COMPOSITION OPERATOR ON THE SPACE OF FUNCTIONS TRIEBEL-LIZORKIN AND BOUNDED VARIATION TYPE

M. MOUSSAI

Abstract. For a Borel-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(0)=0$ and

$$
\sup _{t>0} t^{-1} \int_{\mathbb{R}} \sup _{|h| \leq t}\left|f^{\prime}(x+h)-f^{\prime}(x)\right|^{p} \mathrm{~d} x<+\infty, \quad(0<p<+\infty)
$$

we study the composition operator $T_{f}(g):=f \circ g$ on Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$
in the case $0<s<1+(1 / p)$.

1. Introduction and the main result

The study of the composition operator $T_{f}: g \rightarrow f \circ g$ associated to a Borelmeasurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ on Triebel-Lizorkin spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$, consists in finding a characterization of the functions f such that

$$
\begin{equation*}
T_{f}\left(F_{p, q}^{s}\left(\mathbb{R}^{n}\right)\right) \subseteq F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

The investigation to establish (1.1) was improved by several works, for example the papers of Adams and Frazier [1, 2], Brezis and Mironescu [6], Maz'ya and Shaposnikova [9], Runst and Sickel [12] and [10]. There were obtained some necessary conditions on f; from which we recall the following results. For $s>0$, $1<p<+\infty$ and $1 \leq q \leq+\infty$

- if T_{f} takes $L_{\infty}\left(\mathbb{R}^{n}\right) \cap F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$, then f is locally Lipschitz continuous.
- if T_{f} takes the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$, then f belongs locally to $F_{p, q}^{s}(\mathbb{R})$.
The first assertion is proved in [3, Theorem 3.1]. The proof of the second assertion can be found in [12, Theorem 2, 5.3.1].

Bourdaud and Kateb [4] introduced the functions class $U_{p}^{1}(\mathbb{R})$, the set of Lipschitz continuous functions f such that their derivatives, in the sense of distributions, satisfy

$$
\begin{equation*}
A_{p}\left(f^{\prime}\right):=\left(\sup _{t>0} t^{-1} \int_{\mathbb{R}} \sup _{|h| \leq t}\left|f^{\prime}(x+h)-f^{\prime}(x)\right|^{p} \mathrm{~d} x\right)^{1 / p}<+\infty \tag{1.2}
\end{equation*}
$$

and are endowed with the seminorm

$$
\|f\|_{U_{p}^{1}(\mathbb{R})}:=\inf \left(\|g\|_{\infty}+A_{p}(g)\right)
$$

where the infimum is taken over all functions g such that f is a primitive of g. In [4] the authors, proved the acting of the operator T_{f} on Besov space $B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<+\infty, 1<s<1+(1 / p)$ and $f \in U_{p}^{1}(\mathbb{R})$ with $f(0)=0$. In [5] the same result holds for $0<s<1+(1 / p)$.

In this work we will study the composition operator T_{f} on $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ for a function f which belongs to $U_{p}^{1}(\mathbb{R})$, then we will obtain a result of type (1.1). To do this, we introduce the set $\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ of the functions $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)}:=\sum_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}}\left\|g_{x_{j}^{\prime}}\right\|_{B V_{p}^{1}(\mathbb{R})}^{p} \mathrm{~d} x_{j}^{\prime}\right)^{1 / p}<+\infty
$$

where $B V_{p}^{1}(\mathbb{R})$ is the Wiener space of the primitives of functions of bounded p-variation (see Subsection 2.2 below for the definition) and

$$
\begin{equation*}
g_{x_{j}^{\prime}}(y):=g\left(x_{1}, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{n}\right), \quad y \in \mathbb{R}, x \in \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

We will prove the following statement.
Theorem 1.1. Let $0<p, q<+\infty$ and $0<s<1+(1 / p)$. Then there exists a constant $c>0$ such that the inequality

$$
\begin{equation*}
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{p}+\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)}\right) \tag{1.4}
\end{equation*}
$$

holds for all functions $g \in L_{p}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ and all $f \in U_{p}^{1}(\mathbb{R})$ satisfying $f(0)=0$. Moreover, for all such f, the operator T_{f} takes $L_{p}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

Remark. (i) Since $F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p}\left(\mathbb{R}^{n}\right)$, then T_{f} maps from $F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ under the assumptions of Theorem 1.1.
(ii) Since the Bessel potential spaces $H_{p}^{s}\left(\mathbb{R}^{n}\right)=F_{p, 2}^{s}\left(\mathbb{R}^{n}\right), 1<p<\infty$, Theorem 1.1 covers the results of composition operators in case $H_{p}^{s}\left(\mathbb{R}^{n}\right)$ instead of $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

The paper is organized as follows. In Section 2 we collect some properties of the needed function spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ and $B V_{p}^{1}(\mathbb{R})$. Section 3 is devoted to the proof of the main result where in a first step we study the case of 1-dimensional which is the main tool when we prove Theorem 1.1. Also, our proof uses various Sobolev and Peetre embeddings, Fubini and Fatou properties, etc. In Section 4 we give some corollaries and prove the sharp estimate of (1.4).

Notation. We work with functions defined on the Euclidean space \mathbb{R}^{n}. All spaces and functions are assumed to be real-valued. We denote by $C_{b}\left(\mathbb{R}^{n}\right)$ the Banach space of bounded continuous functions on \mathbb{R}^{n} endowed with the supremum. Let $\mathcal{D}\left(\mathbb{R}^{n}\right)$ (resp. $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$) denotes the C^{∞}-functions with compact support (resp. the Schwartz space of all C^{∞} rapidly decreasing functions and its topological dual). With $\|\cdot\|_{p}$ we denote the L_{p}-norm. We define the differences by $\Delta_{h} f:=f(\cdot+h)-f$ for all $h \in \mathbb{R}^{n}$. If E is a Banach function space on \mathbb{R}^{n}, we denote by $E^{\ell o c}$ the collection of all functions f such that $\varphi f \in E$ for all
$\varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. As usual, constants c, c_{1}, \ldots are strictly positive and depend only on the fixed parameters n, s, p, q; their values may vary from line to line.

2. Function spaces

2.1. Triebel-Lizorkin spaces

Let $0<a \leq \infty$. For all measurable functions f on \mathbb{R}^{n}, we set

$$
M_{p, q}^{s, u, a}(f):=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{a} t^{-s q}\left(\frac{1}{t^{n}} \int_{|h| \leq t}\left|\Delta_{h} f(x)\right|^{u} \mathrm{~d} h\right)^{q / u} \frac{\mathrm{~d} t}{t}\right)^{p / q} \mathrm{~d} x\right)^{1 / p}
$$

Definition 2.1. Let $0<p<+\infty$ and $0<q \leq+\infty$. Let s be a real satisfying

$$
1<s<2 \quad \text { and } \quad s>n \max \left(\frac{1}{p}-1, \frac{1}{q}-1\right)
$$

Then, a function $f \in L_{p}\left(\mathbb{R}^{n}\right)$ belongs to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if

$$
\|f\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}:=\|f\|_{p}+\sum_{j=1}^{n} M_{p, q}^{s-1,1, \infty}\left(\partial_{j} f\right)<+\infty
$$

The set $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ is a quasi Banach space for the quasi-norm defined above. For the equivalence of the above definition with other characterizations we refer to [15, Theorem 3.5.3] from which we recall the following statement.

Proposition 2.2. Let $0<p<+\infty$ and $0<q, u \leq+\infty$. Let s be a real satisfying

$$
1<s<2 \quad \text { and } \quad s>n \max \left(\frac{1}{p}-\frac{1}{u}, \frac{1}{q}-\frac{1}{u}\right) .
$$

Then, a function $f \in L_{p}\left(\mathbb{R}^{n}\right)$ belongs to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\begin{equation*}
\|f\|_{p}+M_{p, q}^{s, u, \infty}(f)<+\infty \tag{2.1}
\end{equation*}
$$

and the expression (2.1) is an equivalent quasi-norm in $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$. Moreover, this assertion remains true if one replaces $M_{p, q}^{s, u, \infty}$ by $M_{p, q}^{s, u, a}$ for any fixed $a>0$.

The argument of the equivalence of above quasi-norms that we can replace the integration for $t \in] 0,+\infty[$ by $t \leq a$ for a fixed positive number a is the part of the integral for which $t>a$ can be easily estimated by the L_{p}-norm.

Embeddings. Triebel-Lizorkin spaces are spaces of equivalence classes w.r.t. almost everywhere equality. However, if such an equivalence class contains a continuous representative, then usually we work with this representative and call also the equivalence class a continuous function. Later on we need the following continuous embeddings:
(i) The spaces $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are monotone with respect to s and q, more exactly $F_{p, \infty}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{t}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, \infty}^{t}\left(\mathbb{R}^{n}\right)$ if $t<s$ and $0<q \leq \infty$.
(ii) With Besov spaces, we have $B_{p, 1}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p, \infty}^{s}\left(\mathbb{R}^{n}\right)$.
(iii) If either $s>n / p$ or $s=n / p$ and $0<p \leq 1$, then $F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C_{b}\left(\mathbb{R}^{n}\right)$.

For various further embeddings we refer to $[\mathbf{1 4}, 2.3 .2,2.7 .1]$ or $[\mathbf{1 2}, 2.2 .2,2.2 .3]$.

The Fatou property. Well-known the Triebel-Lizorkin space has the Fatou property, cf. [8]. We will briefly recall it. Any $f \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ can be approximated (in the weak sense in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$) by a sequence $\left(f_{j}\right)_{j \geq 0}$ such that any f_{j} is an entire function of exponential type

$$
f_{j} \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad \limsup _{j \rightarrow+\infty}\left\|f_{j}\right\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c\|f\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}
$$

with a positive constant c independent of f. Vice versa, if for a tempered distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, there exists a sequence $\left(f_{j}\right)_{j \geq 0}$ such that

$$
f_{j} \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad A:=\limsup _{j \rightarrow+\infty}\left\|f_{j}\right\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}<+\infty
$$

and $\lim _{j \rightarrow+\infty} f_{j}=f$ in the sense of distributions, then f belongs to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ and there exists a constant $c>0$ independent of f such that $\|f\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c A$.

2.2. Functions of bounded variation

For a function $g: \mathbb{R} \rightarrow \mathbb{R}$, we set

$$
\begin{equation*}
\nu_{p}(g):=\sup \left(\sum_{k=1}^{N}\left|g\left(b_{k}\right)-g\left(a_{k}\right)\right|^{p}\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

taken over all finite sets $\left] a_{k}, b_{k}[; k=1, \ldots, N\}\right.$ of pairwise disjoint open intervals. A function g is said to be of bounded p-variation if $\nu_{p}(g)<+\infty$. Clearly, by considering a finite sequence with only two terms, we obtain $|g(x)-g(y)| \leq \nu_{p}(g)$, for all $x, y \in \mathbb{R}$, hence g is a bounded function. The set of (generalized) primitives of functions of bounded p-variation is denoted by $B V_{p}^{1}(\mathbb{R})$ and endowed with the seminorm

$$
\|f\|_{B V_{p}^{1}(\mathbb{R})}:=\inf \nu_{p}(g)
$$

where the infimum is taken over all functions g whose f is the primitive. For more details about this space we refer to $[\mathbf{1 1}]$ or $[\mathbf{5}]$. However, we need to recall some embeddings

$$
\begin{equation*}
B V_{p}^{1}(\mathbb{R}) \hookrightarrow U_{p}^{1}(\mathbb{R}) \tag{2.3}
\end{equation*}
$$

(equality in case $p=1$), see $[\mathbf{5}$, Theorem 5] for the proof which is given for $1<p<+\infty$ and can be easily extended to $0<p \leq 1$, see also [7, Theorem 9.3]. The Peetre embedding theorem

$$
\begin{equation*}
\dot{B}_{p, 1}^{1+(1 / p)}(\mathbb{R}) \hookrightarrow B V_{p}^{1}(\mathbb{R}) \hookrightarrow \dot{B}_{p, \infty}^{1+(1 / p)}(\mathbb{R}), \quad(1 \leq p<+\infty) \tag{2.4}
\end{equation*}
$$

where the dotted space is the homogeneous Besov space.
Example. Let $\alpha \in \mathbb{R}$. We put $u_{\alpha}(x):=|x+\alpha|-|\alpha|$ for all $x \in \mathbb{R}$, and

$$
f_{\alpha}(x, y):=u_{\alpha}(x) \chi_{[0,1]}(y)+u_{\alpha}(y) \chi_{[0,1]}(x), \quad \forall x, y \in \mathbb{R}
$$

where $\chi_{[0,1]}$ denotes the indicatrix function of $[0,1]$. Clearly that $\nu_{p}\left(u_{\alpha}^{\prime}\right)=2$ and $\left\|\chi_{[0,1]}\right\|_{B V_{p}^{1}(\mathbb{R})}=0$. Then it holds $f_{\alpha} \in \mathcal{V}_{p}\left(\mathbb{R}^{2}\right)$ with $\left\|f_{\alpha}\right\|_{\mathcal{V}_{p}\left(\mathbb{R}^{2}\right)}=4$. The $\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ space is defined in Section 1.

3. Proof of the result

Theorem 1.1 can be obtained from the following statement.
Proposition 3.1. Let $0<p, q<+\infty, 0<u<\min (p, q)$ and $0<s<1 / p$. Then there exists a constant $c>0$ such that the inequality

$$
\begin{equation*}
M_{p, q}^{s, u, \infty}\left((f \circ g)^{\prime}\right) \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})} \tag{3.1}
\end{equation*}
$$

holds for all $f \in U_{p}^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ and all real analytic functions g in $B V_{p}^{1}(\mathbb{R})$.
Proof. For a better readability we split our proof in two steps.
Step 1. Let us prove

$$
\begin{equation*}
M_{p, q}^{s, u, a}\left((f \circ g)^{\prime}\right) \leq c a^{(1 / p)-s}\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})} \tag{3.2}
\end{equation*}
$$

for all $a>0$ and all $f \in U_{p}^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ and all real analytic functions g in $B V_{p}^{1}(\mathbb{R})$.
Assume first $a=1$. By the assumptions on f and g it holds $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$. We have $\left\|(f \circ g)^{\prime}\right\|_{\infty} \leq\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}$ and

$$
\left|\Delta_{h}\left(\left(f^{\prime} \circ g\right) g^{\prime}\right)(x)\right| \leq\left\|f^{\prime}\right\|_{\infty}\left|\Delta_{h} g^{\prime}(x)\right|+\left|g^{\prime}(x)\right|\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|
$$

Hence

$$
M_{p, q}^{s, u, 1}\left((f \circ g)^{\prime}\right) \leq\left\|f^{\prime}\right\|_{\infty} M_{p, q}^{s, u, 1}\left(g^{\prime}\right)+V(f ; g),
$$

where

$$
V(f ; g)
$$

$$
\begin{equation*}
:=\left(\int_{\mathbb{R}}\left(\int_{0}^{1} t^{-s q}\left(\frac{1}{t} \int_{-t}^{t}\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|^{u}\left|g^{\prime}(x)\right|^{u} \mathrm{~d} h\right)^{q / u} \frac{\mathrm{~d} t}{t}\right)^{p / q} \mathrm{~d} x\right)^{1 / p} \tag{3.3}
\end{equation*}
$$

Estimate of $M_{p, q}^{s, u, 1}\left(g^{\prime}\right)$. By writing $\int_{0}^{1} \cdots=\sum_{j=0}^{\infty} \int_{2^{-j-1}}^{2^{-j}} \cdots$ and by an elementary computation, we have

$$
\begin{aligned}
\int_{0}^{1} t^{-s q}\left(\frac{1}{t} \int_{-t}^{t}\left|\Delta_{h} g^{\prime}(x)\right|^{u} \mathrm{~d} h\right)^{q / u} \frac{\mathrm{~d} t}{t} & \leq c_{1} \sum_{j=0}^{\infty} \int_{2^{-j-1}}^{2^{-j}} t^{-s q} \sup _{|h| \leq t}\left|\Delta_{h} g^{\prime}(x)\right|^{q} \frac{\mathrm{~d} t}{t} \\
& \leq c_{2} \sum_{j=0}^{\infty} 2^{j s q} \sup _{|h| \leq 2^{-j}}\left|\Delta_{h} g^{\prime}(x)\right|^{q}
\end{aligned}
$$

Let $\alpha:=\min (1, p / q)$. By using the monotonicity of the ℓ_{r}-norms (i.e. $\ell_{1} \hookrightarrow \ell_{1 / \alpha}$) and by the Minkowski inequality w.r.t $L_{p /(\alpha q)}$, since $q<+\infty$, we obtain

$$
\begin{aligned}
M_{p, q}^{s, u, 1}\left(g^{\prime}\right) & \leq c_{1}\left(\int_{\mathbb{R}}\left(\sum_{j=0}^{\infty} 2^{j s \alpha q} \sup _{|h| \leq 2^{-j}}\left|\Delta_{h} g^{\prime}(x)\right|^{\alpha q}\right)^{p /(\alpha q)} \mathrm{d} x\right)^{1 / p} \\
& \leq c_{2}\left(\sum_{j=0}^{\infty} 2^{j s \alpha q}\left(\int_{\mathbb{R}} \sup _{|h| \leq 2^{-j}}\left|\Delta_{h} g^{\prime}(x)\right|^{p} \mathrm{~d} x\right)^{(\alpha q) / p}\right)^{1 /(\alpha q)} \\
& \leq c_{3}\left(\sum_{j=0}^{\infty} 2^{j(s-(1 / p)) \alpha q}\right)^{1 /(\alpha q)}\|g\|_{U_{p}^{1}(\mathbb{R})}
\end{aligned}
$$

From the embedding (2.3) and the assumption on s, the desired estimate holds.

Estimate of $V(f ; g)$. In (3.3) the integral with respect to h can be limited to the interval $[0, t]$ denoting the corresponding expression by $V_{+}(f ; g)$. Let us notice that the estimate with respect to $[-t, 0]$ will be completely similar.

Again, by applying the Minkowski inequality twice, it holds

$$
\begin{aligned}
& V_{+}(f ; g) \\
& \leq\left(\int_{\mathbb{R}}\left(\int_{0}^{1}\left(\int_{h}^{1} t^{-(s+(1 / u)) q}\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|^{q}\left|g^{\prime}(x)\right|^{q} \frac{\mathrm{~d} t}{t}\right)^{u / q} \mathrm{~d} h\right)^{p / u} \mathrm{~d} x\right)^{1 / p} \\
& \leq\left(\int_{0}^{1}\left(\int_{\mathbb{R}}\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|^{p}\left|g^{\prime}(x)\right|^{p} \mathrm{~d} x\right)^{u / p}\left(\int_{h}^{\infty} t^{-(s+(1 / u)) q} \frac{\mathrm{~d} t}{t}\right)^{u / q} \mathrm{~d} h\right)^{1 / u} \\
& \leq c\left(\int_{0}^{1} h^{-(s u+1)}\left(\int_{\mathbb{R}}\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|^{p}\left|g^{\prime}(x)\right|^{p} \mathrm{~d} x\right)^{u / p} \mathrm{~d} h\right)^{1 / u}
\end{aligned}
$$

Case 1: Assume that g^{\prime} does not vanish on \mathbb{R}. By the Mean Value Theorem and by the change of variable $y=g(x)$, we find

$$
\begin{aligned}
& V_{+}(f ; g) \\
& \leq c_{1}\left\|g^{\prime}\right\|_{\infty}^{1-(1 / p)}\left(\int_{0}^{1} h^{-(s u+1)}\left(\int_{\mathbb{R}|v| \leq h\left\|g^{\prime}\right\| \infty} \sup _{\infty}\left|f^{\prime}(v+y)-f^{\prime}(y)\right|^{p} \mathrm{~d} y\right)^{u / p} \mathrm{~d} h\right)^{1 / u} \\
& \leq c_{2}\|f\|_{U_{p}^{1}(\mathbb{R})}\left\|g^{\prime}\right\|_{\infty}\left(\int_{0}^{1} h^{u((1 / p)-s)-1} \mathrm{~d} h\right)^{1 / u} \\
& \leq c_{3}\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})} .
\end{aligned}
$$

Case 2: Assume that the set of zeros of g^{\prime} is nonempty. Then it is a discrete set whose complement in \mathbb{R} is the union of a family $\left(I_{l}\right)_{l}$ of open disjoint intervals. For any $h>0$, we denote by $I_{l, h}^{\prime}$ the set of $x \in I_{l}$ whose distance to the boundary of I_{l} is greater than h. We set

$$
I_{l, h}^{\prime \prime}:=I_{l} \backslash I_{l, h}^{\prime} \quad \text { and } \quad g_{l}:=g_{\left.\right|_{I_{l}}}
$$

Clearly the function g_{l} is a diffeomorphism of I_{l} onto $g\left(I_{l}\right)$. Let us notice that $I_{l, h}^{\prime}$ is an open interval, possibly empty. In case it is not empty, we have

$$
\begin{equation*}
\left|g\left(g_{l}^{-1}(y)+h\right)-y\right| \leq h \sup _{I_{l}}\left|g^{\prime}\right|, \quad \forall y \in g_{l}\left(I_{l, h}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

The set $I_{l, h}^{\prime \prime}$ is an interval of length at most $2 h$ or the union of two such intervals, and g^{\prime} vanishes at one of the endpoints of these or those intervals.

We write $V_{+}(f ; g) \leq V_{1}(f ; g)+V_{2}(f ; g)$, where

$$
V_{1}(f ; g):=\left(\int_{0}^{1} h^{-(s u+1)}\left(\sum_{l} \int_{I_{l, h}^{\prime}}\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right|^{p}\left|g^{\prime}(x)\right|^{p} \mathrm{~d} x\right)^{u / p} \mathrm{~d} h\right)^{1 / u}
$$

and $V_{2}(f ; g)$ is defined in the same way by replacing $I_{l, h}^{\prime}$ by $I_{l, h}^{\prime \prime}$.

Estimate of $V_{1}(f ; g)$. By the change of variable $y=g_{l}(x)$ and by (3.4), we deduce

$$
\begin{aligned}
V_{1}(f ; g) \leq & \left(\int _ { 0 } ^ { 1 } h ^ { - (s u + 1) } \left(\sum_{l} \sup _{I_{l}}\left|g^{\prime}\right|^{p-1}\right.\right. \\
& \left.\left.\times \int_{g\left(I_{l, h}^{\prime}\right)} \sup _{|v| \leq h \sup _{I_{l}}\left|g^{\prime}\right|}\left|f^{\prime}(v+y)-f^{\prime}(y)\right|^{p} \mathrm{~d} y\right)^{u / p} \mathrm{~d} h\right)^{1 / u} \\
\leq & c_{1}\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\sum_{l} \sup _{I_{l}}\left|g^{\prime}\right|^{p}\right)^{1 / p}\left(\int_{0}^{1} h^{u((1 / p)-s)-1} \mathrm{~d} h\right)^{1 / u} \\
\leq & c_{2}\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\sum_{l} \sup _{I_{l}}\left|g^{\prime}\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

Hence it suffices to show

$$
\begin{equation*}
\left(\sum_{l} \sup _{t \in I_{l}}\left|g^{\prime}(t)\right|^{p}\right)^{1 / p} \leq c\|g\|_{B V_{p}^{1}} \tag{3.5}
\end{equation*}
$$

Indeed, by the assumption on g, for any I_{l} there exists $\xi_{l} \in I_{l}$ such that

$$
\left|g^{\prime}\left(\xi_{l}\right)\right|=\sup _{t \in I_{l}}\left|g^{\prime}(t)\right|
$$

Furthermore, set β_{l} the right endpoint of I_{l}. The open intervals $\left] \xi_{l}, \beta_{l}[\}_{l}\right.$ are pairwise disjoint. Then the assertion (3.5) follows from

$$
\sum_{l} \sup _{t \in I_{l}}\left|g^{\prime}(t)\right|^{p}=\sum_{l}\left|g^{\prime}\left(\xi_{l}\right)-g^{\prime}\left(\beta_{l}\right)\right|^{p} \leq \nu_{p}\left(g^{\prime}\right)^{p} .
$$

(See (2.2) for the definition of ν_{p}).
Estimate of $V_{2}(f ; g)$. Using both the elementary inequality $\left|\Delta_{h}\left(f^{\prime} \circ g\right)(x)\right| \leq$ $2\left\|f^{\prime}\right\|_{\infty}$ and the properties of $I_{l, h}^{\prime \prime}$, it holds

$$
\begin{aligned}
V_{2}(f ; g) & \leq c_{1}\left\|f^{\prime}\right\|_{\infty}\left(\sum_{l} \sup _{I_{l}}\left|g^{\prime}\right|^{p}\right)^{1 / p}\left(\int_{0}^{1} h^{u((1 / p)-s)-1} \mathrm{~d} h\right)^{1 / u} \\
& \leq c_{2}\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})}
\end{aligned}
$$

Hence we obtain (3.2) with $a=1$. We put $g_{\lambda}(x):=g(\lambda x)$ for all $x \in \mathbb{R}$ and all $\lambda>0$. Then (3.2) can be obtained for all $a>0$ since $\left\|g_{a}\right\|_{B V_{p}^{1}(\mathbb{R})}=a\|g\|_{B V_{p}^{1}(\mathbb{R})}$ and

$$
M_{p, q}^{s, u, a}\left((f \circ g)^{\prime}\right)=a^{(1 / p)-s-1} M_{p, q}^{s, u, 1}\left(\left(f \circ g_{a}\right)^{\prime}\right) .
$$

Step 2: Proof of (3.1). Let $a>0$. Let f and g be as in Proposition 3.1. By Proposition 2.2 it holds

$$
M_{p, q}^{s, u, \infty}\left((f \circ g)^{\prime}\right) \leq\left\|(f \circ g)^{\prime}\right\|_{F_{p, q}^{s}(\mathbb{R})}=\left\|(f \circ g)^{\prime}\right\|_{p}+M_{p, q}^{s, u, a}\left((f \circ g)^{\prime}\right) .
$$

Applying (3.2), we obtain

$$
\begin{equation*}
M_{p, q}^{s, u, \infty}\left((f \circ g)^{\prime}\right) \leq\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{p}+c_{1} a^{(1 / p)-s}\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})} \tag{3.6}
\end{equation*}
$$

with a positive constant c_{1} depending only on s, p and q (see the end of Step 1). Now, by replacing g by g_{λ} in (3.6), (g_{λ} is defined in Step 1), and by using the equality

$$
M_{p, q}^{s, u, \infty}\left(\left(f \circ g_{\lambda}\right)^{\prime}\right)=\lambda^{s+1-(1 / p)} M_{p, q}^{s, u, \infty}\left((f \circ g)^{\prime}\right)
$$

we deduce

$$
\begin{align*}
& M_{p, q}^{s, u, \infty}\left((f \circ g)^{\prime}\right) \\
& \leq \lambda^{-s}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{p}+c_{1} a^{(1 / p)-s} \lambda^{(1 / p)-s}\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B V_{p}^{1}(\mathbb{R})} \tag{3.7}
\end{align*}
$$

for all $a, \lambda>0$. Taking $a=1 / \lambda$. Now letting $\lambda \rightarrow+\infty$ in (3.7), we obtain the desired result.

Remark. Proposition 3.1 is also valid in the n-dimensional case. The inequality (3.1) becomes

$$
M_{p, q}^{s-1, u, \infty}\left(\partial_{j}(f \circ g)\right) \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)}, \quad(j=1, \ldots, n)
$$

for all $f \in U_{p}^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ and all real analytic functions g in $\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$.
Proof of Theorem 1.1. Step 1. Observe that the conditions $f(0)=0$ and $f^{\prime} \in$ $L_{\infty}(\mathbb{R})$ imply

$$
\|f \circ g\|_{p} \leq\left\|f^{\prime}\right\|_{\infty}\|g\|_{p}
$$

which is sufficient for the estimate $T_{f}(g)$ with respect to $L_{p}\left(\mathbb{R}^{n}\right)$-norm.
Step 2: The case $1<s<1+(1 / p)$ and $n=1$. We first consider a function $f \in U_{p}^{1}(\mathbb{R})$, of class C^{1} and a function g real analytic in $L_{p}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R})$. By Proposition 3.1, it holds

$$
\begin{equation*}
\|f \circ g\|_{F_{p, q}^{s}(\mathbb{R})} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{p}+\|g\|_{B V_{p}^{1}(\mathbb{R})}\right) \tag{3.8}
\end{equation*}
$$

Now we prove (3.8) in the general case. Let $g \in L_{p}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R})$ and $f \in U_{p}^{1}(\mathbb{R})$. We introduce a function $\rho \in \mathcal{D}(\mathbb{R})$ satisfying $\rho(0)=1$, and we set $\varphi_{j}(x):=$ $2^{j n} \mathcal{F}^{-1} \rho\left(2^{j} x\right)$ for all $x \in \mathbb{R}$ and all $j \in \mathbb{N}$; here $\mathcal{F}^{-1} \rho$ denotes the inverse Fourier transform of ρ. We set also

$$
f_{j}:=\varphi_{j} * f-\varphi_{j} * f(0) \quad \text { and } \quad g_{j}:=\varphi_{j} * g
$$

Then the function g_{j} is real analytic and $g_{j} \rightarrow g$ in $L_{p}(\mathbb{R})$. We have also

$$
\begin{equation*}
\left\|g_{j}\right\|_{B V_{p}^{1}(\mathbb{R})} \leq c\|g\|_{B V_{p}^{1}(\mathbb{R})}, \quad \forall j \in \mathbb{N} \tag{3.9}
\end{equation*}
$$

To prove (3.9), let $\left] a_{k}, b_{k}[, k=1, \ldots, N\}\right.$ be a set of pairwise disjoint intervals. By the Minkowski inequality, it holds

$$
\begin{aligned}
& \left(\sum_{k=1}^{N}\left|\int_{\mathbb{R}} \varphi_{j}(y)\left(g^{\prime}\left(b_{k}-y\right)-g^{\prime}\left(a_{k}-y\right)\right) \mathrm{d} y\right|^{p}\right)^{1 / p} \\
& \quad \leq \int_{\mathbb{R}}\left|\varphi_{j}(y)\right|\left(\sum_{k=1}^{N}\left|g^{\prime}\left(b_{k}-y\right)-g^{\prime}\left(a_{k}-y\right)\right|^{p}\right)^{1 / p} \mathrm{~d} y .
\end{aligned}
$$

Now, for all $y \in \mathbb{R}$, the intervals $] a_{k}-y, b_{k}-y[(k=1, \ldots, N)$ are pairwise disjoint. Then

$$
\left(\sum_{k=1}^{N}\left|g_{j}^{\prime}\left(b_{k}\right)-g_{j}^{\prime}\left(a_{k}\right)\right|^{p}\right)^{1 / p} \leq\left\|\mathcal{F}^{-1} \rho\right\|_{1} \nu_{p}\left(g^{\prime}\right), \quad \forall j \in \mathbb{N} .
$$

Hence we obtain (3.9).
The functions f_{j} are C^{∞} such that $f_{j}(0)=0$ and satisfy

$$
\begin{equation*}
\left\|f_{j}\right\|_{U_{p}^{1}(\mathbb{R})} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}, \quad \forall j \in \mathbb{N} \tag{3.10}
\end{equation*}
$$

To prove (3.10), for all $t>0$ and all $h \in[-t, t]$ we trivially have

$$
\left|\varphi_{j} * f^{\prime}(x+h)-\varphi_{j} * f^{\prime}(x)\right| \leq \int_{\mathbb{R}}\left|\varphi_{j}(y)\right| \sup _{|z| \leq t}\left|f^{\prime}(x-y+z)-f^{\prime}(x-y)\right| \mathrm{d} y
$$

By the Minkowski inequality, we have

$$
\begin{aligned}
& \int_{\mathbb{R}|h| \leq t} \sup _{|h|}\left|\varphi_{j} * f^{\prime}(x+h)-\varphi_{j} * f^{\prime}(x)\right|^{p} \mathrm{~d} x \\
& \quad \leq\left(\int_{\mathbb{R}}\left|\varphi_{j}(y)\right|\left(\int_{\mathbb{R}} \sup _{|z| \leq t}\left|f^{\prime}(x-y+z)-f^{\prime}(x-y)\right|^{p} \mathrm{~d} x\right)^{1 / p} \mathrm{~d} y\right)^{p} \\
& \left.\quad \leq t\left\|\mathcal{F}^{-1} \rho\right\|_{1}^{p} A_{p}\left(f^{\prime}\right)^{p}, \quad \text { (see (1.2) for the definition of } A_{p}\right)
\end{aligned}
$$

Consequently,

$$
A_{p}\left(f_{j}^{\prime}\right)+\left\|f_{j}^{\prime}\right\|_{\infty} \leq\left\|\mathcal{F}^{-1} \rho\right\|_{1}\left(A_{p}\left(f^{\prime}\right)+\left\|f^{\prime}\right\|_{\infty}\right)
$$

and we obtain the desired result.
On the other hand, we have

$$
\begin{equation*}
\lim _{j \rightarrow+\infty}\left\|f_{j}-f\right\|_{\infty}=0 \tag{3.11}
\end{equation*}
$$

To prove (3.11), since $\lim _{j \rightarrow+\infty} \varphi_{j} * f(0)=f(0)=0$, the Lipschitz continuous of f yields

$$
\begin{aligned}
\left|f_{j}(x)-f(x)\right| & \leq\left\|f^{\prime}\right\|_{\infty} \int_{\mathbb{R}}\left|x-y \| \varphi_{j}(x-y)\right| \mathrm{d} y+\left|\varphi_{j} * f(0)\right| \\
& \leq c 2^{-j}\left\|f^{\prime}\right\|_{\infty}+\left|\varphi_{j} * f(0)\right|
\end{aligned}
$$

Then the desired result holds. By the same argument, we obtain

$$
\begin{equation*}
\left\|g_{j}-g\right\|_{\infty} \leq c 2^{-j}\left\|g^{\prime}\right\|_{\infty} \tag{3.12}
\end{equation*}
$$

Now we apply (3.8) to f_{j} and g_{j}. Then by (3.9) and (3.10), we obtain

$$
\begin{equation*}
\left\|f_{j} \circ g_{j}\right\|_{F_{p, q}^{s}(\mathbb{R})} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{p}+\|g\|_{B V_{p}^{1}(\mathbb{R})}\right) . \tag{3.13}
\end{equation*}
$$

The elementary inequality

$$
\left\|f \circ g-f_{j} \circ g_{j}\right\|_{\infty} \leq\left\|f^{\prime}\right\|_{\infty}\left\|g-g_{j}\right\|_{\infty}+\left\|f-f_{j}\right\|_{\infty}
$$

complemented by (3.11)-(3.12) yields the convergence of the sequence $\left\{f_{j} \circ g_{j}\right\}_{j \in \mathbb{N}}$ to $f \circ g$ in $L_{\infty}(\mathbb{R})$. Since

$$
\left|\left\langle f_{j} \circ g_{j}-f \circ g, \psi\right\rangle\right| \leq\left\|f_{j} \circ g_{j}-f \circ g\right\|_{\infty}\|\psi\|_{1}, \quad \forall \psi \in \mathcal{D}(\mathbb{R}),
$$

thus we conclude that $\lim _{j \rightarrow+\infty} f_{j} \circ g_{j}=f \circ g$ in the sense of distributions. Hence, by the Fatou property of $F_{p, q}^{s}(\mathbb{R})$, see Subsection 2.1, we deduce (3.8).

Step 3: The case $1<s<1+(1 / p)$ and $n \geq 2$. We use the notation (1.3). Since Triebel-Lizorkin space has the Fubini property (see [12, p. 70]), by (3.1) it holds

$$
\begin{aligned}
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} & \leq c_{1} \sum_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}}\left\|f \circ g_{x_{j}^{\prime}}\right\|_{F_{p, q}^{s}(\mathbb{R})}^{p} \mathrm{~d} x_{j}^{\prime}\right)^{1 / p} \\
& \leq c_{2}\|f\|_{U_{p}^{1}(\mathbb{R})} \sum_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}}\left(\left\|g_{x_{j}^{\prime}}\right\|_{p}^{p}+\left\|g_{x_{j}^{\prime}}\right\|_{B V_{p}^{1}(\mathbb{R})}^{p}\right) \mathrm{d} x_{j}^{\prime}\right)^{1 / p} \\
& \leq c_{3}\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{p}+\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)}\right)
\end{aligned}
$$

Step 4: The case $0<s \leq 1$. Due to the monotonicity of the Triebel-Lizorkin scale with respect to the smoothness parameter s, the result holds. Indeed, let $1<t<1+(1 / p)$. From Step 3, we have (1.4) with $\|f \circ g\|_{F_{p, q}^{t}\left(\mathbb{R}^{n}\right)}$ instead of $\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}$. Now we apply the continuous embedding $F_{p, q}^{t}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$. This completes the proof.

Remark. In case $n=1$ and $1 \leq p, q<+\infty$ the inequality (1.4) becomes

$$
\|f \circ g\|_{F_{p, q}^{s}(\mathbb{R})} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{F_{p, q}^{s}(\mathbb{R})}+\|g\|_{B V_{p}^{1}(\mathbb{R})}\right)
$$

for all $g \in L_{p}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R})$, since $F_{p, q}^{s}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R})=L_{p}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R})$ if $s<$ $1+(1 / p)$. To prove this equality, we have $\dot{B}_{p, \infty}^{1+(1 / p)}(\mathbb{R}) \cap L_{p}(\mathbb{R})=B_{p, \infty}^{1+(1 / p)}(\mathbb{R})$ (see [12, 2.6.2, p. 95]). Then by (2.4) and by both $B_{p, \infty}^{1+(1 / p)}(\mathbb{R}) \hookrightarrow B_{p, 1}^{s}(\mathbb{R})$ and $B_{p, 1}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$, it holds $L_{p}(\mathbb{R}) \cap B V_{p}^{1}(\mathbb{R}) \hookrightarrow F_{p, q}^{s}(\mathbb{R})$.

4. Concluding remarks

4.1. Some corollaries

In this section we fix a smooth cut-off function $\varphi \in \mathcal{D}(\mathbb{R})$ such that $\varphi(x)=1$ for $|x| \leq 1$. We put $\varphi_{t}(x):=\varphi\left(t^{-1} x\right), \forall x \in \mathbb{R}$ and for all $t>0$. Also for brevity we introduce the space $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right):=F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap L_{\infty}\left(\mathbb{R}^{n}\right)$ endowed with the quasi-norm

$$
\|f\|_{\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)}:=\|f\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}+\|f\|_{\infty}
$$

Theorem 1.1 has a consequence for the case of functions f which are only locally in $U_{p}^{1}(\mathbb{R})$.

Corollary 4.1. Let s, p, q be real numbers as in Theorem 1.1. Then there exists a constant $c>0$ such that the inequality

$$
\begin{equation*}
\|f \circ g\|_{\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c\left\|f \varphi_{\|g\|_{\infty}}\right\|_{U_{p}^{1}(\mathbb{R})}\left(\|g\|_{\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)}+\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)}\right) \tag{4.1}
\end{equation*}
$$

holds for all functions $g \in \mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ and all $f \in U_{p}^{1, \text { ใoc }}(\mathbb{R})$ satisfying $f(0)=0$. Moreover, for all such functions f, the composition operator T_{f} takes $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ to $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

Proof. Since $f \circ g=\left(f \varphi_{\|g\|_{\infty}}\right) \circ g$ and $\left(f \varphi_{t}\right)(0)=0$, the result follows from Theorem 1.1.

There is consequence of Theorem 1.1 that we can obtain the equivalence of acting condition and boundedness.

Corollary 4.2. Let s, p, q be real numbers as in Theorem 1.1. Let f be a function in $U_{p}^{1, \text {,oc }}(\mathbb{R})$ satisfying $f(0)=0$. Then the following assertions are equivalent:
(i) T_{f} satisfies the acting condition $T_{f}\left(\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)\right) \subseteq \mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.
(ii) T_{f} maps bounded sets in $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ into bounded sets in $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

Proof. Let $t>0$. By (4.1), it holds

$$
\begin{equation*}
\|f \circ g\|_{\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c t\left\|f \varphi_{t}\right\|_{U_{p}^{1}(\mathbb{R})} \tag{4.2}
\end{equation*}
$$

for all $g \in \mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ such that $\|g\|_{\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)}+\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)} \leq t$. Now, from (4.2), we conclude that T_{f} maps bounded sets in $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$ into bounded sets in $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

Remark. If $n / p<s<1+(1 / p)$, then we can replace $\mathcal{F}_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ by $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ in Corollaries 4.1-4.2, since $F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C_{b}\left(\mathbb{R}^{n}\right)$.

We show that Theorem 1.1 can be extended to the case of the boundedness between Besov spaces and Triebel-Lizorkin spaces.

Corollary 4.3. Let $1 \leq p, q<+\infty$ and $0<s<1+(1 / p)$. Then there exists a constant $c>0$ such that the inequality

$$
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c\|f\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right)}
$$

holds for all functions $g \in B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right)$ and all $f \in U_{p}^{1}(\mathbb{R})$ satisfying $f(0)=0$. Moreover, for all such functions f, the operator T_{f} takes $B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right)$ to $F_{p, q}^{s}\left(\mathbb{R}^{n}\right)$.

Proof. This is an easy consequence of Theorem 1.1 and the following continuous embedding

$$
\begin{equation*}
B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathcal{V}_{p}\left(\mathbb{R}^{n}\right) \tag{4.3}
\end{equation*}
$$

To prove (4.3), we use the notation (1.3) and the equivalent norm in Besov space given by

$$
\|f\|_{p}+\sum_{j=1}^{n}\left(\int_{0}^{1} t^{-s q}\left\|\Delta_{t e_{j}}^{2} f\right\|_{p}^{q} \frac{\mathrm{~d} t}{t}\right)^{1 / q}, \quad(0<s<2)
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the canonical basis of \mathbb{R}^{n}, see $[\mathbf{1 5}$, p. 96].
Let $f \in B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right)$. Since $\dot{B}_{p, 1}^{1+(1 / p)}(\mathbb{R}) \cap L_{p}(\mathbb{R})=B_{p, 1}^{1+(1 / p)}(\mathbb{R})$ (in the sense of equivalent norms, see, e.g. [15]), then by (2.4), we get

$$
\|f\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)} \leq c \sum_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}}\left\|f_{x_{j}^{\prime}}\right\|_{B_{p, 1}^{1+(1 / p)}(\mathbb{R})}^{p} \mathrm{~d} x_{j}^{\prime}\right)^{1 / p}
$$

Using the Minkowski inequality with respect to $L_{p}\left(\mathbb{R}^{n-1}\right)$, it follows

$$
\int_{\mathbb{R}^{n-1}}\left(\int_{0}^{1} t^{-(1+(1 / p))}\left\|\Delta_{t e_{k}}^{2} f_{x_{j}^{\prime}}\right\|_{p} \frac{\mathrm{~d} t}{t}\right)^{p} \mathrm{~d} x_{j}^{\prime} \leq\left(\int_{0}^{1} t^{-(1+(1 / p))}\left\|\Delta_{t e_{k}}^{2} f\right\|_{p} \frac{\mathrm{~d} t}{t}\right)^{p}
$$

for $j, k \in\{1, \ldots, n\}$. Then we obtain the desired result.
Remark. As in Corollary 4.1 we can see the case when the function f associated to the composition operator T_{f} belongs locally to $U_{p}^{1}(\mathbb{R})$. Indeed, if $1 \leq p, q<+\infty$ and $0<s<1+(1 / p)$, it holds that

$$
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c\left\|f \varphi_{\|g\|_{\infty}}\right\|_{U_{p}^{1}(\mathbb{R})}\|g\|_{B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right)}
$$

for all $f \in U_{p}^{1, \ell o c}(\mathbb{R})$ such that $f(0)=0$ and all $g \in B_{p, 1}^{1+(1 / p)}\left(\mathbb{R}^{n}\right) \cap L_{\infty}\left(\mathbb{R}^{n}\right)$.

4.2. Sharpness of estimate

For simplicity we define

$$
\|g\|:=\|g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)}+\|g\|_{\mathcal{V}_{p}\left(\mathbb{R}^{n}\right)} .
$$

According to Corollary 4.1, there is a substantial class of nonlinear functions f for which there exist constants $c_{f}=c(f)>0$ such that

$$
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq c_{f}\|g\|, \quad \forall g \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)
$$

In this form the inequality is optimal if we avoid linear functions in the following sense.

Proposition 4.4. Let $\Omega:[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function satisfying

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} t^{1 / p} \Omega(t)=0 \tag{4.4}
\end{equation*}
$$

If f is a function such that the inequality

$$
\begin{equation*}
\|f \circ g\|_{F_{p, q}^{s}\left(\mathbb{R}^{n}\right)} \leq \Omega(\|g\|) \tag{4.5}
\end{equation*}
$$

holds for all $g \in F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \cap \mathcal{V}_{p}\left(\mathbb{R}^{n}\right)$, then f is an affine function (linear, if we assume that $f(0)=0)$.

Proof. Let us define a smooth function $\varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ such that $\varphi(x)=1$ on the cube $Q:=[-1,1]^{n}$ and $\varphi(x)=0$ if $x \notin 2 Q$. We put $\Delta_{h}^{2}:=\Delta_{h} \circ \Delta_{h}$ and

$$
g_{a}(x):=a x_{1} \varphi(x), \quad\left(x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{n-1}, a>0\right) .
$$

We have $\left\|g_{a}\right\| \sim a$ and

$$
\Delta_{h}^{2}\left(f \circ g_{a}\right)(x)=\Delta_{a h_{1}}^{2} f\left(a x_{1}\right), \quad\left(\forall x \in \frac{1}{2(\sqrt{n})} Q, \forall h \in \frac{1}{4(\sqrt{n})} Q, \forall a>0\right) .
$$

On the other hand, for all $h \in \frac{1}{4(\sqrt{n})} Q$ (i.e. $|h| \leq 1 / 4$), we have

$$
\begin{aligned}
\left\|\Delta_{h}^{2}\left(f \circ g_{a}\right)\right\|_{p} & \geq\left(\int_{x \in(1 /(2 \sqrt{n})) Q}\left|\Delta_{h}^{2}\left(f \circ g_{a}\right)(x)\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
& \geq c a^{-1 / p}\left(\int_{-a /(2 \sqrt{n})}^{a /(2 \sqrt{n})}\left|\Delta_{a h_{1}}^{2} f(y)\right|^{p} \mathrm{~d} y\right)^{1 / p}
\end{aligned}
$$

By the above inequality, the embedding $F_{p, q}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow B_{p, \infty}^{s}\left(\mathbb{R}^{n}\right)$ and the assumption (4.5), we obtain

$$
\begin{aligned}
\left(\int_{-a /(2 \sqrt{n})}^{a /(2 \sqrt{n})}\left|\Delta_{a h_{1}}^{2} f(y)\right|^{p} \mathrm{~d} y\right)^{1 / p} & \leq c_{1}|h|^{s} a^{1 / p} \Omega\left(\left\|g_{a}\right\|\right) \\
& \leq c_{2} a^{1 / p} \Omega\left(\left\|g_{a}\right\|\right), \quad(\forall h:|h| \leq 1 / 4)
\end{aligned}
$$

By setting $u:=a h_{1}$, we deduce that

$$
\left(\int_{-a /(2 \sqrt{n})}^{a /(2 \sqrt{n})}\left|\Delta_{u}^{2} f(y)\right|^{p} \mathrm{~d} y\right)^{1 / p} \leq c_{1} a^{1 / p} \Omega\left(c_{2} a\right), \quad \forall a>0, \forall u:|u| \leq a
$$

By applying the assumption (4.4) on Ω and taking a to $+\infty$, we obtain

$$
\int_{-\infty}^{+\infty}|f(y+2 u)-2 f(y+u)+f(y)|^{p} \mathrm{~d} y=0, \quad \forall u \in \mathbb{R}
$$

Hence $f(y+2 u)-2 f(y+u)+f(y)=0$ a.e., $\forall y, u \in \mathbb{R}$. Then

$$
f^{\prime}(y+2 u)-f^{\prime}(y+u)=0, \text { i.e. }
$$

it implies $f^{\prime}(u)=f^{\prime}(0)(\forall u \in \mathbb{R})$. We deduce that f^{\prime} is a constant.

References

1. Adams D. and Frazier M., BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260.
2. \qquad , Composition operators on potential spaces, Proc. Amer. Math. Soc. 114 (1992), 155-165.
3. Allaoui S. E., Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles, Ann. Math. Blaise Pascal 16(2) (2009), 399-429.
4. Bourdaud G. and Kateb M. E. D., Fonctions qui opèrent sur les espaces de Besov, Math. Ann. 303 (1995) 653-675.
5. Bourdaud G., Lanza de Cristoforis M. and Sickel W., Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer. 22 (2006), 455-485.
6. Brezis H. and Mironescu P., Gagliardo-Nirenberg, compositions and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387-404.
7. DeVore R. and Lorentz G. G., Constructive Approximation, Springer, Berlin, 1993.
8. Franke J., On the spaces $F_{p, q}^{s}(\mathbb{R})$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains, Math. Nachr. 125 (1986), 29-68.
9. Maz'ya V. and Shaposnikova T., An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ. 2 (2002), 113-125.
10. Moussai M., The composition in multidimensional Triebel-Lizorkin spaces, Math. Nachr. 284(2-3) (2011), 317-331.
11. Peetre J., New thoughts on Besov spaces, Duke Univ. Math. Series I, Durham, N. C., 1976.
12. Runst T. and Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996.
13. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
14. \qquad , Theory of Function Spaces, Birkhäuser, Basel, 1983.
15. \qquad , Theory of Function Spaces II, Birkhäuser, Basel, 1992.
M. Moussai, Department of Mathematics, University of M'Sila, P.O. Box 166, 28000 M'Sila, Algeria, e-mail: mmoussai@yahoo.fr
