RESULTS ON DIMENSION THEORY AND SOME GENERALIZATIONS OF COMPACT SPACES

H. Z. HDEIB AND K. Y. AL-ZOUBI

ABSTRACT. In this paper we introduce G_{δ} -sequential spaces as a generalization of sequential spaces, and obtain some product theorems for [n, m]-compact spaces and for spaces with large inductive dimension $\leq n$.

1. INTRODUCTION

Dimension theory dates back at least to the work of P. Urysohn [11] and K. Menger [8]. Since then many mathematicians have contributed to the development of this theory. There are three notions of dimension of a topological space X, small inductive dimension (denoted by ind(X)), large inductive dimension (denoted by ind(X)) and covering dimension (denoted by dim(X)). If ind(X) = 0, then X is called a zero-dimensional space. If dim(X) = 0, then X is called a strongly zero-dimensional space.

In Section 2, we introduce G_{δ} -sequential spaces as a generalization of sequential spaces, and obtain some product theorems for [n, m]-compact spaces and for spaces with large inductive dimension $\leq n$. Theorems 2.9, 2.10, 2.11, 2.13 and 2.17 formulate the main results of this paper. In this paper, all spaces are assumed to be T_1 topological spaces. For terminology not defined here, see Engelking [3] and Willard [12].

2. Product theorems

Franklin [4] introduced sequential spaces as generalization of first countable spaces. In this section, we define G_{δ} -sequential spaces as a generalization of sequential spaces. We also obtain some product theorems for [n, m]-compact spaces and spaces with large inductive dimension $\leq n$.

Definition 2.1 ([4]). A subset A of a space X is called sequentially open if each sequence in X converging to a point in A is eventually in A. A space X is called a sequential space if every sequentially open subset of X is open.

Received June 3, 2012; revised September 5, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 54B10,\ 54D20,\ 54D30,\ 54D55.$

Key words and phrases. Small (large) inductive dimension; covering dimension; ultraparacompact; G_{δ} -sequential; [n, m]-compact.

Definition 2.2. A space X is called G_{δ} -sequential if every sequentially open subset is a G_{δ} -set.

Definition 2.3. Let X be an arbitrary space. The G_{δ} -topology of X is the topology generated by the G_{δ} -sets of X.

Definition 2.4 ([7]). A space X is called scattered if every non-empty closed subset A of X has an isolated point.

Definition 2.5 ([1]). A space X is called [n, m]-compact if every open cover \mathcal{U} of X with $|\mathcal{U}| \leq m$ has a subcover of cardinality < n. If X is [n, m]-compact for all m > n, then it is called $[n, \infty]$ -compact. $[\aleph_0, m]$ -compact spaces will be called simply *m*-compact.

Definition 2.6 ([2]). A space X is called paracompact if every open cover \mathcal{U} of X has a locally finite open refinement.

Definition 2.7. A mapping f from a space X onto a space Y is called σ -closed if f maps closed sets onto F_{σ} -sets.

It is clear that every sequential space is G_{δ} -sequential. However a G_{δ} -sequential space may fail to be sequential (see Arens-Fort example [10, page 54]).

Kramer [6] showed that if X is a sequential space and Y is a countably compact space, then the projection mapping $P: X \times Y \to X$ is closed. A similar theorem concerning σ -closed mappings can be obtained using G_{δ} -sequential spaces. For this purpose we need the following lemma which can be obtained by modifying the proof of Kramer [6, Lemma 5.3].

Lemma 2.8. Let X be a G_{δ} -sequential space and Y be a countably compact space. Let F be a closed subset of $X \times Y$ and V be an open subset of Y. Let x be a point of X such that $F(x) = \{y \in Y \mid (x, y) \in F\} \subset V$. Then there is a G_{δ} -set U containing x such that $z \in U$ implies $F(z) \subset V$.

Theorem 2.9. Let X be a G_{δ} -sequential space and Y be a countably compact space. Then the projection mapping $P: X \times Y \to X$ is σ -closed.

The proof follows from Lemma 2.8 by taking $x \in X - P(F)$ and $V = \phi$.

Theorem 2.10. Let f be a continuous σ -closed mapping from a space X onto a space Y such that $f^{-1}(y)$ is m-compact for each $y \in Y$. Then X is [n,m]-compact if the G_{δ} -topology of Y is so.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Lambda\}$, $|\Lambda| \leq m$ be an open cover of X. Let Γ denote the family of all finite subsets of Λ . Then $|\Gamma| \leq m$. Since $f^{-1}(y)$ is *m*-compact, we have that for each $y \in Y$, there exists a finite subset γ of Λ such that $f^{-1}(y) \subset \bigcup \{U_{\alpha} \mid \alpha \in \gamma\}$. Let $V_{\gamma} = Y - f(X - \bigcup_{\alpha \in \gamma} U_{\alpha})$. Then $y \in V_{\gamma}$, V_{γ} is a G_{δ} -set and $f^{-1}(V_{\gamma}) \subset \bigcup \{U_{\alpha} \mid \alpha \in \gamma\}$. Thus $\{V_{\gamma} \mid \gamma \in \Gamma\}$ cover of Y, of which each element is a G_{δ} -set, and $|\Gamma| \leq m$. Since the G_{δ} -topology of Y is [n, m]-compact, $\{V_{\gamma} \mid \gamma \in \Gamma\}$ has a subcover of cardinality < n. Therefore X is the union of less than nmembers of $\{f^{-1}(V_{\gamma}) \mid \gamma \in \Gamma\}$. But for each $\gamma \in \Gamma$, the set $f^{-1}(V_{\gamma})$ is contained in the union of finitely many members of \mathcal{U} . Hence X is [n, m]-compact. \Box

114

Theorem 2.11. Let X be a scattered, paracompact Hausdorff space. Then the G_{δ} -topology of X is paracompact.

Proof. Let \mathcal{U} be a cover of X by G_{δ} -sets. Let

 $F = \{x \in X \mid x \in U \text{ and } U \text{ is open implies } U \text{ cannot be covered by a } \}$

 σ -locally finite open refinement of \mathcal{U} .

Obviously F is closed. Suppose $F \neq \phi$. Since X is scattered, F has an isolated point x. Thus there exists an open set $V \subseteq X$ such that $V \cap F = \{x\}$. Choose $U^* \in \mathcal{U}$ such that $x \in U^*$. Without loss of generality we can assume that $U^* = \bigcap \{V_n \mid n = 1, 2, ...\}$ where V_n is open for each n = 1, 2, ..., and $V_{n+1} \subseteq V_{n+1} \subseteq V_n \subseteq V$. For each $n = 1, 2, ..., (\overline{V_n} - V_{n+1}) \subseteq X - F$. Therefore each $y \in (\overline{V_n} - V_{n+1})$ has a neighborhood M_y which can be covered by a σ -locally finite open refinement of \mathcal{U} .

Now $\mathcal{M} = \{M_y \mid y \in (\overline{V_n} - V_{n+1})\}$ is an open cover of $\overline{V_n} - V_{n+1}$. Since $\overline{V_n} - V_{n+1}$ is closed and X is paracompact, \mathcal{M} has a locally finite (in X) open (in X) refinement, say $\mathcal{H}_n = \{H_\alpha \mid \alpha \in \Lambda_n\}$. For each $\alpha \in \Lambda_n$, H_α is covered by a σ -locally finite open refinement of \mathcal{U} , say $\bigcup_{i=1}^{\infty} \mathcal{A}_i^{\alpha}$. Let $\mathcal{B}_i^{\alpha} = \{H_\alpha \cap A \mid A \in \mathcal{A}_i^{\alpha}\}$ and $\mathcal{K}_i^n = \{B \mid B \in \mathcal{B}_i^{\alpha}, \alpha \in \Lambda_n\}$. Then \mathcal{K}_i^n is a locally finite open refinement of \mathcal{U} , because if $x \in X$, there exists an open set N_x such that $N_x \cap H_\alpha = \phi$ for all except finitely many indices, say $\alpha_1, \alpha_2, \ldots, \alpha_n$. Each one of the collections $\mathcal{B}_i^{\alpha_1}, \mathcal{B}_i^{\alpha_2}, \ldots, \mathcal{B}_i^{\alpha_n}$ is locally finite. Hence for each $j = 1, 2, \ldots, n$, there exists an open set W_i^j and each W_i^j intersects at most finitely many members of $\mathcal{B}_i^{\alpha_j}$. Hence $W_i^1 \cap \ldots \cap W_i^n \cap N_x$ is an open neighborhood of x which intersects finitely many members of \mathcal{K}_i^n .

Now $\bigcup_{i=1}^{\infty} \mathcal{K}_i^n$ is an open σ -locally finite open refinement of \mathcal{U} which covers $\overline{V_n} - V_{n+1}$. Consequently, $(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} \mathcal{K}_i^n) \cup \{U^*\}$ is an open σ -locally finite open refinement of \mathcal{U} which covers V. This contradicts the fact that $x \in V$. Thus $F = \phi$. Therefore, for each $x \in V$, there is an open neighborhood G_x of x such that G_x can be covered by a σ -locally finite open refinement of \mathcal{U} . Since X is paracompact, $\{G_x \mid x \in X\}$ has a locally finite open refinement $\{D_\beta \mid \beta \in \Gamma\}$ where for each $\beta \in \Gamma$, D_β is covered by a σ -locally finite open refinement of \mathcal{U} , say $\bigcup_{i=1}^{\infty} \mathcal{C}_i^\beta$.

Let $\mathcal{G}_i = \left\{ C \mid C \in \mathcal{C}_i^{\beta}, \ \beta \in \Gamma \right\}$. Then it is easy to see that \mathcal{G}_i is locally finite. Therefore $\bigcup_{i=1}^{\infty} \mathcal{G}_i$ is a σ -locally finite open refinement of \mathcal{U} which covers X. Hence the G_{δ} -topology of X is paracompact.

Theorem 2.12 ([5]). Let X be an $[n, \infty]$ -compact scattered space. Then the G_{δ} -topology of X is $[n, \infty]$ -compact.

The proof follows by a similar method used in Theorem 2.11.

Theorem 2.13. Let Y be an m-compact space and X be a G_{δ} -sequential scattered space. Then $X \times Y$ is [n, m]-compact if X is $[n, \infty]$ -compact.

Proof. By Theorem 2.9, the projection mapping $P: X \times Y \to X$ is closed. By Theorem 2.10, $X \times Y$ is [n, m]-compact.

Definition 2.14. An open (closed) rectangle in $X \times Y$ is a set of the form $U \times V$ where U is an open (closed) subset of X and V is an open (closed) subset of Y.

The following definition was introduced by Nagata [9] to study the dimension of the products.

Definition 2.15. Let X and Y be two spaces. Then the product space $X \times Y$ is called an F-product if whenever H and K are disjoint closed sets in $X \times Y$, then there is an open cover $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Lambda\}$ of $X \times Y$ and a closed cover $\mathcal{F} = \{F_{\alpha} \mid \alpha \in \Lambda\}$ of $X \times Y$ such that:

(i) \mathcal{F} consists of closed rectangles and \mathcal{U} consists of open rectangles.

- (ii) \mathcal{U} is σ -locally finite.
- (iii) $F_{\alpha} \subset U_{\alpha}$ for all $\alpha \in \Lambda$.

(iv) \mathcal{U} refines $\{(X \times Y) - H, (X \times Y) - K\}$.

Kramer [6] proved that if X is sequential, paracompact and Hausdorff while Y is countably compact and normal, then $X \times Y$ is an F-product.

In case X is a G_{δ} -sequential space, we have the following theorems

Theorem 2.16. Let X be a G_{δ} -sequential, paracompact, scattered and Hausdorff space. Let Y be a countably compact normal space. Then $X \times Y$ is an F-product.

The proof follows from Theorem 2.11 and a similar technique used in the proof of the above Theorem of Kramer.

Nagata [9] showed that if X and Y are non-empty with $\operatorname{Ind}(X) \leq n$ while $\operatorname{Ind}(Y) \leq m$ and $X \times Y$ is a totally normal F-product, then $\operatorname{Ind}(X \times Y) \leq n + m$. Using this result together with Theorem 2.16, we get the following theorem.

Theorem 2.17. Suppose X and Y are given as in Theorem 2.16. If $\text{Ind}(X) \leq n$, $\text{Ind}(Y) \leq m$ and $X \times Y$ is a totally normal, then $\text{Ind}(X \times Y) \leq n + m$.

References

- Alexandroff P. and Urysohn P., Mémoire sure les espaces topologiques compacts, Verh. Kon. Akad. Van Weten. Te Amsterdam, 14 (1929), 1–96.
- Dieudonné J., Une generalization des espaces compacts, J. Math. Pures Apple., 23 (1944), 65–76.
- 3. Engelking E., Outline of general topology, Amsterdam, 1968.
- 4. Franklin S., Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115.
- Hdeib H., n-compact and scattered spaces, Bull. Fac. Sci., King Saud University, 14(1) (1983), 187–191.
- Kramer R., On the product of two topological spaces, General Topology and Appl., 6 (1976), 1–16.
- 7. Kuratowski K., Topology, Vol. I, New York-London-Warszawa, 1966.
- Menger K., Über die Dimensionalität von Runktmengen. I, Monatsh. für Math. and Phys. 33 (1923), 148–160.

116

DIMENSION THEORY AND GENERALIZATIONS OF COMPACT SPACES 117

- Nagata J., Product theorems in dimension theory I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 15 (1967), 439-448.
- 10. Steen L. A. and Seebach, Jr., J. A., Counterexamples in Topology, Holt, New York, 1970.
- 11. Urysohn P., Les multiplicates Cantoriennes, C. R. Acad. Sci. Paris, 157(1922), 440–442.
- 12. Willard S., General Topology, Addison Wesley, 1970.

H. Z. Hdeib, Department of Mathematics, Faculty of science, University of Jordan, Amman-Jordan, *e-mail*: Hdeibza@ju.edu.sci.jo

K. Y. Al-Zoubi, Department of Mathematics, Faculty of science, Yarmouk University, Irbid-Jordan, *e-mail*: Khalidz@yu.edu.jo