UPPER SIGNED k-DOMINATION NUMBER OF DIRECTED GRAPHS

H. ARAM, S. M. SHEIKHOLESLAMI and L. VOLKMANN

Abstract

Let $k \geq 1$ be an integer, and let $D=(V, A)$ be a finite simple digraph in which $d_{D}^{-}(v) \geq k-1$ for all $v \in V$. A function $f: V \rightarrow\{-1,1\}$ is called a signed k-dominating function (SkDF) if $f\left(N^{-}[v]\right) \geq k$ for each vertex $v \in V$. An SkDF f of a digraph D is minimal if there is no $\operatorname{SkDF} g \neq f$ such that $g(v) \leq f(v)$ for each $v \in V$. The maximum values of $\sum_{v \in V} f(v)$, taken over all minimal signed k-dominating functions f, is called the upper signed k-domination number $\Gamma_{k S}(D)$. In this paper, we present a sharp upper bound for $\Gamma_{k S}(D)$.

1. Introduction

In this paper, D is a finite simple digraph with vertex set $V(D)=V$ and arc set $A(G)=A$. A digraph without directed cycles of length 2 is an oriented graph. The $\operatorname{order} n(D)=n$ of a digraph D is the number of its vertices and the number of its arcs is the size $m(D)=m$. We write $d_{D}^{+}(v)=d^{+}(v)$ for the outdegree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)$ for its indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^{-}(D)=\delta^{-}$, $\Delta^{-}(D)=\Delta^{-}, \delta^{+}(D)=\delta^{+}$and $\Delta^{+}(D)=\Delta^{+}$, respectively. If $u v$ is an arc of D, then we also write $u \rightarrow v$ and say that v is an out-neighbor of u and u is an inneighbor of v. For every vertex $v \in V$, let $N_{D}^{-}(v)=N^{-}(v)$ be the set consisting of all vertices of D from which arcs go into v and let $N_{D}^{-}[v]=N^{-}[v]=N^{-}(v) \cup\{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X, v)$ is the set of arcs from X to v and $d_{X}^{-}(v)=|E(X, v)|$. For a real-valued function $f: V(D) \rightarrow \mathbb{R}$ the weight of f is $w(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V)$. Consult [4] for the notation and terminology which are not defined here.

Let $k \geq 1$ be an integer and let D be a digraph such that $\delta^{-}(D) \geq k-1$. A signed k-dominating function (abbreviated SkDF) of D is a function $f: V \rightarrow\{-1,1\}$ such that $f[v]=f\left(N^{-}[v]\right) \geq k$ for every $v \in V$. An SkDF f of a digraph D is minimal if there is no $\operatorname{SkDF} g \neq f$ such that $g(v) \leq f(v)$ for each $v \in V$. The maximum

Received January 14, 2011.
2010 Mathematics Subject Classification. Primary 05C20, 05C69, 05C45.
Key words and phrases. Signed k-dominating function; minimal signed k-dominating function; upper signed k-domination number; directed graph.
values of $\sum_{v \in V} f(v)$, taken over all minimal signed k-dominating functions f, is called the upper signed k-domination number $\Gamma_{k S}(D)$. For any SkDF f of D we define $P=\{v \in V \mid f(v)=1\}$ and $M=\{v \in V \mid f(v)=-1\}$. The concept of the signed k-dominating function of digraphs D was introduced by Atapour et al. [1].

The concept of the upper signed k-domination number $\Gamma_{k S}(G)$ of undirected graphs G was introduced by Delić and Wang [2]. The special case $k=1$ was defined and investigated in [3].

In this article, we present an upper bound on the upper signed k-domination number of digraphs. We make use of the following result.

Lemma 1. An $S k D F f$ of a digraph D is minimal if and only if for every $v \in V$ with $f(v)=1$, there exists at least one vertex $u \in N^{+}[v]$ such that $f[u]=k$ or $k+1$.

Proof. Let f be a minimal signed k-dominating function of D. Suppose to the contrary that there exists a vertex $v \in V(D)$ such that $f(v)=1$ and $f[u] \geq k+2$ for each $u \in N^{+}[v]$. Then the mapping $g: V(D) \rightarrow\{-1,1\}$, defined by $g(v)=-1$ and $g(x)=f(x)$ for $x \in V(D)-\{v\}$, is clearly an SkDF of D such that $g \neq f$ and $g(u) \leq f(u)$ for each $u \in V(D)$, a contradiction.

Conversely, let f be a signed k-dominating function of D such that for every $v \in V$ with $f(v)=1$, there exists at least one vertex $u \in N^{+}[v]$ such that $f[u]=k$ or $k+1$. Suppose to the contrary that f is not minimal. Then there is an SkDF g of D such that $g \neq f$ and $g(u) \leq f(u)$ for each $u \in V(D)$. Since $g \neq f$, there is a vertex $v \in V$ such that $g(v)<f(v)$. Then $g(v)=-1$ and $f(v)=1$ because $f(v), g(v) \in\{-1,1\}$. Since g is an SkDF of $D, g[u] \geq k$ for each $u \in N^{+}[v]$. It follows that $f[u]=g[u]+2 \geq k+2$ for each $u \in N^{+}[v]$ which is a contradiction. This completes the proof.

2. An upper bound

Theorem 2. Let k be a positive integer and let D be a digraph of order n with minimum indegree $\delta^{-} \geq k-1$ and maximum indegree Δ^{-}. Then

$$
\Gamma_{k S}(D) \leq\left\{\begin{array}{lll}
\frac{\Delta^{-}\left(\delta^{-}+k+4\right)-\delta^{-}+k+2}{\Delta^{-}\left(\delta^{-}+k+4\right)+\delta^{-}-k-2} n & \text { if } & \delta^{-}-k \equiv 0(\bmod 2) \\
\frac{\Delta^{-}\left(\delta^{-}+k+5\right)-\delta^{-}+k+1}{\Delta^{-}\left(\delta^{-}+k+5\right)+\delta^{-}-k-1} n . & \text { if } & \delta^{-}-k \equiv 1(\bmod 2)
\end{array}\right.
$$

Proof. If $\delta^{-}=k-1$ or k, then the result is clearly true. Let $\delta^{-} \geq k+1$ and let f be a minimal SkDF such that $\Gamma_{k s}(D)=f(V(D))$. Suppose that $P=\{v \in$ $V(D) \mid f(v)=1\}, M=\{v \in V(D) \mid f(v)=-1\}, p=|P|$ and $q=|M|$. Then $\Gamma_{k s}(D)=f(V)=|P|-|M|=p-q=n-2 q$.

Since f is an SkDF,

$$
\left(d^{-}(v)-d_{M}^{-}(v)\right)+1-d_{M}^{-}(v) \geq k
$$

for each $v \in P$. It follows that $d_{M}^{-}(v) \leq \frac{\Delta^{--k+1}}{2}$ when $v \in P$. Similarly, $d_{M}^{-}(v) \leq$ $\frac{\Delta^{-}-k-1}{2}$ when $v \in M$. Define $A_{i}=\left\{v \in P \mid d_{M}^{-}(v)=i\right\}, a_{i}=\left|A_{i}\right|$ for each
$0 \leq i \leq\left\lfloor\frac{\Delta^{-}+1-k}{2}\right\rfloor$ and $B_{i}=\left\{v \in M \mid d_{M}^{-}(v)=i\right\}, b_{i}=\left|B_{i}\right|$ for each $0 \leq i \leq$ $\left\lfloor\frac{\Delta^{-}-1-k}{2}\right\rfloor$. Then the sets $A_{0}, A_{1}, \ldots, A_{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor}$ form a partition of P and $B_{0}, B_{1}, \ldots, B_{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor}$ form a partition of M.

Since f is a minimal SkDF, it follows from Lemma 1 that for every $v \in P$, there is at least one vertex $u_{v} \in N^{+}[v]$ such that $f\left[u_{v}\right] \in\{k, k+1\}$. For each $v \in A_{0}$, since v has no in-neighbor in M,

$$
f[v]=d^{-}(v)+1 \geq \delta^{-}+1 \geq k+2
$$

Therefore $u_{v} \notin A_{0}$ for each $v \in P$.
Let $T=\left\{u \mid u \in N^{+}\left(A_{0}\right)\right.$ and $f[u]=k$ or $\left.k+1\right\}$. If $0 \leq i \leq\left\lfloor\frac{\delta^{-}-k-1}{2}\right\rfloor$ and $v \in A_{i}$, then we have $f[v]=d^{-}(v)+1-2 i \geq k+2$. Similarly, if $0 \leq i \leq\left\lfloor\frac{\delta^{-}-k-3}{2}\right\rfloor$ and $v \in B_{i}$, then we have $f[v]=d^{-}(v)-1-2 i \geq k+2$. This implies that

If $\left\lfloor\frac{\delta^{-}-k+1}{2}\right\rfloor \leq i \leq\left\lfloor\frac{\Delta^{-}-k+1}{2}\right\rfloor$ and $v \in T \cap A_{i}$, then $d^{-}(v)+1-2 i=f[v]=k$ or $k+1$ which implies that $d^{-}(v)=2 i+k$ or $2 i+k-1$. Hence each $v \in T \cap A_{i}$ has at most $i+k$ in-neighbors in A_{0} and so $T \cap A_{i}$, has at most $(i+k)\left|T \cap A_{i}\right|$ in-neighbors in A_{0}. Similarly, if $\left\lfloor\frac{\delta^{-}-k-1}{2}\right\rfloor \leq i \leq\left\lfloor\frac{\Delta^{-}-k-1}{2}\right\rfloor$, then $T \cap B_{i}$ has at most $(i+k+2)\left|T \cap B_{i}\right|$ in-neighbors in A_{0}.

Since f is a minimal SkDF of D and $f[v]=d^{-}(v)+1 \geq \delta^{-}+1 \geq k+2$ for every $v \in A_{0}$, we deduce that $N^{+}(v) \neq \emptyset$ for every $v \in A_{0}$. Note that

$$
A_{0} \subseteq\left(\bigcup_{\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} N^{-}\left(T \cap A_{i}\right)\right) \cup\left(\bigcup_{\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} N^{-}\left(T \cap B_{i}\right)\right)
$$

Thus

$$
\begin{aligned}
a_{0} & \leq\left|\bigcup_{\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} N^{-}\left(T \cap A_{i}\right)\right|+\left|\bigcup_{\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} N^{-}\left(T \cap B_{i}\right)\right| \\
& =\sum_{\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor}\left|N^{-}\left(T \cap A_{i}\right)\right|+\sum_{\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor}\left|N^{-}\left(T \cap B_{i}\right)\right| \\
& \left.\leq \sum_{\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i+k\right) a_{i}+\sum_{\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor}(i+k+2) b_{i} .
\end{aligned}
$$

Obviously,

$$
\begin{equation*}
n=\sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} a_{i}+\sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} b_{i} \tag{2}
\end{equation*}
$$

Since the number $e(M, V(D))$ of arcs cannot be more than $q \Delta^{-}$, we have

$$
\begin{equation*}
\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i a_{i}+\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} i b_{i} \leq q \Delta^{-} \tag{3}
\end{equation*}
$$

Case 1. $\quad \delta^{-}-k \equiv 0(\bmod 2)$.
Then $\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor=\left(\delta^{-}-k\right) / 2$ and $\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor=\left(\delta^{-}-k-2\right) / 2$. Note that $i+k+1 \leq i\left(\delta^{-}+k+2\right) /\left(\delta^{-}-k\right)$ when $i \geq \frac{\delta^{-}-k}{2}$ and $i+k+3 \leq$ $i\left(\delta^{-}+k+4\right) /\left(\delta^{-}-k-2\right)$ when $i \geq \frac{\delta^{-}-k-2}{2}$. By (1), (2) and (3), we get

$$
\begin{aligned}
& n \leq \sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} a_{i}+\sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} b_{i} \\
& =\sum_{i=0}^{\left\lfloor\left(\delta^{-}-k-2\right) / 2\right\rfloor} a_{i}+\sum_{i=\left(\delta^{-}-k\right) / 2}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} a_{i}+\sum_{i=0}^{\left\lfloor\left(\delta^{-}-k-4\right) / 2\right\rfloor} b_{i}+\sum_{i=\left(\delta^{-}-k-2\right) / 2}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} b_{i} \\
& \leq \sum_{i=1}^{\left\lfloor\left(\delta^{-}-k-2\right) / 2\right\rfloor} a_{i}+\sum_{i=\left(\delta^{-}-k\right) / 2}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor}(i+k+1) a_{i}+\sum_{i=0}^{\left\lfloor\left(\delta^{-}-k-4\right) / 2\right\rfloor} b_{i} \\
& +\sum_{i=\left(\delta^{-}-k-2\right) / 2}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor}(i+k+3) b_{i} \\
& \leq b_{0}+\frac{\delta^{-}+k+2}{\delta^{-}-k} \sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i a_{i}+\frac{\delta^{-}+k+4}{\delta^{-}-k-2} \sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} i b_{i} \\
& \leq b_{0}+\frac{\delta^{-}+k+4}{\delta^{-}-k-2}\left(\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i a_{i}+\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} i b_{i}\right) \\
& \leq q+\frac{\delta^{-}+k+4}{\delta^{-}-k-2} q \Delta^{-} .
\end{aligned}
$$

By solving the above inequality for q, we obtain that

$$
q \geq \frac{n\left(\delta^{-}-k-2\right)}{\Delta^{-}\left(\delta^{-}+k+4\right)+\delta^{-}-k-2} .
$$

Hence,

$$
\Gamma_{k s}(D)=n-2 q \leq \frac{\Delta^{-}\left(\delta^{-}+k+4\right)-\delta^{-}+k+2}{\Delta^{-}\left(\delta^{-}+k+4\right)+\delta^{-}-k-2} n
$$

Case 2. $\quad \delta^{-}-k \equiv 1(\bmod 2)$.
Then $\left\lfloor\left(\delta^{-}-k+1\right) / 2\right\rfloor=\left(\delta^{-}-k+1\right) / 2$ and $\left\lfloor\left(\delta^{-}-k-1\right) / 2\right\rfloor=\left(\delta^{-}-k-1\right) / 2$.

Note that $i+k+1 \leq i\left(\delta^{-}+k+3\right) /\left(\delta^{-}-k+1\right)$ when $i \geq \frac{\delta^{-}-k+1}{2}$ and $i+k+3 \leq$ $i\left(\delta^{-}+k+5\right) /\left(\delta^{-}-k-1\right)$ when $i \geq \frac{\delta^{-}-k-1}{2}$. By (1), (2) and (3), we get

$$
\begin{aligned}
& n \leq \sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} a_{i}+\sum_{i=0}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} b_{i} \\
&=\sum_{i=0}^{\left(\delta^{-}-k-1\right) / 2} a_{i}+\sum_{i=\left(\delta^{-}-k+1\right) / 2}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} a_{i}+\sum_{i=0}^{\left\lfloor\left(\delta^{-}-k-3\right) / 2\right\rfloor} b_{i}+\sum_{i=\left(\delta^{-}-k-1\right) / 2}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} b_{i} \\
& \leq \sum_{i=1}^{\left(\delta^{-}-k-1\right) / 2} a_{i}+\sum_{i=\left(\delta^{-}-k+1\right) / 2}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor}(i+k+1) a_{i}+\sum_{i=0}^{\left(\delta^{-}-k-3\right) / 2} b_{i}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& +\sum_{i=\left(\delta^{-}-k-2\right) / 2}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor}(i+k+3) b_{i} \\
\leq & b_{0}+\frac{\delta^{-}+k+3}{\delta^{-}-k+1} \sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i a_{i}+\frac{\delta^{-}+k+5}{\delta^{-}-k-1} \sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} i b_{i} \\
< & b_{0}+\frac{\delta^{-}+k+5}{\delta^{-}-k-1}\left(\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k+1\right) / 2\right\rfloor} i a_{i}+\sum_{i=1}^{\left\lfloor\left(\Delta^{-}-k-1\right) / 2\right\rfloor} i b_{i}\right) \\
\leq & q+\frac{\delta^{-}+k+5}{\delta^{-}-k-1} q \Delta^{-} .
\end{aligned}
$$

By solving the inequality (4) for q, we obtain

$$
q \geq \frac{n\left(\delta^{-}-k-1\right)}{\Delta^{-}\left(\delta^{-}+k+5\right)+\delta^{-}-k-1}
$$

Thus

$$
\Gamma_{k s}(D)=n-2 q \leq \frac{\Delta^{-}\left(\delta^{-}+k+5\right)-\delta^{-}+k+1}{\Delta^{-}\left(\delta^{-}+k+5\right)+\delta^{-}-k-1} n .
$$

This completes the proof.
The associated digraph $D(G)$ of a graph G is the digraph obtained when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. We denote the associated digraph $D\left(K_{n}\right)$ of the complete graph K_{n} of order n by K_{n}^{*} and the associated digraph $D\left(C_{n}\right)$ of the cycle C_{n} of order n by C_{n}^{*}.

Let $V\left(K_{6}^{*}\right)=\left\{v_{1}, \ldots, v_{6}\right\}$ and $V\left(C_{46}^{*}\right)=\left\{u_{1}, \ldots, u_{46}\right\}$. Assume that D is obtained from $K_{6}^{*}+C_{46}^{*}$ by adding arcs which go from v_{i} to u_{j} for $1 \leq i \leq 3$ and $1 \leq j \leq 46$. Then $\delta^{-}(D)=5$. Let $k=1$ and define $f: V(D) \rightarrow\{-1,1\}$ by $f\left(v_{1}\right)=f\left(v_{2}\right)=-1$ and $f(x)=1$ for otherwise. Obviously f is a minimal signed
dominating function of D with $\omega(f)=48$. This example shows that the bound in Theorem 2 is sharp for $k=1$.

Corollary 3. Let D be an r-inregular digraph of order n. For any positive integer $k \leq r-1$,

$$
\Gamma_{k S}(D) \leq\left\{\begin{array}{llc}
\frac{r^{2}+r(k+3)+k+2}{r^{2}+r(k+5)-k-2} n & \text { if } & \delta^{-}-k \equiv 0(\bmod 2) \\
\frac{r^{2}+r(k+4)+k+1}{r^{2}+r(k+6)-k-1} n . & \text { if } & \delta^{-}-k \equiv 1(\bmod 2)
\end{array}\right.
$$

Corollary 4. Let D be a nearly r-inregular digraph of order n. For any positive integer $k \leq r-1$,

$$
\Gamma_{k S}(D) \leq\left\{\begin{array}{lll}
\frac{r^{2}+r(k+2)+k+3}{r^{2}+r(k+4)-k-3} n & \text { if } & \delta^{-}-k \equiv 0(\bmod 2) \\
\frac{r^{2}+r(k+3)+k+2}{r^{2}+r(k+5)-k-2} n . & \text { if } & \delta^{-}-k \equiv 1(\bmod 2)
\end{array}\right.
$$

References

1. Atapour M., Sheikholeslami S. M., Hajypory R. and Volkmann L., The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048-1057.
2. Delić D. and Wang C. P., Upper signed k-domination in a general graph, Inform. Process. Lett. 110 (2010), 662-665.
3. Tang H. and Chen Y., Upper signed domination number, Discrete Math. 308 (2008), 34163419.
4. West D. B., Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
H. Aram, Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I. R. Iran
S. M. Sheikholeslami, Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I. R. Iran, e-mail: s.m.sheikholeslami@azaruniv.edu
L. Volkmann, Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany, e-mail: volkm@math2.rwth-aachen.de
