CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC

E. BALLICO

Abstract

Here we study (in positive characteristic) integral curves $X \subset \mathbb{P}^{r}$ with secant degree one, i.e., for which a general $P \in \operatorname{Sec}^{k-1}(X)$ is in a unique k-secant ($k-1$)-dimensional linear subspace.

1. Introduction

Let \mathbb{K} be an algebraically closed base field. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate closed subvariety. For each $x \in\{0, \ldots, r\}$, let $G(x, r)$ denote the Grassmannian of all x-dimensional linear subspaces of \mathbb{P}^{r}. For each integer $k \geq 1$ let $\sigma_{k}(X)$ denote the closure in \mathbb{P}^{r} of the union of all $A \in G(k-1, r)$ spanned by k points of X (the variety $\sigma_{k}(X)$ is sometimes called the $(k-1)$-secant variety of X and written $\operatorname{Sec}^{k-1}(X)$, but we prefer to call it the k-secant variety of X). The integral variety $\sigma_{k}(X)$ may be obtained in the following way. Assume that X is non-degenerate. For any closed subscheme $E \subseteq \mathbb{P}^{r}$ let $\langle E\rangle$ denote its linear span. Let $V(X, k) \subseteq G(k-1, r)$ denote the closure in $G(k-1, r)$ of the set of all $A \in G(k-1, r)$ spanned by k-points of X. Set

$$
S[X, k]:=\left\{(P, A) \in \mathbb{P}^{r} \times G(k-1, r): P \in A, A \in V(X, k)\right\} .
$$

Let $p_{1}: \mathbb{P}^{r} \times G(k-1, r) \rightarrow \mathbb{P}^{r}$ denote the projection onto the first factor. We have $\sigma_{k}(X)=p_{1}(S[X, k])$. Set $m_{X, k}:=p_{1 \mid S[X, k]}$. If $\sigma_{k}(X)$ has the expected dimension $k \cdot(\operatorname{dim}(X)+1)-1$ (i.e., if $m_{X, k}$ is generically finite), then we write $i_{k}(X)$ for the inseparable degree of $m_{X, k}$ and $s_{k}(X)$ for its separable degree. For any $P \in X_{\text {reg }}$, let $T_{P} X \subset \mathbb{P}^{r}$ denote the tangent space to X at P. If $k \geq 2$, we say that X is k-unconstrained if

$$
\operatorname{dim}\left(\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k}} X\right\rangle\right)=\operatorname{dim}\left(\sigma_{k}(X)\right)
$$

for a general $\left(P_{1}, \ldots, P_{k}\right) \in X^{k}$. Terracini's lemma says that

$$
\left.\operatorname{dim}\left(\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k}} X\right\rangle\right) \leq \operatorname{dim}\left(\sigma_{k}(X)\right)\right)
$$

Received May 22, 2011; revised November 3, 2011.
2010 Mathematics Subject Classification. Primary 14N05; 14H50.
Key words and phrases. Join; secant variety; rational normal curve.
The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
and that in characteristic zero equality always holds $([1, \S 1]$ or $[\mathbf{3}, \S 2])$. The case $k=2$ of this notion was introduced in [3]. A non-degenerate curve $Y \subset \mathbb{P}^{r}$ is 2 -unconstrained if and only if either $r=2$ or Y is not strange [3, Example (e1) at page 333]. From now on we assume $\operatorname{dim}(X)=1$. We first prove the following result.

Theorem 1. Fix integers $r \geq 2 k \geq 4$. Let $X \subset \mathbb{P}^{r}$ be an integral, nondegenerate and k-unconstrained curve. Then $s_{k}(X)=1$.

For each integer i such that $2 \leq 2 i \leq r$ we define the integer $e_{i}(X)$ in the following way. Fix a general $\left(P_{1}, \ldots, P_{i}\right) \in X^{i}$. Thus $P_{j} \in X_{\text {reg }}$ for all j. Set $V:=\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{i}} X\right\rangle$. Notice that $(V \cap X)_{\text {red }} \supseteq\left\{P_{1}, \ldots, P_{i}\right\}$ and the scheme $V \cap X$ is zero-dimensional. Varying $\left(P_{1}, \ldots, P_{i}\right)$ in X^{i} we see that each P_{j} appears with the same multiplicity in the zero-dimensional scheme $V \cap X$. We call $e_{i}(X)$ this multiplicity. In characteristic zero we always have $e_{i}(X)=2$. The integer $e_{1}(X)$ is the intersection multiplicity of X with its general tangent line at its contact point. Hence if $\operatorname{char}(\mathbb{K})$ is odd the curve X is reflexive if and only if $e_{1}(X)=2([4,3.5])$. In the general case we have $e_{1}(X) \geq 2$ and $e_{i}(X) \leq e_{i+1}(X)$. For any $P \in X_{\text {reg }}$ and any integer $t \in\{1, \ldots, r\}$, let $O(X, P, t) \in G(t, r)$ denote the t-dimensional osculating plane of X at P. Thus $O(X, P, 1)=T_{P} X$. Fix integers $i \geq 1$, and $j_{h} \geq 0,1 \leq h \leq i$. We only need the case $2 i+\sum_{h=1}^{i} j_{h} \leq r$. Fix a general $\left(P_{1}, \ldots, P_{i}\right) \in X^{i}$ and set $V:=\left\langle\cup_{h=1}^{i} O\left(X, P_{h}, 1+j_{h}\right)\right\rangle$. For any $h \in\{1, \ldots, i\}$, let $E\left(X ; i ; j_{1}, \ldots j_{i} ; h\right)$ be the multiplicity of P_{h} in the scheme $V \cap X$. We will only use the case $j_{1}=1$ and $j_{h}=0$ for all $h \neq 1$. If either $\operatorname{char}(\mathbb{K})=0$ or $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$, then $E\left(X ; i ; j_{1}, \ldots j_{i} ; h\right)=2+j_{h}($ Lemma 9$)$. Here we prove the following result.

Theorem 2. Let $X \subset \mathbb{P}^{2 k-1}, k \geq 2$, be an integral, non-degenerate and k unconstrained curve. Set $j_{1}:=1$ and $j_{h}:=0$ for all $h \in\{2, \ldots, k-1\}$.
(a) If $s_{k}(X)=1$ and $E\left(X ; k-1 ; j_{1}, \ldots, j_{k-1} ; 1\right)=e_{k-1}(X)+1$, then X is smooth and rational and $\operatorname{deg}(X)=(k-1) e_{k-1}(X)+1$.
(b) X is a rational normal curve if and only if $s_{k}(X)=1, e_{k-1}(X)=2$ and $E\left(X ; k-1 ; j_{1}, \ldots, j_{k-1} ; 1\right)=3$.
We do not know if in the statement of Theorem 2 we may drop the conditions " $e_{k-1}(X)=2$ " and " $E\left(X ; k-1 ; j_{1}, \ldots, j_{k-1} ; 1\right)=3$ ". We are able to prove that we may drop the first one in the case $k=2$, i.e., we prove the following result.

Proposition 1. Let $X \subset \mathbb{P}^{3}$ be an integral and non-degenerate curve. The following conditions are equivalent:
(a) X is not strange, $s_{2}(X)=1$ and $E(X ; 1 ; 1 ; 1)=e_{1}(X)+1$;
(b) $i_{2}(X)=s_{2}(X)=1$ and $E(X ; 1 ; 1 ; 1)=e_{1}(X)+1$;
(c) X is a rational normal curve.

The picture is very easy if $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$. As a byproduct of Theorem 2 we give the following result.

Theorem 3. Let $X \subset \mathbb{P}^{2 k-1}$ be an integral and non-degenerate curve. Assume $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X) . X$ is a rational normal curve if and only if $s_{k}(X)=1$.

2. The proofs

Remark 1. Assume X of arbitrary dimension and that

$$
\operatorname{dim}\left(\sigma_{k}(X)\right)=k(\operatorname{dim}(X)+1)-1
$$

As in [3] (the case $k=2$) X is k-unconstrained if and only if $i_{k}(X)=1$.
Lemma 1. Fix integers $c>0, s>y \geq 2$ and $r \geq s(c+1)-1$. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate c-dimensional subvariety such that $\operatorname{dim}\left(\sigma_{s}(X)\right)=$ $s(c+1)-1$. If X is s-unconstrained, then X is y-unconstrained.

Proof. Since $\operatorname{dim}\left(\sigma_{s}(X)\right)=s(c+1)-1$ and X is s-unconstrained, we have

$$
\operatorname{dim}\left(\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{s}} X\right\rangle=s(c+1)-1\right.
$$

for a general $\left(P_{1}, \ldots, P_{s}\right) \in X^{s}$. Hence $\operatorname{dim}\left(\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{y}}(X)\right\rangle=y(c+1)-1\right.$. Hence X is y-unconstrained.

We recall the following very useful result $([\mathbf{1}, \S 1])$.
Lemma 2. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Then X is non-defective, i.e., $\operatorname{dim}\left(\sigma_{a}(X)\right)=\min \{r, 2 a-1\}$ for all integers $a \geq 2$.

From Lemmas 1 and 2 we get the following result.
Lemma 3. Fix integers $s>y \geq 2$ and $r \geq 2 s-1$. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. If X is s-unconstrained, then X is y-unconstrained and not strange.

We recall that a finite set $S \subset \mathbb{P}^{x}$ is said to be in linearly general position if $\operatorname{dim}\left(\left\langle S^{\prime}\right\rangle\right)=\min \left\{x, \sharp\left(S^{\prime}\right)-1\right\}$ for every $S^{\prime} \subseteq S$. The general hyperplane section of a non-degenerate curve $X \subset \mathbb{P}^{r}$ is in linearly general position if X is not strange ([6, Lemma 1.1]). Hence Lemma 3 implies the following result.

Lemma 4. Fix integers r, s such that $r \geq 2 s-1 \geq 3$. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Assume that X is s-unconstrained. Then X is not strange and a general hyperplane section of X is in linearly general position.

Proof of Theorem 1. We extend the proof of the case $k=2$ given in [3, §4]. By Lemma 4 a general $(k-1)$-dimensional k-secant plane of X meets X at exactly k points. Fix a general $\left(P_{1}, \ldots, P_{k}\right) \in X^{k}$ and set $V:=\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k}}\right\rangle$. Since X is k-unconstrained, we have $\operatorname{dim}(V)=2 k-1$. Since $2 k-1<r$ and X is nondegenerate, the set $S:=(V \cap X)_{\text {red }}$ is finite. Fix a general $P \in\left\langle\left\{P_{1}, \ldots, P_{k}\right\}\right\rangle$. Assume $s_{k}(X) \geq 2$. Since a general hyperplane section of X is in linearly general position (Lemma 4), the integer $s_{k}(X)$ is the number of different k-ples of points of X such that a general point of $\sigma_{k}(X)$ is in their linear span. Since P may be considered as a general point of $\sigma_{k}(X)$ and $s_{k}(X) \geq 2$, there is $\left(Q_{1}, \ldots, Q_{k}\right) \in X^{k}$ such that $P \in\left\langle\left\{Q_{1}, \ldots, Q_{k}\right\}\right\rangle$ and $\left\{P_{1}, \ldots, P_{k}\right\} \neq\left\{Q_{1}, \ldots, Q_{k}\right\}$. For general P we may also assume that $\left(Q_{1}, \ldots, Q_{k}\right)$ is general in X^{k}. Hence each P_{i} and each Q_{j} is a smooth point of X. Terracini's lemma gives $\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k}} X\right\rangle \subseteq T_{P} \sigma_{k}(X)$ and $\left\langle T_{Q_{1}} X \cup \cdots \cup T_{Q_{k}} X\right\rangle \subseteq T_{P} \sigma_{k}(X)$. Since X is k-unconstrained and both $\left(P_{1}, \ldots, P_{k}\right)$
and $\left(Q_{1}, \ldots, Q_{k}\right)$ are general in X^{k}, we have $\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k}}\right\rangle=T_{P} \sigma_{k}(X)$ and $\left\langle T_{Q_{1}} X \cup \cdots \cup T_{Q_{k}} X\right\rangle=T_{P} \sigma_{k}(X)$. Hence $\left\{Q_{1}, \ldots, Q_{k}\right\} \subseteq S$. Since S is finite, the union of the linear spans of all $S^{\prime} \subseteq S$ with $\sharp\left(S^{\prime}\right)=k$ is a finite number of linear subspaces of dimension at most $k-1$ and $\left\langle S^{\prime}\right\rangle=\left\langle\left\{P_{1}, \ldots, P_{k}\right\}\right\rangle$ if and only if $S^{\prime}=\left\{P_{1}, \ldots, P_{k}\right\}$, because $\left\langle\left\{P_{1}, \ldots, P_{k}\right\}\right\rangle \cap X=\left\{P_{1}, \ldots, P_{k}\right\}$. Hence $\operatorname{dim}\left(\left\langle S^{\prime}\right\rangle \cap\left\langle\left\{P_{1}, \ldots, P_{k}\right\}\right\rangle\right) \leq k-2$ for all $S^{\prime} \neq\left\{P_{1}, \ldots, P_{k}\right\}$. Varying $P \in\left\langle\left\{P_{1}, \ldots, P_{k}\right\}\right\rangle \cong \mathbb{P}^{k-1}$, we get a contradiction.

Lemma 5. Let $X \subset \mathbb{P}^{r}, r \geq 2 k-1 \geq 5$, be an integral, non-degenerate and k-unconstrained curve. Fix an integer s such that $1 \leq s \leq k-2$. Fix a general $\left(A_{1}, \ldots, A_{s}\right) \in X^{s}$ and set $W:=\left\langle T_{A_{1}} X \cup \cdots \cup T_{A_{s}} X\right\rangle$. Then $\operatorname{dim}(W)=2 s-1$. Let $\ell_{W}: \mathbb{P}^{r} \backslash W \rightarrow \mathbb{P}^{r-2 s}$ denote the linear projection from W. Let $Y \subset \mathbb{P}^{r-2 s}$ denote the closure of $\ell_{W}(Y \backslash Y \cap W)$. Then Y is $(k-s)$-unconstrained and it is not strage.

Proof. Fix a general $A_{s+1}, \ldots, A_{k} \in X^{k-s}$. Notice that $\left(\ell_{W}\left(A_{s+1}\right), \ldots, \ell_{W}\left(A_{k}\right)\right)$ is general in Y^{k-s} and

$$
\ell_{W}\left(\left\langle W \cup T_{A_{s+1}} X \cup \cdots \cup T_{A_{k}} X\right\rangle \backslash W\right)=\left\langle T_{\ell_{W}\left(A_{s+1}\right)} Y \cup \cdots \cup T_{\left.\ell_{W}\left(A_{k}\right)\right)} Y\right\rangle
$$

Hence the latter space has dimension $2 k-2 s-1$. Hence Y is $(k-s)$-unconstrained. Since $k-s \geq 2, Y$ is not strange.

Lemma 6. Fix integers $c>0, k \geq 2$ and $r \geq(c+1) k-1$. Let $X \subset \mathbb{P}^{r}$ be a k-unconstrained c-dimensional variety such that $\operatorname{dim}\left(\sigma_{k}(X)\right)=(c+1) k-1$. Fix an integer $s \in\{1, \ldots, k-1\}$ and a general $\left(P_{1}, \ldots, P_{s}\right) \in X^{s}$. Set $V:=$ $\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{s}} X\right\rangle$. Then $\operatorname{dim}(V)=(c+1) s-1$ and the restriction to X of the linear projection $\ell_{V}: \mathbb{P}^{r} \backslash V \rightarrow \mathbb{P}^{r-(c+1) s}$ is a generically finite separable morphism.

Proof. Since $s+1 \leq k$ and $\operatorname{dim}\left(\sigma_{k}(X)\right)=(c+1) k-1$, we have $\operatorname{dim}\left(\sigma_{s}(X)\right)=$ $(c+1) s-1$. Lemma 1 gives that X is s-unconstrained. Since X is $(s+1)$-unconstrained and $\operatorname{dim}\left(\sigma_{s+1}(X)\right)=(c+1)(s+1)-1$, we have

$$
\operatorname{dim}\left(\left\langle V \cup T_{P} X\right\rangle\right)=\operatorname{dim}(V)+\operatorname{dim}\left(T_{P} X\right)+1
$$

for a general $P \in X$, i.e., $V \cap T_{P} X=\emptyset$ for a general $P \in X$. Thus $\ell_{V} \mid(X \backslash V)$ has differential with rank c, i.e., it is separable and generically finite.

Proof of Theorem 2. If X is a rational normal curve, then it is k-unconstrained, $s_{k}(X)=1([\mathbf{2}$, First 4 lines of page 128$])$ and $i_{k}(X)=1($ Remark 1$)$.

Now assume $s_{k}(X)=1$. In step (c) we will use the assumption $E(X ; k-1$; $1,0, \ldots, 0 ; 1)=e_{k-1}(X)+1$. We need to adapt a part of the characteristic zero proof given in [2] to the positive characteristic case. We will follow [2] as much as possible. Fix a general $\left(P_{1}, \ldots, P_{k-1}\right) \in X^{k-1}$ and set $V:=\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k-1}} X\right\rangle$. Since X is k-unconstrained, we have $\operatorname{dim}(V)=2 k-3$. Since X is non-degenerate, the set $S:=(V \cap X)_{\text {red }}$ is finite.
(a) Here we check that $S \subset X_{\text {reg }}$. If $k=2$, then for a general P_{1} we have $T_{P_{1}} X \cap \operatorname{Sing}(X)=\emptyset$, because X is not strange by [3, Example (e1) at page 333]. Now assume $k \geq 3$. Since X is not strange (use Lemma 1), for general $P_{1} \in X$, we have $T_{P_{1}} X \cap \operatorname{Sing}(X)=\emptyset$. Then by induction on i we check using a linear
projection from $T_{P_{i}} X$ as in Lemma 5 that $\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{i}} X\right\rangle \cap \operatorname{Sing}(X)=\emptyset$ (more precisely, for any finite set $\Sigma \subset X$ we check by induction on i that $\left\langle T_{P_{1}} X \cup\right.$ $\left.\cdots \cup T_{P_{i}} X\right\rangle \cap \Sigma=\emptyset$ for a general $\left.\left(P_{1}, \ldots, P_{i}\right) \in X^{i}\right)$. For $i=k-1$ we get $S \subset X_{\text {reg }}$.
(b) Obviously $\left\{P_{1}, \ldots, P_{k-1}\right\} \subseteq S$. Here we check that $S=\left\{P_{1}, \ldots, P_{k-1}\right\}$. Assume for the moment the existence of $Q \in S \backslash\left\{P_{1}, \ldots, P_{k-1}\right\}$. Since X is not strange, it is not very strange, i.e., a general hyperplane section of X is in linearly general position ($\left[\mathbf{6}\right.$, Lemma 1.1]). Since $\left(P_{1}, \ldots, P_{k-1}\right)$ is general in X^{k-1}, we get $\left\langle\left\{P_{1}, \ldots, P_{k-1}\right\}\right\rangle \cap X=\left\{P_{1}, \ldots, P_{k-1}\right\}$. Thus $\operatorname{dim}\left(\left\langle\left\{P_{1}, \ldots, P_{k-1}, Q\right\}\right\rangle\right)=k-1$. Fix a general $z \in\left\langle\left\{P_{1}, \ldots, P_{k-1}, Q\right\}\right\rangle$. We have

$$
\mathbb{P}^{2 k-1}=T_{z} \sigma_{k}(X) \supseteq\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{k-1}} X \cup T_{Q} X\right\rangle
$$

(Terracini's lemma ([3, §2] or [1, Proposition 1.9]). The additive map giving Terracini's lemma for joins in the proof of [1, Proposition 1.9], shows that the map $m_{X, k}$ has non-invertible differential over the point z. Since $\mathbb{P}^{2 k-1}$ is smooth and $m_{X, k}$ is separable, we get that $m_{X, k}$ is not finite of degree 1 near z. Since $s_{k}(X)=$ $1, m_{X, k}$ contracts a curve over z. Since z lies in infinitely many $(k-1)$-dimensional k-secant subspaces, we get that $\operatorname{dim}\left(\sigma_{k}(X)\right) \leq 2 k-2$, contradicting Lemma 2. The contradiction proves $S=\left\{P_{1}, \ldots, P_{k-1}\right\}$.
(c) Step (b) means that $\left\{P_{1}, \ldots, P_{k-1}\right\}$ is the reduction of the scheme--theoretically intersection $X \cap V$. Let Z_{i} denote the connected component of the scheme $X \cap V$ supported by P_{i}. Set $e:=\operatorname{deg}\left(Z_{1}\right)$. Since $T_{P_{1}} X \subseteq V$, we have $e \geq 2$. Varying $\left(P_{1}, \ldots, P_{k-1}\right)$ in X^{k-1} we get $\operatorname{deg}\left(Z_{i}\right)=e$ for all i. The definition of the integer $e_{k-1}(X)$ gives $e=e_{k-1}(X)$. Set $\phi:=\ell_{V} \mid(X \backslash V \cap X)$. Since $X \cap V \subset X_{\text {reg }}, \phi$ is dominant and $X_{\text {reg }}$ is a smooth curve, ϕ induces a finite morphism $\psi: X \rightarrow \mathbb{P}^{1}$. Bezout's theorem gives $\operatorname{deg}(X)=(k-1) e+\operatorname{deg}(\psi)$. Lemma 6 gives that ψ is separable. Hence $\operatorname{deg}(\psi)$ is the separable degree of ψ. Assume $\operatorname{deg}(\psi) \geq 2$. Since \mathbb{P}^{1} is algebraically simply connected, there is $Q \in X$ at which ψ ramifies.

First assume $Q \in X_{\text {reg }}$. Since $E(X ; k-1 ; 1,0, \ldots, 0 ; 1)=e_{k-1}(X)+1, \psi$ is not ramified at P_{1}. Moving P_{1}, \ldots, P_{k-1} we get $Q \notin\left\{P_{1}, \ldots, P_{k-1}\right\}$. The definition of ϕ gives $\operatorname{dim}\left(V \cup T_{Q} X\right) \leq \operatorname{dim}(V)+1$. Hence the additive map giving Terracini's lemma for joins in the proof of [1, Proposition 1.9], shows that the map $m_{X, k}$ has non-invertible differential over the general point $z \in\left\langle\left\{P_{1}, \ldots, P_{k-1}, Q\right\}\right\rangle$. As in step (b) we get a contradiction.

Now assume $Q \in \operatorname{Sing}(X)$. Let $u: C \rightarrow X$ denote the normalization map. Since we assumed $\operatorname{deg}(\psi) \geq 2$, we have $\operatorname{deg}(\psi \circ u) \geq 2$. Since \mathbb{P}^{1} is algebraically simply connected, there is $Q^{\prime} \in C$ such that $\psi \circ u$ is ramified at Q^{\prime}. We repeat the construction of joins and secant variety starting from the non-embedded curve C and get a contradiction using Q^{\prime} instead of Q. Thus $\operatorname{deg}(\psi)=1$, i.e.

$$
\operatorname{deg}(X)=(k-1) e_{k-1}(X)+1
$$

and X is rational.
X is a rational normal curve if and only if $\operatorname{deg}(X)=2 k-1$, i.e., if and only if $e=2$. Take any $P \in \operatorname{Sing}(X)$ (if any). Set $H:=\langle\{P\} \cup V\rangle$. Since X is singular
at P, we have $\operatorname{deg}(H \cap X) \geq 2+(k-1) e>\operatorname{deg}(X)$, that is contradiction. Thus X is smooth.

Proof of Proposition 1. We have $i_{2}(X)=1$ if and only if X is 2-unconstrained ([3] or Remark 1). Obviously X is 2-unconstrained. Hence it is sufficient to prove that if X is 2-unconstrained, $s_{2}(X)=1$, and $E(X ; 1 ; 1 ; 1)=e_{1}(X)+1$, then X is a rational normal curve. Theorem 2 says that X is smooth and rational and $\operatorname{deg}(X)=e_{1}(X)+1$. Thus it is sufficient to prove $e_{1}(X)=2$. Assume $e_{1}(X) \geq 3$. Since $\operatorname{deg}(X)=e_{1}(X)+1$, Bezout's theorem says that any two different tangent lines are disjoint. Let $T X \subset \mathbb{P}^{3}$ denote the tangent developable of X. Fix a general $P \in \mathbb{P}^{3}$ and let $\ell_{P}: \mathbb{P}^{3} \backslash\{P\} \rightarrow \mathbb{P}^{2}$ be the linear projection from P. Set $\ell:=\ell_{P} \mid X$. Since $P \notin T X, \ell$ is unramified. Since X is smooth, $s_{2}(X)=1$ and P is general, the map ℓ is birational onto its image and the curve $\ell(X)$ has a unique singular point (the point $\ell\left(P_{1}\right)=\ell\left(P_{2}\right)$ with $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle$ and $\left.\left(P_{1}, P_{2}\right) \in X^{2}\right)$. We have $p_{a}(\ell(X))=e_{1}(X)\left(e_{1}(X)-1\right) / 2 \geq 2$. Since $P \notin T X$, we have $P \notin T_{P_{i}} X, i=1,2$. Since $T_{P_{1}} X \cap T_{P_{2}}(X)=\emptyset$, the line $T_{P_{2}} X$ is not contained in the plane $\left\langle\{P\} \cup T_{P_{1}} X\right\rangle$. Thus $\ell_{P}\left(T_{P_{1}} X\right) \neq \ell_{P}\left(T_{P_{2}} X\right)$. Thus $\ell\left(P_{1}\right)$ is an ordinary double point of $\ell(X)$. Hence $\ell(X)$ has geometric genus $p_{a}(X)-1>0$, thath is contradiction.

Lemma 7. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Assume $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$. Then $e_{i}(X)=2$ for all positive integers i such that $2 i \leq r$.

Proof. We have $e_{1}(X)=2$, because in large characteristic the Hermite sequence of X at its general point is the classical one ([5, Theorem 15]). The case $i \geq 2$ is obtained by induction on i taking instead of X its image by the linear projection from $T_{P_{i}} X, P_{i}$ general in X.

Lemma 8. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Assume $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$. Then X is i-unconstrained for all integers $i \geq 2$.

Proof. Fix a linear subspace $V \subset \mathbb{P}^{r}$ such that $v:=\operatorname{dim}(V) \leq r-2$. Let $\ell_{V}: \mathbb{P}^{r} \backslash V \rightarrow \mathbb{P}^{r-v-1}$ denote the linear projection from V. Since char $(\mathbb{K})>$ $\operatorname{deg}(X)$, the restriction of ℓ_{V} to X is separable. Hence $T_{P_{i}} X \cap V=\emptyset$ for a general $P_{i} \in X$. Take $V=\left\langle T_{P_{1}} X \cup \cdots \cup T_{P_{i-1}} X\right\rangle$ with $\left(P_{1}, \ldots, P_{i-1}\right)$ general in X^{i-1} and use induction on i.

Lemma 9. Let $X \subset \mathbb{P}^{r}$ be an integral and non-degenerate curve. Assume $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$. Then $E\left(X ; i ; j_{1}, \ldots, j_{i} ; h\right)=2+j_{h}$ for all i, j_{1}, \ldots, j_{i} such that

$$
2 i+\sum_{x=1}^{i} j_{x} \leq r
$$

and for a general $\left(P_{1}, \ldots, P_{i}\right) \in X^{i}$, the linear span of the osculating spaces

$$
O\left(X, P_{x}, 1+j_{x}\right), 1 \leq x \leq i
$$

has dimension $2 i-1+\sum_{x=1}^{i} j_{x}$.

Proof. The case $i=1$ is true by [5, Theorem 15]. Hence we may assume $i \geq 2$. Fix an index $c \in\{1, \ldots, i\} \backslash\{h\}$. For a general $P_{c} \in X$, the point P_{c} appears with multiplicity exactly $j_{c}+2$ in the scheme $O\left(X, P_{c}, j_{c}+1\right)$ ([5, Theorem 15]). Since $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$, the rational map ℓ obtained restricting to X the linear projection from $O\left(X, P_{c}, 1+j_{c}\right)$ is separable. Call Y the closure in $\mathbb{P}^{r-j_{c}-2}$ of $\ell\left(X \backslash O\left(X, P, 1+j_{c}\right) \cap X\right)$. Take $P_{x}, x \neq c$, such that $\left(P_{1}, \ldots, P_{i}\right)$ is general in X^{c} and write $Q_{x}:=\ell\left(P_{x}\right)$ for all $x \neq c$. Let V be the linear span of the osculating spaces $O\left(X, P_{x}, 1+j_{x}\right), 1 \leq x \leq i, U$ the linear span of the osculating spaces $O\left(X, P_{x}, 1+j_{x}\right), x \neq c$, and W the linear span of the osculating spaces $O\left(Y, Q_{x}, 1+j_{x}\right), x \neq c$. By the inductive assumption U and W have dimension $2 i-3+\sum_{x \neq c} j_{x}$. Hence $\ell(U)=W$ and $\operatorname{dim}(V)=2 i-1+\sum_{x=1}^{i} j_{x}$. Since the points Q_{i} are general and ℓ is separable, the scheme $\left.\ell^{-1}\left(\left(2+j_{x}\right) Q_{x}\right)\right), x \neq c$, is a divisor of X whose connected component supported by P_{x} has degree $2+j_{x}$. Use the inductive assumption on Y to get $E\left(X ; i ; j_{1}, \ldots, j_{i} ; h\right)=2+j_{h}$.

Proof of Theorem 3. Apply Theorem 2 and Lemmas 7, 8 and 9.
Acknowledgment. We want to thank the referee for her/his useful observations.

References

1. Ådlandsvik B., Joins and higher secant varieties, Math. Scand. 61 (1987), 213-222.
2. Catalano-Johnson M., The homogeneous ideal of higher secant varieties, J. Pure Appl. Algebra 158 (2001), 123-129.
3. Dale M., Terracini's lemma and the secant variety of a curve, Proc. London Math. Soc. 49(3) (1984), 329-339.
4. Hefez A. and Kleiman S. L., Notes on the duality of projective varieties. Geometry today (Rome, 1984), 143-183, Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985.
5. Laksov D., Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. École Norm. Sup. 17 (1984), 565-579.
6. Rathmann J., The uniform position principle for curves in characteristic p, Math. Ann. 276(4) (1987), 565-579.
E. Ballico, Department of Mathematics, University of Trento, 38123 Povo (TN), Italy, e-mail: ballico@science.unitn.it
