Pr is
2-unconstrained if and only if either r = 2 or Y is not strange [3, Example (e1)
at page 333]. From now on we assume dim(X) = 1. We first prove the following
result.

Theorem 1. Fix integers r ≥ 2k ≥ 4. Let X ⊂ Pr be an integral, non-
degenerate and k-unconstrained curve. Then sk(X) = 1.

For each integer i such that 2 ≤ 2i ≤ r we define the integer ei(X) in the
following way. Fix a general (P1, . . . , Pi) ∈ Xi. Thus Pj ∈ Xreg for all j. Set
V := 〈TP1X ∪ · · · ∪ TPi

X〉. Notice that (V ∩X)red ⊇ {P1, . . . , Pi} and the scheme
V ∩X is zero-dimensional. Varying (P1, . . . , Pi) in Xi we see that each Pj appears
with the same multiplicity in the zero-dimensional scheme V ∩X. We call ei(X)
this multiplicity. In characteristic zero we always have ei(X) = 2. The integer
e1(X) is the intersection multiplicity of X with its general tangent line at its
contact point. Hence if char(K) is odd the curve X is reflexive if and only if
e1(X) = 2 ([4, 3.5]). In the general case we have e1(X) ≥ 2 and ei(X) ≤ ei+1(X).
For any P ∈ Xreg and any integer t ∈ {1, . . . , r}, let O(X,P, t) ∈ G(t, r) denote the
t-dimensional osculating plane of X at P . Thus O(X,P, 1) = TPX. Fix integers
i ≥ 1, and jh ≥ 0, 1 ≤ h ≤ i. We only need the case 2i+

∑i
h=1 jh ≤ r. Fix a general

(P1, . . . , Pi) ∈ Xi and set V := 〈∪i
h=1O(X,Ph, 1 + jh)〉. For any h ∈ {1, . . . , i},

let E(X; i; j1, . . . ji;h) be the multiplicity of Ph in the scheme V ∩ X. We will
only use the case j1 = 1 and jh = 0 for all h 6= 1. If either char(K) = 0 or
char(K) > deg(X), then E(X; i; j1, . . . ji;h) = 2 + jh (Lemma 9). Here we prove
the following result.

Theorem 2. Let X ⊂ P2k−1, k ≥ 2, be an integral, non-degenerate and k-
unconstrained curve. Set j1 := 1 and jh := 0 for all h ∈ {2, . . . , k − 1}.

(a) If sk(X) = 1 and E(X; k − 1; j1, . . . , jk−1; 1) = ek−1(X) + 1, then X is
smooth and rational and deg(X) = (k − 1)ek−1(X) + 1.

(b) X is a rational normal curve if and only if sk(X) = 1, ek−1(X) = 2 and
E(X; k − 1; j1, . . . , jk−1; 1) = 3.

We do not know if in the statement of Theorem 2 we may drop the conditions
“ek−1(X) = 2” and “E(X; k − 1; j1, . . . , jk−1; 1) = 3”. We are able to prove that
we may drop the first one in the case k = 2, i.e., we prove the following result.

Proposition 1. Let X ⊂ P3 be an integral and non-degenerate curve. The
following conditions are equivalent:

(a) X is not strange, s2(X) = 1 and E(X; 1; 1; 1) = e1(X) + 1;
(b) i2(X) = s2(X) = 1 and E(X; 1; 1; 1) = e1(X) + 1;
(c) X is a rational normal curve.

The picture is very easy if char(K) > deg(X). As a byproduct of Theorem 2
we give the following result.

Theorem 3. Let X ⊂ P2k−1 be an integral and non-degenerate curve. Assume
char(K) > deg(X). X is a rational normal curve if and only if sk(X) = 1.
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2. The proofs

Remark 1. Assume X of arbitrary dimension and that

dim(σk(X)) = k(dim(X) + 1)− 1.

As in [3] (the case k = 2) X is k-unconstrained if and only if ik(X) = 1.

Lemma 1. Fix integers c > 0, s > y ≥ 2 and r ≥ s(c+ 1)− 1. Let X ⊂ Pr be
an integral and non-degenerate c-dimensional subvariety such that dim(σs(X)) =
s(c+ 1)− 1. If X is s-unconstrained, then X is y-unconstrained.

Proof. Since dim(σs(X)) = s(c+ 1)− 1 and X is s-unconstrained, we have

dim(〈TP1X ∪ · · · ∪ TPsX〉 = s(c+ 1)− 1

for a general (P1, . . . , Ps) ∈ Xs. Hence dim(〈TP1X ∪ · · · ∪ TPy (X)〉 = y(c+ 1)− 1.
Hence X is y-unconstrained. �

We recall the following very useful result ([1, §1]).

Lemma 2. Let X ⊂ Pr be an integral and non-degenerate curve. Then X is
non-defective, i.e., dim(σa(X)) = min{r, 2a− 1} for all integers a ≥ 2.

From Lemmas 1 and 2 we get the following result.

Lemma 3. Fix integers s > y ≥ 2 and r ≥ 2s− 1. Let X ⊂ Pr be an integral
and non-degenerate curve. If X is s-unconstrained, then X is y-unconstrained and
not strange.

We recall that a finite set S ⊂ Px is said to be in linearly general position if
dim(〈S′〉) = min{x, ](S′)−1} for every S′ ⊆ S. The general hyperplane section of
a non-degenerate curve X ⊂ Pr is in linearly general position if X is not strange
([6, Lemma 1.1]). Hence Lemma 3 implies the following result.

Lemma 4. Fix integers r, s such that r ≥ 2s − 1 ≥ 3. Let X ⊂ Pr be an
integral and non-degenerate curve. Assume that X is s-unconstrained. Then X is
not strange and a general hyperplane section of X is in linearly general position.

Proof of Theorem 1. We extend the proof of the case k = 2 given in [3, §4]. By
Lemma 4 a general (k− 1)-dimensional k-secant plane of X meets X at exactly k
points. Fix a general (P1, . . . , Pk) ∈ Xk and set V := 〈TP1X ∪ · · · ∪ TPk

〉. Since
X is k-unconstrained, we have dim(V ) = 2k − 1. Since 2k − 1 < r and X is non-
degenerate, the set S := (V ∩ X)red is finite. Fix a general P ∈ 〈{P1, . . . , Pk}〉.
Assume sk(X) ≥ 2. Since a general hyperplane section of X is in linearly general
position (Lemma 4), the integer sk(X) is the number of different k-ples of points
of X such that a general point of σk(X) is in their linear span. Since P may be
considered as a general point of σk(X) and sk(X) ≥ 2, there is (Q1, . . . , Qk) ∈ Xk

such that P ∈ 〈{Q1, . . . , Qk}〉 and {P1, . . . , Pk} 6= {Q1, . . . , Qk}. For general P we
may also assume that (Q1, . . . , Qk) is general in Xk. Hence each Pi and each Qj is
a smooth point of X. Terracini’s lemma gives 〈TP1X∪· · ·∪TPk

X〉 ⊆ TPσk(X) and
〈TQ1X∪· · ·∪TQk

X〉 ⊆ TPσk(X). SinceX is k-unconstrained and both (P1, . . . , Pk)
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and (Q1, . . . , Qk) are general in Xk, we have 〈TP1X ∪ · · · ∪ TPk
〉 = TPσk(X)

and 〈TQ1X ∪ · · · ∪ TQk
X〉 = TPσk(X). Hence {Q1, . . . , Qk} ⊆ S. Since S is

finite, the union of the linear spans of all S′ ⊆ S with ](S′) = k is a finite
number of linear subspaces of dimension at most k − 1 and 〈S′〉 = 〈{P1, . . . , Pk}〉
if and only if S′ = {P1, . . . , Pk}, because 〈{P1, . . . , Pk}〉 ∩ X = {P1, . . . , Pk}.
Hence dim(〈S′〉 ∩ 〈{P1, . . . , Pk}〉) ≤ k − 2 for all S′ 6= {P1, . . . , Pk}. Varying
P ∈ 〈{P1, . . . , Pk}〉 ∼= Pk−1, we get a contradiction. �

Lemma 5. Let X ⊂ Pr, r ≥ 2k − 1 ≥ 5, be an integral, non-degenerate and
k-unconstrained curve. Fix an integer s such that 1 ≤ s ≤ k − 2. Fix a general
(A1, . . . , As) ∈ Xs and set W := 〈TA1X ∪ · · · ∪ TAsX〉. Then dim(W ) = 2s − 1.
Let `W : Pr \W → Pr−2s denote the linear projection from W . Let Y ⊂ Pr−2s

denote the closure of `W (Y \ Y ∩W ). Then Y is (k − s)-unconstrained and it is
not strage.

Proof. Fix a generalAs+1, . . . , Ak ∈ Xk−s. Notice that (`W (As+1), . . . , `W (Ak))
is general in Y k−s and

`W (〈W ∪ TAs+1X ∪ · · · ∪ TAk
X〉 \W ) = 〈T`W (As+1)Y ∪ · · · ∪ T`W (Ak))Y 〉.

Hence the latter space has dimension 2k−2s−1. Hence Y is (k−s)-unconstrained.
Since k − s ≥ 2, Y is not strange. �

Lemma 6. Fix integers c > 0, k ≥ 2 and r ≥ (c + 1)k − 1. Let X ⊂ Pr

be a k-unconstrained c-dimensional variety such that dim(σk(X)) = (c+ 1)k − 1.
Fix an integer s ∈ {1, . . . , k − 1} and a general (P1, . . . , Ps) ∈ Xs. Set V :=
〈TP1X ∪ · · · ∪ TPsX〉. Then dim(V ) = (c+ 1)s− 1 and the restriction to X of the
linear projection `V : Pr\V → Pr−(c+1)s is a generically finite separable morphism.

Proof. Since s+ 1 ≤ k and dim(σk(X)) = (c+ 1)k − 1, we have dim(σs(X)) =
(c + 1)s − 1. Lemma 1 gives that X is s-unconstrained. Since X is (s + 1)-un-
constrained and dim(σs+1(X)) = (c+ 1)(s+ 1)− 1, we have

dim(〈V ∪ TPX〉) = dim(V ) + dim(TPX) + 1

for a general P ∈ X, i.e., V ∩TPX = ∅ for a general P ∈ X. Thus `V |(X \V ) has
differential with rank c, i.e., it is separable and generically finite. �

Proof of Theorem 2. If X is a rational normal curve, then it is k-unconstrained,
sk(X) = 1 ([2, First 4 lines of page 128]) and ik(X) = 1 (Remark 1).

Now assume sk(X) = 1. In step (c) we will use the assumption E(X; k − 1;
1, 0, . . . , 0; 1) = ek−1(X) + 1. We need to adapt a part of the characteristic zero
proof given in [2] to the positive characteristic case. We will follow [2] as much as
possible. Fix a general (P1, . . . , Pk−1) ∈ Xk−1 and set V := 〈TP1X∪· · ·∪TPk−1X〉.
Since X is k-unconstrained, we have dim(V ) = 2k−3. Since X is non-degenerate,
the set S := (V ∩X)red is finite.

(a) Here we check that S ⊂ Xreg. If k = 2, then for a general P1 we have
TP1X ∩ Sing(X) = ∅, because X is not strange by [3, Example (e1) at page 333].
Now assume k ≥ 3. Since X is not strange (use Lemma 1), for general P1 ∈ X,
we have TP1X ∩ Sing(X) = ∅. Then by induction on i we check using a linear
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projection from TPi
X as in Lemma 5 that 〈TP1X ∪ · · · ∪ TPi

X〉 ∩ Sing(X) = ∅
(more precisely, for any finite set Σ ⊂ X we check by induction on i that 〈TP1X ∪
· · ·∪TPi

X〉∩Σ = ∅ for a general (P1, . . . , Pi) ∈ Xi). For i = k−1 we get S ⊂ Xreg.
(b) Obviously {P1, . . . , Pk−1} ⊆ S. Here we check that S = {P1, . . . , Pk−1}.

Assume for the moment the existence of Q ∈ S \ {P1, . . . , Pk−1}. Since X is not
strange, it is not very strange, i.e., a general hyperplane section of X is in linearly
general position ([6, Lemma 1.1]). Since (P1, . . . , Pk−1) is general in Xk−1, we get
〈{P1, . . . , Pk−1}〉 ∩X = {P1, . . . , Pk−1}. Thus dim(〈{P1, . . . , Pk−1, Q}〉) = k − 1.
Fix a general z ∈ 〈{P1, . . . , Pk−1, Q}〉. We have

P2k−1 = Tzσk(X) ⊇ 〈TP1X ∪ · · · ∪ TPk−1X ∪ TQX〉

(Terracini’s lemma ([3, §2] or [1, Proposition 1.9]). The additive map giving
Terracini’s lemma for joins in the proof of [1, Proposition 1.9], shows that the map
mX,k has non-invertible differential over the point z. Since P2k−1 is smooth and
mX,k is separable, we get that mX,k is not finite of degree 1 near z. Since sk(X) =
1, mX,k contracts a curve over z. Since z lies in infinitely many (k − 1)-dimensional
k-secant subspaces, we get that dim(σk(X)) ≤ 2k−2, contradicting Lemma 2. The
contradiction proves S = {P1, . . . , Pk−1}.

(c) Step (b) means that {P1, . . . , Pk−1} is the reduction of the scheme-
-theoretically intersection X ∩ V . Let Zi denote the connected component of
the scheme X ∩ V supported by Pi. Set e := deg(Z1). Since TP1X ⊆ V , we
have e ≥ 2. Varying (P1, . . . , Pk−1) in Xk−1 we get deg(Zi) = e for all i. The
definition of the integer ek−1(X) gives e = ek−1(X). Set φ := `V |(X \ V ∩ X).
Since X ∩ V ⊂ Xreg, φ is dominant and Xreg is a smooth curve, φ induces a fi-
nite morphism ψ : X → P1. Bezout’s theorem gives deg(X) = (k − 1)e + deg(ψ).
Lemma 6 gives that ψ is separable. Hence deg(ψ) is the separable degree of ψ.
Assume deg(ψ) ≥ 2. Since P1 is algebraically simply connected, there is Q ∈ X
at which ψ ramifies.

First assume Q ∈ Xreg. Since E(X; k− 1; 1, 0, . . . , 0; 1) = ek−1(X) + 1, ψ is not
ramified at P1. Moving P1, . . . , Pk−1 we get Q /∈ {P1, . . . , Pk−1}. The definition of
φ gives dim(V ∪ TQX) ≤ dim(V ) + 1. Hence the additive map giving Terracini’s
lemma for joins in the proof of [1, Proposition 1.9], shows that the map mX,k has
non-invertible differential over the general point z ∈ 〈{P1, . . . , Pk−1, Q}〉. As in
step (b) we get a contradiction.

Now assume Q ∈ Sing(X). Let u : C → X denote the normalization map.
Since we assumed deg(ψ) ≥ 2, we have deg(ψ ◦ u) ≥ 2. Since P1 is algebraically
simply connected, there is Q′ ∈ C such that ψ ◦u is ramified at Q′. We repeat the
construction of joins and secant variety starting from the non-embedded curve C
and get a contradiction using Q′ instead of Q. Thus deg(ψ) = 1, i.e.

deg(X) = (k − 1)ek−1(X) + 1,

and X is rational.
X is a rational normal curve if and only if deg(X) = 2k − 1, i.e., if and only if

e = 2. Take any P ∈ Sing(X) (if any). Set H := 〈{P} ∪ V 〉. Since X is singular
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at P , we have deg(H ∩X) ≥ 2 + (k − 1)e > deg(X), that is contradiction. Thus
X is smooth. �

Proof of Proposition 1. We have i2(X) = 1 if and only if X is 2-unconstrained
([3] or Remark 1). Obviously X is 2-unconstrained. Hence it is sufficient to prove
that if X is 2-unconstrained, s2(X) = 1, and E(X; 1; 1; 1) = e1(X) + 1, then
X is a rational normal curve. Theorem 2 says that X is smooth and rational
and deg(X) = e1(X) + 1. Thus it is sufficient to prove e1(X) = 2. Assume
e1(X) ≥ 3. Since deg(X) = e1(X) + 1, Bezout’s theorem says that any two
different tangent lines are disjoint. Let TX ⊂ P3 denote the tangent developable
of X. Fix a general P ∈ P3 and let `P : P3 \ {P} → P2 be the linear projection
from P . Set ` := `P |X. Since P /∈ TX, ` is unramified. Since X is smooth,
s2(X) = 1 and P is general, the map ` is birational onto its image and the curve
`(X) has a unique singular point (the point `(P1) = `(P2) with P ∈ 〈{P1, P2}〉
and (P1, P2) ∈ X2). We have pa(`(X)) = e1(X)(e1(X)−1)/2 ≥ 2. Since P /∈ TX,
we have P /∈ TPi

X, i = 1, 2. Since TP1X ∩ TP2(X) = ∅, the line TP2X is not
contained in the plane 〈{P}∪TP1X〉. Thus `P (TP1X) 6= `P (TP2X). Thus `(P1) is
an ordinary double point of `(X). Hence `(X) has geometric genus pa(X)−1 > 0,
thath is contradiction. �

Lemma 7. Let X ⊂ Pr be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then ei(X) = 2 for all positive integers i such that 2i ≤ r.

Proof. We have e1(X) = 2, because in large characteristic the Hermite sequence
of X at its general point is the classical one ([5, Theorem 15]). The case i ≥ 2 is
obtained by induction on i taking instead of X its image by the linear projection
from TPiX, Pi general in X. �

Lemma 8. Let X ⊂ Pr be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then X is i-unconstrained for all integers i ≥ 2.

Proof. Fix a linear subspace V ⊂ Pr such that v := dim(V ) ≤ r − 2. Let
`V : Pr \ V → Pr−v−1 denote the linear projection from V . Since char(K) >
deg(X), the restriction of `V to X is separable. Hence TPi

X ∩V = ∅ for a general
Pi ∈ X. Take V = 〈TP1X ∪ · · · ∪TPi−1X〉 with (P1, . . . , Pi−1) general in Xi−1 and
use induction on i. �

Lemma 9. Let X ⊂ Pr be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then E(X; i; j1, . . . , ji;h) = 2 + jh for all i, j1, . . . , ji such
that

2i+
i∑

x=1

jx ≤ r

and for a general (P1, . . . , Pi) ∈ Xi, the linear span of the osculating spaces

O(X,Px, 1 + jx) , 1 ≤ x ≤ i,

has dimension 2i− 1 +
∑i

x=1 jx.
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Proof. The case i = 1 is true by [5, Theorem 15]. Hence we may assume i ≥ 2.
Fix an index c ∈ {1, . . . , i} \ {h}. For a general Pc ∈ X, the point Pc appears
with multiplicity exactly jc + 2 in the scheme O(X,Pc, jc + 1) ([5, Theorem 15]).
Since char(K) > deg(X), the rational map ` obtained restricting to X the linear
projection from O(X,Pc, 1 + jc) is separable. Call Y the closure in Pr−jc−2 of
`(X \ O(X,P, 1 + jc) ∩ X). Take Px, x 6= c, such that (P1, . . . , Pi) is general
in Xc and write Qx := `(Px) for all x 6= c. Let V be the linear span of the
osculating spaces O(X,Px, 1 + jx), 1 ≤ x ≤ i, U the linear span of the osculating
spaces O(X,Px, 1 + jx), x 6= c, and W the linear span of the osculating spaces
O(Y,Qx, 1 + jx), x 6= c. By the inductive assumption U and W have dimension
2i − 3 +

∑
x 6=c jx. Hence `(U) = W and dim(V ) = 2i − 1 +

∑i
x=1 jx. Since the

points Qi are general and ` is separable, the scheme `−1((2 + jx)Qx)), x 6= c, is a
divisor of X whose connected component supported by Px has degree 2 + jx. Use
the inductive assumption on Y to get E(X; i; j1, . . . , ji;h) = 2 + jh. �

Proof of Theorem 3. Apply Theorem 2 and Lemmas 7, 8 and 9. �

Acknowledgment. We want to thank the referee for her/his useful observa-
tions.
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