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UPPER SIGNED k-DOMINATION NUMBER
OF DIRECTED GRAPHS

H. ARAM, S.M. SHEIKHOLESLAMI and L. VOLKMANN

Abstract. Let k ≥ 1 be an integer, and let D = (V, A) be a finite simple digraph

in which d−D(v) ≥ k− 1 for all v ∈ V . A function f : V → {−1, 1} is called a signed

k-dominating function (SkDF) if f(N−[v]) ≥ k for each vertex v ∈ V . An SkDF
f of a digraph D is minimal if there is no SkDF g 6= f such that g(v) ≤ f(v) for

each v ∈ V . The maximum values of
P

v∈V f(v), taken over all minimal signed

k-dominating functions f , is called the upper signed k-domination number ΓkS(D).
In this paper, we present a sharp upper bound for ΓkS(D).

1. Introduction

In this paper, D is a finite simple digraph with vertex set V (D) = V and arc set
A(G) = A. A digraph without directed cycles of length 2 is an oriented graph.
The order n(D) = n of a digraph D is the number of its vertices and the number
of its arcs is the size m(D) = m. We write d+

D(v) = d+(v) for the outdegree
of a vertex v and d−D(v) = d−(v) for its indegree. The minimum and maximum
indegree and minimum and maximum outdegree of D are denoted by δ−(D) = δ−,
∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. If uv is an arc of D,
then we also write u → v and say that v is an out-neighbor of u and u is an in-
neighbor of v. For every vertex v ∈ V , let N−D (v) = N−(v) be the set consisting of
all vertices of D from which arcs go into v and let N−D [v] = N−[v] = N−(v)∪{v}.
If X ⊆ V (D), then D[X] is the subdigraph induced by X. If X ⊆ V (D) and
v ∈ V (D), then E(X, v) is the set of arcs from X to v and d−X(v) = |E(X, v)|.
For a real-valued function f : V (D) → R the weight of f is w(f) =

∑
v∈V f(v),

and for S ⊆ V , we define f(S) =
∑
v∈S f(v), so w(f) = f(V ). Consult [4] for the

notation and terminology which are not defined here.
Let k ≥ 1 be an integer and letD be a digraph such that δ−(D) ≥ k−1. A signed

k-dominating function (abbreviated SkDF) of D is a function f : V → {−1, 1} such
that f [v] = f(N−[v]) ≥ k for every v ∈ V . An SkDF f of a digraph D is minimal
if there is no SkDF g 6= f such that g(v) ≤ f(v) for each v ∈ V . The maximum
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values of
∑
v∈V f(v), taken over all minimal signed k-dominating functions f , is

called the upper signed k-domination number ΓkS(D). For any SkDF f of D we
define P = {v ∈ V | f(v) = 1} and M = {v ∈ V | f(v) = −1}. The concept of the
signed k-dominating function of digraphs D was introduced by Atapour et al. [1].

The concept of the upper signed k-domination number ΓkS(G) of undirected
graphs G was introduced by Delić and Wang [2]. The special case k = 1 was
defined and investigated in [3].

In this article, we present an upper bound on the upper signed k-domination
number of digraphs. We make use of the following result.

Lemma 1. An SkDF f of a digraph D is minimal if and only if for every v ∈ V
with f(v) = 1, there exists at least one vertex u ∈ N+[v] such that f [u] = k or k+1.

Proof. Let f be a minimal signed k-dominating function of D. Suppose to the
contrary that there exists a vertex v ∈ V (D) such that f(v) = 1 and f [u] ≥ k + 2
for each u ∈ N+[v]. Then the mapping g : V (D)→ {−1, 1}, defined by g(v) = −1
and g(x) = f(x) for x ∈ V (D)−{v}, is clearly an SkDF of D such that g 6= f and
g(u) ≤ f(u) for each u ∈ V (D), a contradiction.

Conversely, let f be a signed k-dominating function of D such that for every
v ∈ V with f(v) = 1, there exists at least one vertex u ∈ N+[v] such that
f [u] = k or k + 1. Suppose to the contrary that f is not minimal. Then there
is an SkDF g of D such that g 6= f and g(u) ≤ f(u) for each u ∈ V (D). Since
g 6= f , there is a vertex v ∈ V such that g(v) < f(v). Then g(v) = −1 and
f(v) = 1 because f(v), g(v) ∈ {−1, 1}. Since g is an SkDF of D, g[u] ≥ k for each
u ∈ N+[v]. It follows that f [u] = g[u] + 2 ≥ k + 2 for each u ∈ N+[v] which is a
contradiction. This completes the proof. �

2. An upper bound

Theorem 2. Let k be a positive integer and let D be a digraph of order n with
minimum indegree δ− ≥ k − 1 and maximum indegree ∆−. Then

ΓkS(D) ≤


∆−(δ− + k + 4)− δ− + k + 2
∆−(δ− + k + 4) + δ− − k − 2

n if δ− − k ≡ 0 (mod 2)

∆−(δ− + k + 5)− δ− + k + 1
∆−(δ− + k + 5) + δ− − k − 1

n. if δ− − k ≡ 1 (mod 2).

Proof. If δ− = k − 1 or k, then the result is clearly true. Let δ− ≥ k + 1 and
let f be a minimal SkDF such that Γks(D) = f(V (D)). Suppose that P = {v ∈
V (D) | f(v) = 1}, M = {v ∈ V (D) | f(v) = −1}, p = |P | and q = |M |. Then
Γks(D) = f(V ) = |P | − |M | = p− q = n− 2q.

Since f is an SkDF,

(d−(v)− d−M (v)) + 1− d−M (v) ≥ k

for each v ∈ P . It follows that d−M (v) ≤ ∆−−k+1
2 when v ∈ P . Similarly, d−M (v) ≤

∆−−k−1
2 when v ∈ M . Define Ai = {v ∈ P | d−M (v) = i}, ai = |Ai| for each
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0 ≤ i ≤ b∆−+1−k
2 c and Bi = {v ∈ M | d−M (v) = i}, bi = |Bi| for each 0 ≤ i ≤

b∆−−1−k
2 c. Then the sets A0, A1, . . . , Ab(∆−−k+1)/2c form a partition of P and

B0, B1, . . . , Bb(∆−−k−1)/2c form a partition of M .
Since f is a minimal SkDF, it follows from Lemma 1 that for every v ∈ P , there

is at least one vertex uv ∈ N+[v] such that f [uv] ∈ {k, k + 1}. For each v ∈ A0,
since v has no in-neighbor in M ,

f [v] = d−(v) + 1 ≥ δ− + 1 ≥ k + 2.

Therefore uv 6∈ A0 for each v ∈ P .
Let T = {u | u ∈ N+(A0) and f [u] = k or k + 1}. If 0 ≤ i ≤ b δ

−−k−1
2 c and

v ∈ Ai, then we have f [v] = d−(v) + 1− 2i ≥ k+ 2. Similarly, if 0 ≤ i ≤ b δ
−−k−3

2 c
and v ∈ Bi, then we have f [v] = d−(v)− 1− 2i ≥ k + 2. This implies that

T ⊆

( b(∆−−k+1)/2c⋃
b(δ−−k+1)/2c

Ai

)
∪

( b(∆−−k−1)/2c⋃
b(δ−−k−1)/2c

Bi

)
.

If b δ
−−k+1

2 c ≤ i ≤ b∆−−k+1
2 c and v ∈ T∩Ai, then d−(v)+1−2i = f [v] = k or k+1

which implies that d−(v) = 2i+k or 2i+k−1. Hence each v ∈ T ∩Ai has at most
i+k in-neighbors in A0 and so T∩Ai, has at most (i+k)|T∩Ai| in-neighbors in A0.
Similarly, if b δ

−−k−1
2 c ≤ i ≤ b∆−−k−1

2 c, then T ∩Bi has at most (i+k+2)|T ∩Bi|
in-neighbors in A0.

Since f is a minimal SkDF of D and f [v] = d−(v) + 1 ≥ δ− + 1 ≥ k + 2 for
every v ∈ A0, we deduce that N+(v) 6= ∅ for every v ∈ A0. Note that

A0 ⊆

( b(∆−−k+1)/2c⋃
b(δ−−k+1)/2c

N−(T ∩Ai)

)
∪

( b(∆−−k−1)/2c⋃
b(δ−−k−1)/2c

N−(T ∩Bi)

)
.

Thus

a0 ≤

∣∣∣∣∣∣
b(∆−−k+1)/2c⋃
b(δ−−k+1)/2c

N−(T ∩Ai)

∣∣∣∣∣∣+

∣∣∣∣∣
b(∆−−k−1)/2c⋃
b(δ−−k−1)/2c

N−(T ∩Bi)

∣∣∣∣∣
=
b(∆−−k+1)/2c∑
b(δ−−k+1)/2c

|N−(T ∩Ai)|+
b(∆−−k−1)/2c∑
b(δ−−k−1)/2c

|N−(T ∩Bi)|

≤
b(∆−−k+1)/2c∑
b(δ−−k+1)/2c

(i+ k)ai +
b(∆−−k−1)/2c∑
b(δ−−k−1)/2c

(i+ k + 2)bi.

(1)

Obviously,

n =
b(∆−−k+1)/2c∑

i=0

ai +
b(∆−−k−1)/2c∑

i=0

bi.(2)



12 H. ARAM, S.M. SHEIKHOLESLAMI and L. VOLKMANN

Since the number e(M,V (D)) of arcs cannot be more than q∆−, we have

b(∆−−k+1)/2c∑
i=1

iai +
b(∆−−k−1)/2c∑

i=1

ibi ≤ q∆−.(3)

Case 1. δ− − k ≡ 0 (mod 2).
Then b(δ− − k + 1)/2c = (δ− − k)/2 and b(δ− − k − 1)/2c = (δ− − k − 2)/2.
Note that i + k + 1 ≤ i(δ− + k + 2)/(δ− − k) when i ≥ δ−−k

2 and i + k + 3 ≤
i(δ− + k + 4)/(δ− − k − 2) when i ≥ δ−−k−2

2 . By (1), (2) and (3), we get

n ≤
b(∆−−k+1)/2c∑

i=0

ai +
b(∆−−k−1)/2c∑

i=0

bi

=
b(δ−−k−2)/2c∑

i=0

ai +
b(∆−−k+1)/2c∑
i=(δ−−k)/2

ai +
b(δ−−k−4)/2c∑

i=0

bi +
b(∆−−k−1)/2c∑
i=(δ−−k−2)/2

bi

≤
b(δ−−k−2)/2c∑

i=1

ai +
b(∆−−k+1)/2c∑
i=(δ−−k)/2

(i+ k + 1)ai +
b(δ−−k−4)/2c∑

i=0

bi

+
b(∆−−k−1)/2c∑
i=(δ−−k−2)/2

(i+ k + 3)bi

≤ b0 +
δ− + k + 2
δ− − k

b(∆−−k+1)/2c∑
i=1

iai +
δ− + k + 4
δ− − k − 2

b(∆−−k−1)/2c∑
i=1

ibi

≤ b0 +
δ− + k + 4
δ− − k − 2

( b(∆−−k+1)/2c∑
i=1

iai +
b(∆−−k−1)/2c∑

i=1

ibi

)

≤ q +
δ− + k + 4
δ− − k − 2

q∆−.

By solving the above inequality for q, we obtain that

q ≥ n(δ− − k − 2)
∆−(δ− + k + 4) + δ− − k − 2

.

Hence,

Γks(D) = n− 2q ≤ ∆−(δ− + k + 4)− δ− + k + 2
∆−(δ− + k + 4) + δ− − k − 2

n.

Case 2. δ− − k ≡ 1 (mod 2).
Then b(δ− − k + 1)/2c = (δ− − k + 1)/2 and b(δ− − k − 1)/2c = (δ− − k − 1)/2.
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Note that i+ k+ 1 ≤ i(δ−+ k+ 3)/(δ−− k+ 1) when i ≥ δ−−k+1
2 and i+ k+ 3 ≤

i(δ− + k + 5)/(δ− − k − 1) when i ≥ δ−−k−1
2 . By (1), (2) and (3), we get

n ≤
b(∆−−k+1)/2c∑

i=0

ai +
b(∆−−k−1)/2c∑

i=0

bi

=
(δ−−k−1)/2∑

i=0

ai +
b(∆−−k+1)/2c∑
i=(δ−−k+1)/2

ai +
b(δ−−k−3)/2c∑

i=0

bi +
b(∆−−k−1)/2c∑
i=(δ−−k−1)/2

bi

≤
(δ−−k−1)/2∑

i=1

ai +
b(∆−−k+1)/2c∑
i=(δ−−k+1)/2

(i+ k + 1)ai +
(δ−−k−3)/2∑

i=0

bi

+
b(∆−−k−1)/2c∑
i=(δ−−k−2)/2

(i+ k + 3)bi

≤ b0 +
δ− + k + 3
δ− − k + 1

b(∆−−k+1)/2c∑
i=1

iai +
δ− + k + 5
δ− − k − 1

b(∆−−k−1)/2c∑
i=1

ibi

< b0 +
δ− + k + 5
δ− − k − 1

( b(∆−−k+1)/2c∑
i=1

iai +
b(∆−−k−1)/2c∑

i=1

ibi

)

≤ q +
δ− + k + 5
δ− − k − 1

q∆−.

(4)

By solving the inequality (4) for q, we obtain

q ≥ n(δ− − k − 1)
∆−(δ− + k + 5) + δ− − k − 1

.

Thus

Γks(D) = n− 2q ≤ ∆−(δ− + k + 5)− δ− + k + 1
∆−(δ− + k + 5) + δ− − k − 1

n.

This completes the proof. �

The associated digraph D(G) of a graph G is the digraph obtained when each
edge e of G is replaced by two oppositely oriented arcs with the same ends as e.
We denote the associated digraph D(Kn) of the complete graph Kn of order n by
K∗n and the associated digraph D(Cn) of the cycle Cn of order n by C∗n.

Let V (K∗6 ) = {v1, . . . , v6} and V (C∗46) = {u1, . . . , u46}. Assume that D is
obtained from K∗6 + C∗46 by adding arcs which go from vi to uj for 1 ≤ i ≤ 3
and 1 ≤ j ≤ 46. Then δ−(D) = 5. Let k = 1 and define f : V (D) → {−1, 1} by
f(v1) = f(v2) = −1 and f(x) = 1 for otherwise. Obviously f is a minimal signed



14 H. ARAM, S.M. SHEIKHOLESLAMI and L. VOLKMANN

dominating function of D with ω(f) = 48. This example shows that the bound in
Theorem 2 is sharp for k = 1.

Corollary 3. Let D be an r-inregular digraph of order n. For any positive
integer k ≤ r − 1,

ΓkS(D) ≤


r2 + r(k + 3) + k + 2
r2 + r(k + 5)− k − 2

n if δ− − k ≡ 0 (mod 2)

r2 + r(k + 4) + k + 1
r2 + r(k + 6)− k − 1

n. if δ− − k ≡ 1 (mod 2).

Corollary 4. Let D be a nearly r-inregular digraph of order n. For any positive
integer k ≤ r − 1,

ΓkS(D) ≤


r2 + r(k + 2) + k + 3
r2 + r(k + 4)− k − 3

n if δ− − k ≡ 0 (mod 2)

r2 + r(k + 3) + k + 2
r2 + r(k + 5)− k − 2

n. if δ− − k ≡ 1 (mod 2).
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