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APPROXIMATION FOR PERIODIC FUNCTIONS
VIA STATISTICAL A-SUMMABILITY

S. KARAKUŞ and K. DEMIRCI

Abstract. In this paper, using the concept of statistical A-summability which is

stronger than the A-statistical convergence, we prove a Korovkin type approxima-
tion theorem for sequences of positive linear operator defined on C∗(R) which is the

space of all 2π-periodic and continuous functions on R, the set of all real numbers.

We also compute the rates of statistical A-summability of sequence of positive linear
operators.

1. Introduction

The idea of statistical convergence was introduced by Fast [5], which is closely
related to the concept of natural density or asymptotic density of subsets of the
set of natural numbers N. Let K be a subset of N. The natural density of K is the
nonnegative real number given by δ(K) := limn→∞

1
n |{k ≤ n : k ∈ K}| provided

that the limit exists, where |B| denotes the cardinality of the set B (see [14] for
details). Then, a sequence x = {xk} is called statistically convergent to a number
L if for every ε > 0,

δ({k : |xk − L| ≥ ε}) = 0.

This is denoted by st − limk→∞ xk = L (see [5], [7]). It is easy to see that every
convergent sequence is statistically convergent, but not conversely.

If x = {xk} is a number sequence and A = {ajk} is an infinite matrix, then Ax
is the sequence whose j-th term is given by

Aj (x) :=
∞∑
k=1

ajkxk

provided that the series converges for each j ∈ N. Thus we say that x is A-
summable to L if

lim
j→∞

Aj(x) = L.
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We say that A is regular if limj→∞Aj(x) = L whenever limk→∞ xk = L. The
well-known necessary and sufficient conditions [1] (Silverman-Toeplitz) for A to
be regular are:

R1) ‖A‖ = sup
j→∞

∞∑
k=1

|ajk| <∞,

R2) lim
j→∞

ajk = 0 for each k ∈ N,

R3) lim
j→∞

∞∑
k=1

ajk = 1.

Freedman and Sember [6] introduced the following extension of statistical con-
vergence. Let A = {ajk} be a nonnegative regular matrix. The A-density of K is
defined by

δA (K) := lim
j→∞

∞∑
k=1

ajkχK (k)

provided that the limit exists, where χK is the characteristic function of K. Then
the sequence x = {xk} is said to be A-statistically convergent to the number L if
for every ε > 0,

δA ({k ∈ N : |xk − L| ≥ ε}) = 0
or equivalently

lim
j→∞

∑
k:|xk−L|≥ε

ajk = 0.

We denote this limit by stA− limk→∞ xk = L (see [6], [8], [9]). The case in which
A = C1, the Cesàro matrix of order one, reduces to the statistical convergence, and
also if A = I, the identity matrix, then it coincides with the ordinary convergence.

Recently, the idea of statistical (C, 1)-summability was introduced in [11] and
of statistical (H,1)-summability in [12] by Moricz, and of statistical (N, p)-summ-
ability by Moricz and Orhan [13]. Then these statistical summability methods
were generalized by defining the statistical A-summability in [4].

Now we recall statistical A-summability for a nonnegative regular matrix A.

Definition 1.1. Let A = {ajk} be a nonnegative regular matrix and x = {xk}
be a sequence. We say that x is statistically A-summable to L if for every ε > 0,

δ({j ∈ N : |Aj(x)− L| ≥ ε}) = 0,

i.e.,

lim
n→∞

1
n
|{j ≤ n : |Aj(x)− L| ≥ ε}| = 0.

Thus x = {xk} is statisticallyA-summable to L if and only ifAx is statistically con-
vergent to L. In this case we write (A)st−limk→∞ xk=L or, st− limj→∞Aj(x)=L.

Using the Definition 1.1, we see that if a sequence is bounded and A-statistically
convergent to L, then it is A-summable to L, and hence statistically A-summable
to L. However, its converse is not always true. Such examples were given in [4].

In this paper, using the concept of statistical A-summability where A = {ajk}
is a nonnegative regular matrix, we give a generalization of the classical Korovkin
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approximation theorem by means of sequences of positive linear operators defined
on the space of all real valued continuous and 2π periodic functions on R. We
also compute the rates of statistical A-summability of sequence of positive linear
operators.

2. A Korovkin Type Theorem

We denote C∗(R), the space of all real valued continuous and 2π periodic functions
on R. We recall that if a function f in R has period 2π, then for all x ∈ R,

f(x) = f(x+ 2πk)

holds for k = 0,±1,±2, . . .. This space is equipped with he supremum norm

‖f‖C∗(R) = sup
x∈R
|f(x)|, (f ∈ C∗(R)).

Let L be a linear operator from C∗(R) into C∗(R). Then, as usual, we say that
L is a positive linear operator provided that f ≥ 0 implies L(f) ≥ 0. Also, we
denote the value of L(f) at a point x ∈ R by L(f(u);x) or, briefly, L(f ;x).

Throughout the paper, we also use the following test functions

f0(x) = 1, f1(x) = cosx f2(x) = sinx.

We also have to recall the classical Korovkin theorem [10].

Theorem A. Let {Lk} be a sequence of positive linear operators acting from
C∗(R) into itself. Then, for all f ∈ C∗(R),

lim
k→∞

‖Lk(f)− f‖C∗(R) = 0

if and only if

lim
k→∞

‖Lk(fi)− fi‖C∗(R) = 0, (i = 0, 1, 2).

Recently, the statistical analog of Theorem A was studied by Duman [3]. It
will be read as follows.

Theorem B. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be
a sequence of positive linear operators acting from C∗(R) into itself. Then for all
f ∈ C∗(R),

stA − lim
k→∞

‖Lk(f)− f‖C∗(R) = 0

if and only if

stA − lim
k→∞

‖Lk(fi)− fi‖C∗(R) = 0, (i = 0, 1, 2).

Now we study the approximation properties of sequence of positive linear op-
erators on the space C∗(R) via statistical A-summability where A = {ajk} is a
nonnegative regular matrix.
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Theorem 2.1. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be
a sequence of positive linear operators acting from C∗(R) into itself. Then, for all
f ∈ C∗(R),

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

= 0(2.1)

if and only if

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(fi)− (fi)

∥∥∥∥∥
C∗(R)

= 0 (i = 0, 1, 2).(2.2)

Proof. Since each fi (i = 0, 1, 2) belongs to C∗(R), the implication (2.1)⇒ (2.2)
is clear. Now, to prove the implication (2.2) =⇒ (2.1), assume that (2.2) holds.
Let f ∈ C∗(R) and let I be a closed subinterval of length 2π of R. Fix x ∈ I. By
the continuity of f at x, for given ε > 0 there exists δ > 0 such that

|f(t)− f(x)| < ε

for all t satisfying |t − x| < δ. On the other hand, by the boundedness of f , we
have

|f(t)− f(x)| ≤ 2‖f‖C∗(R)

for all t ∈ R. Now consider the subintervals (x− δ, 2π + x− δ] of length 2π. From
[3] we can see that

|f(t)− f(x)| < ε+
2‖f‖C∗(R)

sin2 δ
2

ψ(t)(2.3)

holds for all t ∈ R, where ψ(t) := sin2
(
t−x
2

)
.

By using (2.3) and the positivity and monotonicity of Lk we have∣∣∣∣∣
∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk(|f(t)− f(x)| ;x) + |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

(
ε+

2 ‖f‖C∗(R)

sin2 δ
2

ψ(t);x

)
+ |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤ ε+ ε

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣+ ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+

2 ‖f‖C∗(R)

sin2 δ
2

∞∑
k=1

ajkLk (ψ(t);x) .

After some simple calculations, we also get

ψ(t) =
1
2

(1− cos t cosx− sin t sinx) .
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So we can get

∞∑
k=1

ajkLk(ψ(t);x) ≤ 1
2

{∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+ |cosx|

∣∣∣∣∣
∞∑
k=1

ajkLk(f1;x)− f1(x)

∣∣∣∣∣+ |sinx|

∣∣∣∣∣
∞∑
k=1

ajkLk(f2;x)− f2(x)

∣∣∣∣∣
}
.

(2.4)

Then, using (2.4), we obtain∣∣∣∣∣
∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤ ε+

(
ε+ ‖f‖C∗(R) +

‖f‖C∗(R)

sin2 δ
2

){∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k=1

ajkLk(f1;x)− f1(x)

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=1

ajkLk(f2;x)− f2(x)

∣∣∣∣∣
}
.

Then, we obtain∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤ ε+ U


∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

+

∥∥∥∥∥
∞∑
k=1

ajkLk(f1)− f1

∥∥∥∥∥
C∗(R)

+

∥∥∥∥∥
∞∑
k=1

ajkLk(f2)− f2

∥∥∥∥∥
C∗(R)


(2.5)

where U := ε+ ‖f‖C∗(R) +
‖f‖C∗(R)

sin2 δ
2

.

Now, for a given r > 0, choose ε > 0 such that ε < r. By (2.5), it is easy to see
that

1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ r


∣∣∣∣∣∣

≤ 1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣

+
1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f1)− f1

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣

+
1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f2)− f2

∥∥∥∥∥
C∗(R)

≥ r − ε
3U


∣∣∣∣∣∣ .
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Then using the hypothesis (2.2), we get

lim
n→∞

1
n

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ r


∣∣∣∣∣∣ = 0

for every r > 0 and the proof is compete. �

3. Rate of Convergence

In this section, using statistical A-summability we study the rate of convergence
of positive linear operators defined C∗(R) into itself with the help of the modulus
of continuity.

Demirci and Karakuş [2] introduced the rates of statistical A-summability of
sequence as follows.

Definition 3.1 ([2]). Let A = {ajk} be a nonnegative regular matrix. A
sequence x = {xk} is statistical A-summable to a number L with the rate of
β ∈ (0, 1) if for every ε > 0,

lim
n→∞

|{j ≤ n : |Aj(x)− L| ≥ ε}|
n1−β = 0.

In this case, it is denoted by

xk − L = o
(
n−β

)
((A)st) .

Using this definition, we obtain the following auxiliary result.

Lemma 3.2 ([2]). Let A = {ajk} be a nonnegative regular matrix. Let x = {xk}
and y = {yk} be bounded sequences. Assume that xk − L1 = o

(
n−β1

)
((A)st) and

yk − L2 = o
(
n−β2

)
((A)st). Let β := min {β1, β2}. Then we have:

(i) (xk − L1)∓ (yk − L2) = o
(
n−β

)
((A)st)

(ii) λ (xk − L1) = o
(
n−β1

)
((A)st) for any real number λ.

Now we remind the concept of modulus of continuity. For f ∈ C∗(R), the
modulus of continuity of f , denoted by ω (f ; δ1), is defined by

ω (f ; δ1) := sup
|t−x|≤δ1

|f(t)− f(x)| (δ1 > 0) .

It is also well know that, for any λ > 0 and for all f ∈ C∗(R)

ω (f ;λδ1) ≤ (1 + [λ])ω (f ; δ1)(3.1)

where [λ] is defined to be the greatest integer less than or equal to λ.
Then we have the following result.

Theorem 3.1. Let A = {ajk} be a nonnegative regular matrix and let {Lk} be
a sequence of positive linear operators acting from C∗(R) into itself. Assume that
the following conditions holds:

(i) ‖Lk (f0)− f0‖C∗(R) = o
(
n−β1

)
((A)st) on R,
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(ii) ω(f ; γj) = o
(
n−β2

)
((A)st) on R where γj :=

√
‖
∑∞
k=1 ajkLk (ϕ)‖

C∗(R)

with ϕ(t) = sin2
(
t−x
2

)
.

Then we have for all f ∈ C∗(R),

‖Lk(f)− f‖C∗(R) = o
(
n−β

)
((A)st) on R

where β := min{β1, β2}.

Proof. Let f ∈ C∗ (R) and x ∈ R be fixed. Using (3.1) and the positivity and
monotonicity of Lk, we get for any δ1 > 0 and j ∈ R,

∣∣∣∣∣
∞∑
k=1

ajkLk(f ;x)− f(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk(|f(t)− f(x)| ;x) + |f(x)|

∣∣∣∣∣
∞∑
k=1

ajkLk(f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

((
1 +

(t− x)2

δ21

)
;x

)
ω(f ; δ1) + ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤

∞∑
k=1

ajkLk

((
1 +

π2

δ21
sin2

(
t− x

2

))
;x
)
ω (f ; δ1)

+ ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣ω (f ; δ1) + ω (f ; δ1)

+
π2

δ21
ω(f ; δ1)

∞∑
k=1

ajkLk

(
sin2

(
t− x

2

)
;x
)

+ ‖f‖C∗(R)

∣∣∣∣∣
∞∑
k=1

ajkLk (f0;x)− f0(x)

∣∣∣∣∣ .
Hence, we get

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

ω(f ; γj) + (1 + π2)ω(f ; γj)

+ ‖f‖C∗(R)

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)
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where δ1 := γj :=
√
‖
∑∞
k=1 ajkLk(ϕ)‖

C∗(R)
. Then, we obtain∥∥∥∥∥

∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≤ K


∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)

ω(f ; γj)

+ω(f ; γj) +

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗(R)


(3.2)

where K = max
{
‖f‖C∗(R) , 1 + π2

}
. Hence, for given ε > 0, from (3.2) and

Lemma 3.2, it follows

1
n1−β

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ ε


∣∣∣∣∣∣

≤ 1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f0)− f0

∥∥∥∥∥
C∗(R)

≥
√

ε

3K


∣∣∣∣∣∣

+
1

n1−β2

∣∣∣∣{j ≤ n : ω(f ; γj) ≥
√

ε

3K

}∣∣∣∣
+

1
n1−β2

∣∣∣{j ≤ n : ω (f ; γj) ≥
ε

3K

}∣∣∣
+

1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk (f0)− f0

∥∥∥∥∥
C∗(R)

≥ ε

3K


∣∣∣∣∣∣

(3.3)

where β := min {β1, β2}. Letting n → ∞ in (3.3), from (i) and (ii), we conclude
that

lim
n→∞

1
n1−β

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− f

∥∥∥∥∥
C∗(R)

≥ ε


∥∥∥∥∥∥ = 0,

which means
‖Lk(f)− f‖C∗(R) = o

(
n−β

)
((A)st) on R.

The proof is completed. �

Now we give the following classical rates of convergence of a sequence of positive
linear operators defined on C∗(R).

Corollary 1. Let {Lk} be a sequence of positive linear operators acting from
C∗(R) into itself. Assume that the following conditions holds:

(i) limk→∞ ‖Lk(f0)− f0‖C∗(R) = 0,

(ii) limk→∞ ω(f ; δk)=0 on R where δk :=
√
‖Lk(ϕ)‖C∗(R) with ϕ(t)=sin2

(
t−x
2

)
.

Then for all f ∈ C∗(R), we have

lim
k→∞

‖Lk(f)− f‖C∗(R) = 0.
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4. An Application to Theorem 2.1 and Theorem 3.1

In this section, we display an example of a sequence of positive linear operators.
First of all, we show that Theorem 2.1 holds, but Theorem A and Theorem B do
not hold. Then, using the same sequence of positive linear operators, we show
that Theorem 3.1 holds but, Corollary 1 does not hold.

Let A be Cesàro matrix, i.e.,

ajk =
{ 1

j , 1 ≤ k ≤ j,
0, otherwise,

and let

ξk =
{

1, if k is odd,
−1, if k is even.(4.1)

Then, we observe that, A = {ajk} is a nonnegative regular matrix and for the
sequence ξ := {ξk}

st− lim
j→∞

Aj(ξ) = 0.

However, the sequence {ξk} is not convergent in the usual sense and A-statistical
convergent to 0. Then, consider the following Fejér operators

Fk(f ;x) :=
1
kπ

∫ π

−π
f(t)

sin2
(
k
2 (t− x)

)
2 sin2

[
t−x
2

] dt(4.2)

where k ∈ N, f ∈ C∗ [−π, π]. Then, we get (see [10])

Fk(f0;x) = 1, Fk(f1;x) =
k − 1
k

cosx, Fk(f2;x) =
k − 1
k

sinx.

Now, using (4.1) and (4.2), we introduce the following positive linear operators
defined on the space C∗ [−π, π]

Lk(f ;x) = (1 + ξk)Fk(f ;x).(4.3)

(i) Now, we consider the positive linear operators defined by (4.3) on C∗ [−π, π].
Since st− limj→∞Aj(ξ) = 0, we conclude that

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(fi)− (fi)

∥∥∥∥∥
C∗[−π,π]

= 0, (i = 0, 1, 2).

Then, by Theorem 2.1, for all f ∈ C∗[−π, π], we obtain

st− lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f)− (f)

∥∥∥∥∥
C∗[−π,π]

= 0.

However, since {ξk} does not converge in the usual sense and A-statistical con-
verges to 0, we conclude that Theorem A and Theorem B do not work for the
operators Lk in (4.3) while our Theorem 2.1 still works.
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(ii) Now, we consider the positive linear operators defined by (4.3) on C∗ [−π, π].
We observe that∥∥∥∥∥

∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

=

∣∣∣∣∣1j
j∑

k=1

(1 + ξk)− 1

∣∣∣∣∣ =

∣∣∣∣∣1j
j∑

k=1

ξk

∣∣∣∣∣ .
Since

lim
j→∞

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

= 0,

then we get

lim
n→∞

1
n1−β1

∣∣∣∣∣∣
j ≤ n :

∥∥∥∥∥
∞∑
k=1

ajkLk(f0)− f0

∥∥∥∥∥
C∗[−π,π]

≥ ε


∣∣∣∣∣∣ = 0,

which means that

‖Lk(f0)− f0‖C∗[−π,π] = o
(
n−β1

)
((A)st).(4.4)

Now, we compute the quantity Lk (ϕ;x) where ϕ(t) = sin2
(
t−x
2

)
. After some

calculations, we get

Lk (ϕ;x) =
1 + ξk

2k
.

Then, we obtain γj :=
√
‖
∑∞
k=1 ajkLk(ϕ)‖

C∗[−π,π]
=
√∣∣∣ 1j ∑j

k=1
1+ξk

2k

∣∣∣. Since

limj→∞

√∣∣∣ 1j ∑j
k=1

1+ξk

2k

∣∣∣ = 0, we get st − limj→∞

√∣∣∣ 1j ∑j
k=1

1+ξk

2k

∣∣∣ = 0. By the

uniform continuity of f on [−π, π], we write

ω(f ; γj) = o
(
n−β2

)
((A)st).(4.5)

From (4.4) and (4.5), the sequence of positive linear operators {Lk} satisfies all
hypotheses of Theorem 3.1. So, for all f ∈ C∗[−π, π], we have

‖Lk(f)− f‖C∗[−π,π] = o
(
n−β

)
((A)st).

However, since {ξk} is not convergent, the conditions (i) and (ii) of Corollary 1
do not hold. So, the sequence {Lk} given by (4.3) does not converge uniformly to
the function f ∈ C∗ [−π, π] .
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2. Demirci K. and Karakuş S., Statistical A-Summability of Positive Linear Operators, Math-

ematical and Computer Modelling 53 (2011), 189–195.
3. Duman O., Statistical approximation for periodic functions, Dem. Math. 36(4) (2003),

873–878.

4. Edely O. H. H., Mursaleen M., On statistical A-summability, Mathematical and Computer
Modelling 49 (2009), 672–680.

5. Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.



APPROXIMATION FOR PERIODIC FUNCTIONS 169

6. Freedman A. R. and Sember J. J., Densities and summability, Pacific J. Math. 95 (1981),

293–305.
7. Fridy J. A., On statistical convergence, Analysis 5 (1985), 301–313.

8. Fridy J. A. and Miller H. I., A matrix characterization of statistical convergence, Analysis

11 (1991), 59–66.
9. Kolk E., Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77–83.

10. Korovkin P. P., Linear operators and approximation Theory, Hindustan Publ. Co., Delhi,

1960.
11. Moricz F., Tauberian conditions under which statistical convergence follows from statistical

summability (C, 1), J. Math. Anal. Appl. 275 (2002), 277–287.
12. , Theorems related to statistical harmonic summability and ordinary convergence of

slowly decreasing or oscillating sequences, Analysis 24 (2004), 127–145.

13. Moricz F. and Orhan C., Tauberian conditions under which statistical convergence follows
from statistical summability by weighted means, Studia Sci. Math. Hung. 41(4) (2004),

391–403.

14. Niven I., Zuckerman H. S. and Montgomery H., An Introduction to the Theory of Numbers,
5th Edition, Wiley, New York, 1991.
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