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Abstract. The purpose of the present paper is to introduce a new subclass of
harmonic univalent functions defined by convolution. Coefficient bounds, distortion
bounds, extreme points, convolution conditions and convex combinations are studied
for this class. Finally, we discuss a class preserving integral operator for this class.
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1. Introduction

A continuous complex-valued function f = u + iv defined in a simply-connected
domain D is said to be harmonic in D if both u and v are harmonic in D. In any
simply-connected domain D we can write f = h + ḡ, where h and g are analytic
in D. A necessary and sufficient condition for f to be locally univalent and sense-
preserving in D is that |h′(z)| > |g′(z)| , z ∈ D. See Clunie and Sheil-Small [3]. For
more basic results on harmonic mappings one may refer to the following excellent
text book by Duren [5], (see also Ahuja [1], Ponnusamy and Rasila [8], [9] and
references there in).

Denote by SjH the class of functions f = h+ ḡ that are harmonic univalent and
sense-preserving in the open unit disk U = {z : |z| < 1} for which f(0) = fz(0)−1 =
0. Then for f = h+ ḡ ∈ SH we may express the analytic functions h and g as

h(z) = z +

∞∑
k=j+1

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1)

The harmonic function f = h + ḡ for g ≡ 0 reduces to an analytic function f ≡ h.
A function f = h + ḡ of the form (1) is said to be harmonic starlike of order
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α(0 ≤ α < 1) in U , if and only if

∂

∂θ
{arg f(reiθ)} = <

{
zh′(z)− zg′(z)
h(z) + g(z)

}
> α, z ∈ U. (2)

The classes of all harmonic starlike functions of order α is denoted by Sj,∗H (α).
For j = 1, this class have been extensively studied by Jahangiri [6].

For α = 0; j = 1 the class Sj,∗H (α) is denoted by S∗H and studied in detail by
Silverman [12] and Silverman and Silvia [13], (see also [2]).

Let TSjH denote the class consisting of functions of the form

h(z) = z −
∞∑

k=j+1

|ak|zk, g(z) =
∞∑
k=1

|bk|zk, |b1| < 1. (3)

Let HP j(ϕ,Ψ, β) denote the subclass of SjH satisfying the condition

<
{
h(z) ∗ ϕ(z) + g(z) ∗Ψ(z)

z

}
> β, 0 6 β < 1, (4)

where ϕ(z) = z+
∑∞

k=j+1 λkz
k and Ψ(z) = z+

∑∞
k=2 µkz

k are analytic in U with the
conditions λk ≥ 0;µk ≥ 0. The operator ” ∗ ” stands for the Hadamard product or
convolution of two power series. We further denote by THP j(ϕ,Ψ, β) the subclass
of HP j(ϕ,Ψ, β) such that the functions h and g in f = h+ ḡ are of the form (3).

Clearly, if 0 6 β1 6 β2 < 1 , then HP j(ϕ,Ψ;β2) ⊆ HP j(ϕ,Ψ;β1).
We note that for j = 1, the class HP j(ϕ,Ψ, β) reduces to the class HP (ϕ,Ψ, β)

studied by Porwal et al. [11], (see also [10]) and HP 1
(

z
(1−z)2 ,

z
(1−z)2 ;β

)
= HP (β)

and THP 1
(

z
(1−z)2 ,

z
(1−z)2 ;β

)
= HP ∗(β) were studied by Karpuzogullari et al. [7],

(see also [4]).
In the present paper, results involving the coefficient inequalities, extreme points,

distortion bounds, convolution condition and convex combinations for the above
classes HP j(ϕ,Ψ, β) and THP j(ϕ,Ψ, β) of harmonic univalent functions have been
investigated.

2. Main Results

First, we give a sufficient coefficient condition for function f = h+g ∈ SjH belonging
to the class HP j(ϕ,Ψ, β).
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Theorem 1. Let the function f = h + g be such that h and g are given by (1).
Furthermore, let

∞∑
k=j+1

λk|ak|+
∞∑
k=1

µk|bk| 6 1− β, (5)

where 0 6 β < 1, k(1−β) 6 λk, k(1−β) 6 µk. Then f is sense-preserving, harmonic
univalent in U and f ∈ HP j(ϕ,Ψ, β).

Proof. First we note that f is locally univalent and sense-preserving in U . This is
because

|h′(z)| > 1−
∞∑

k=j+1

k|ak|rk−1

>

∞∑
k=j+1

k|ak|

≥ 1−
∞∑

k=j+1

λk
1− β

|ak|

>
∞∑
k=1

µk
1− β

|bk|

>
∞∑
k=1

k|bk|

>

∞∑
k=1

k|bk|rk−1

> |g′(z)|.
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To show that f is univalent in U , suppose z1, z2 ∈ U such that z1 6= z2. Then∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ > 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣∣∣∣∣
∞∑
k=1

bk(z
k
1 − zk2 )

z1 − z2 +
∞∑

k=j+1

ak(z
k
1 − zk2 )

∣∣∣∣∣∣∣∣∣
> 1−

∞∑
k=1

k|bk|

1−
∞∑

k=j+1

k|ak|

> 1−

∞∑
k=1

µk
1−β |bk|

1−
∞∑

k=j+1

λk
1−β |ak|

≥ 0.

Now, we show that f ∈ HP j(ϕ,Ψ;β). Using the fact that <{ω} ≥ β , if and only
if |1− β + w| > |1 + β − w|, it suffices to show that∣∣∣∣1− β +

h(z) ∗ ϕ(z) + g(z) ∗Ψ(z)

z

∣∣∣∣− ∣∣∣∣1 + β − h(z) ∗ ϕ(z) + g(z) ∗Ψ(z)

z

∣∣∣∣ > 0. (6)

Substituting the values of h(z) ∗ ϕ(z) and g(z) ∗Ψ(z) in L.H.S. of (6), we have∣∣∣∣∣∣(1− β) + 1 +

∞∑
k=j+1

λkakz
k−1 +

∞∑
k=1

µkbkz
k−1

∣∣∣∣∣∣
−

∣∣∣∣∣∣(1 + β)− 1−
∞∑

k=j+1

λkakz
k−1 −

∞∑
k=1

µkbkz
k−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣2− β +
∞∑

k=j+1

λkakz
k−1 +

∞∑
k=1

µkbkz
k−1

∣∣∣∣∣∣
−

∣∣∣∣∣∣β −
∞∑

k=j+1

λkakz
k−1 −

∞∑
k=1

µkbkz
k−1

∣∣∣∣∣∣
4
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> (2− β)−
∞∑

k=j+1

λk|ak||z|k−1 −
∞∑
k=1

µk|bk||z|k−1

−β −
∞∑

k=j+1

λk|ak||z|k−1 −
∞∑
k=1

µk|bk||z|k−1

> 2

(1− β)−
∞∑

k=j+1

λk|ak| −
∞∑
k=1

µk|bk|


≥ 0, by(5).

The harmonic mappings

f(z) = z +
∞∑

k=j+1

1− β
λk

xkz
k +

∞∑
k=1

1− β
µk

ykzk, (7)

where
∑∞

k=j+1 |xk|+
∑∞

k=1 |yk| = 1, show that the coefficient bound given by (5) is
sharp.

In our next theorem, we prove that the above sufficient condition is also necessary
for functions in THP j(ϕ,Ψ, β).

Theorem 2. Let f = h+ g be given by (3). Then f ∈ THP j(ϕ,Ψ, β), if and only
if

∞∑
k=j+1

λk|ak|+
∞∑
k=1

µk|bk| 6 1− β, (8)

where 0 6 β < 1, k(1− β) 6 λk, (k > j + 1, j + 2, ...) and k(1− β) 6 µk, for k ≥ 1.

Proof. Since THP j(ϕ,Ψ;β) ⊆ HP j(ϕ,Ψ;β), we only need to prove the ”only if”
part of the theorem. For this we have to show that if f ∈ THP j(ϕ,ψ, β) then the
condition (8) holds. We note that a necessary and sufficient condition for f = h+ g,
given by (3), to be in the class THP j(ϕ,Ψ;β) is

<
{
ϕ ∗ h(z) + Ψ(z) ∗ g(z)

z

}
> β,

which is equivalent to

<

1−
∞∑

k=j+1

λk|ak|zk−1 −
∞∑
k=1

µk|bk|zk−1
 > β.
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If we choose z to be real and let z → 1−1, we obtain

1−
∞∑

k=j+1

λk|ak| −
∞∑
k=1

µk|bk| > β,

or
∞∑

k=j+1

λk|ak|+
∞∑
k=1

µk|bk| 6 1− β,

which is the required condition.

Next, we give the bounds for the function belonging to the class THP j(ϕ,Ψ, β).

Theorem 3. Let f ∈ THP j(ϕ,Ψ;β), Aj+1 6 λk and Aj+1 6 µk for k ≥ j + 1 and
Aj+1 = mink{λk, µk}. Then we have

|f(z)| 6 (1+|b1|)r+|b2| r2+...+|bj | rj+
1

Aj+1
(1−β−|b1|−µ2 |b2|−...−µj |bj |)rj+1, |z| = r < 1

and

|f(z)| > (1−|b1|)r−|b2| r2−...−|bj | rj−
1

Aj+1
(1−β−|b1|−µ2 |b2|−...−µj |bj |)rj+1, |z| = r < 1

Proof. Let f ∈ THP j(ϕ,Ψ;β). Then we have

|f(z)| 6 (1 + |b1|)r +
∞∑

k=j+1

|ak|rk +
∞∑
k=2

|bk|rk

6 (1 + |b1|)r + |b2| r2 + ...+ |bj | rj +

∞∑
k=j+1

(|ak|+ |bk|)rj+1

= (1 + |b1|)r + |b2| r2 + ...+ |bj | rj +
1

Aj+1

∞∑
k=j+1

Aj+1(|ak|+ |bk|)rj+1

6 (1 + |b1|)r + |b2| r2 + ...+ |bj | rj +
1

Aj+1

∞∑
k=j+1

(λk|ak|+ µk|bk|)rj+1

6 (1 + |b1|)r + |b2| r2 + ...+ |bj | rj +
1

Aj+1
(1− β − |b1| − µ2 |b2| − ...− µj |bj |)rj+1
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and

|f(z)| > (1− |b1|)r −
∞∑

k=j+1

|ak|rk −
∞∑
k=2

|bk|rk

> (1− |b1|)r − |b2| r2 − ...− |bj | rj −
∞∑

k=j+1

(|ak|+ |bk|)rj+1

= (1− |b1|)r − |b2| r2 − ...− |bj | rj −
1

Aj+1

∞∑
k=j+1

Aj+1(|ak|+ |bk|)rj+1

> (1− |b1|)r − |b2| r2 − ...− |bj | rj −
1

Aj+1

∞∑
k=j+1

(λk|ak|+ µk|bk|)rj+1

> (1− |b1|)r − |b2| r2 − ...− |bj | rj −
1

Aj+1
(1− β − |b1| − µ2 |b2| − ...− µj |bj |)rj+1.

Next, we determine the extreme points of the closed convex hulls of THP j(ϕ,Ψ;β)
denoted by clco THP j(ϕ,Ψ;β).

Theorem 4. f ∈ clcoTHP j(ϕ,Ψ;β), if and only if

f(z) = x1h1 (z) +
∞∑

k=j+1

xkhk(z) +
∞∑
k=1

ykgk(z), (9)

where

h1(z) = z, hk(z) = z − 1− β
λk

zk, k = j + 1, j + 2, . . . ,

gk(z) = z − 1− β
µk

zk, k = 1, 2, . . .

and
∞∑

k=j+1

xk +
∞∑
k=1

yk = 1− x1, xk > 0andyk > 0.

In particular, the extreme points of THP j(ϕ,Ψ;β) are {hk} and {gk}.

Proof. For functions f of the form (9), we have

f(z) = x1h1 (z) +
∞∑

k=j+1

xkhk(z) +
∞∑
k=1

ykgk(z),

7
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= z −
∞∑

k=j+1

1− β
λk

xkz
k −

∞∑
k=1

1− β
µk

ykz
k.

Then
∞∑

k=j+1

λk
1− β

(
1− β
λk

xk

)
+

∞∑
k=1

µk
1− β

(
1− β
µk

yk

)

=
∞∑

k=j+1

xk +
∞∑
k=1

yk = 1− x1 6 1

and so f ∈ clcoTHP j(ϕ,Ψ;β).
Conversely, suppose that f ∈ clcoTHP j(ϕ,Ψ;β). Set

xk =
λk

1− β
|ak|, k = j + 1, j + 2, . . . andyk =

µk
1− β

|bk|, k = 1, 2, 3, . . . .

Then note that by Theorem 2, 0 6 xk 6 1, (k = j + 1, j + 2, . . .) and 0 6 yk 6
1, (k = 1, 2, 3, . . .), we define

x1 = 1−
∞∑

k=j+1

xk −
∞∑
k=1

yk

and note that, by Theorem 2, x1 ≥ 0. Consequently, we obtain

f(z) = x1h1 (z) +

∞∑
k=j+1

xkhk(z) +

∞∑
k=1

ykgk(z),

as required.

Theorem 5. Each member of THP j(ϕ,Ψ;β) maps U onto a starlike domain.

Proof. We only need to show that if f = h+ g ∈ THP j(ϕ,Ψ;β), then

<

{
zh′(z)− zg′(z)
h(z) + g(z)

}
> 0.

Using the fact that <{ω} > 0 if and only if |1 + w| > |1 − w| , it suffices to show
that

|h(z) + g(z) + zh′(z)− zg′(z)| − |h(z) + g(z)− zh′(z) + zg′(z)|

8
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=

∣∣∣∣∣∣2z −
∞∑

k=j+1

(k + 1)|ak|zk +
∞∑
k=1

(k − 1)|bk|zk
∣∣∣∣∣∣

−

∣∣∣∣∣∣
∞∑

k=j+1

(k − 1)|ak|zk +
∞∑
k=1

(k + 1)|bk|zk
∣∣∣∣∣∣

> 2|z|

1−
∞∑

k=j+1

k|ak||z|k−1 −
∞∑
k=1

k|bk||z|k−1


> 2|z|

1−
∞∑

k=j+1

k|ak| −
∞∑
k=1

k|bk|


> 2|z|

1−
∞∑

k=j+1

λk
1− β

|ak| −
∞∑
k=1

µk
1− β

|bk|


> 0.

This completes the proof of theorem.

For our next theorem, we need to define the convolution of two harmonic func-
tions. For harmonic functions of the form

f(z) = z −
∞∑

k=j+1

|ak|zk −
∞∑
k=1

|bk|zk

and

F (z) = z −
∞∑

k=j+1

|Ak|zk −
∞∑
k=1

|Bk|zk

we define their convolution

(f ∗ F )(z) = f(z) ∗ F (z) = z −
∞∑

k=j+1

|akAk|zk −
∞∑
k=1

|bkBk|zk. (10)

Using this definition, we show that the class THP j(ϕ,Ψ;β) is closed under convo-
lution.

Theorem 6. For 0 6 α 6 β < 1, let f(z) ∈ THP j(ϕ,ψ;β) and F (z) ∈ THP j(ϕ,ψ;α).
Then

(f ∗ F )(z) ∈ THP j(ϕ,ψ;β) ⊆ THP j(ϕ,ψ;α).

9
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Proof. Let f(z) = z−
∑∞

k=j+1 |ak|zk−
∑∞

k=1 |bk|zk be in THP j(ϕ,ψ;β) and F (z) =

z−
∞∑

k=j+1

|Ak|zk −
∞∑
k=1

|Bk|zk be in THP j(ϕ,ψ;α). Then the convolution (f ∗F )(z)

is given by (10). We wish to show that the coefficient of (f ∗ F )(z) satisfy the
required condition given in Theorem 2. For F (z) ∈ THP j(ϕ,ψ;α), we note that
|Ak| 6 1, (k = j+1, j+2, . . .) and |Bk| 6 1, (k = 1, 2, 3, . . .). Now, for the convolution
functions (f ∗ F )(z), we have

∞∑
k=j+1

λk
1− β

|akAk|+
∞∑
k=1

µk
1− β

|bkBk|

6
∞∑

k=j+1

λk
1− β

|ak|+
∞∑
k=1

µk
1− β

|bk|

6 1, sincef ∈ THP j(ϕ,Ψ;β).

Next, we show that the class THP j(ϕ,Ψ;β) is closed under convex combination.

Theorem 7. The class THP j(ϕ,Ψ;β) is closed under convex combination.

Proof. For i = 1, 2, 3..., letfi (z) ∈ THP j(ϕ,Ψ;β), where fi(z) is given by

fi(z) = z −
∞∑

k=j+1

|aki |z
k −

∞∑
k=1

|bki |z
k.

Then by Theorem 2, we have

∞∑
k=j+1

λk
1− β

|aki |+
∞∑
k=1

µk
1− β

|bki | 6 1. (11)

For
∞∑
i=1

ti = 1,0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑

k=j+1

( ∞∑
i=1

ti|aki |

)
zk −

∞∑
k=1

( ∞∑
i=1

ti|bki |

)
zk.

10



I. Bala Mishra, S. Porwal – On a new subclass of harmonic univalent . . .

Then by (8), we have

∞∑
k=j+1

λk
1− β

{ ∞∑
i=1

ti|aki |

}
+

∞∑
k=1

µk
1− β

{ ∞∑
i=1

ti|bki |

}

= =
∞∑
i=1

ti


∞∑

k=j+1

λk
1− β

|aki |+
∞∑
k=1

µk
1− β

|bki |


≤
∞∑
i=1

ti

= 1.

This is the condition required by Theorem 2 and so

∞∑
i=1

tifi (z) ∈ THP j(ϕ,Ψ;β).

3. A Family of Class Preserving Integral Operator

Let f(z) = h(z) + g(z) be defined by (1), then F (z) defined by the relation

F (z) =
c+ 1

zc

∫ z

0
tc−1h (t) dt+

c+ 1

zc

∫ z

0
tc−1g (t) dt, (c > −1). (12)

Theorem 8. Let f(z) = h(z) + g(z) ∈ SH be given by (3) and f ∈ THP j(ϕ,Ψ;β)
then F (z) be defined by (12) also belong to THP j(ϕ,Ψ;β).

Proof. From the representation (12) of F (z), is follows that

F (z) = z −
∞∑

k=j+1

c+ 1

c+ k
|ak|zk −

∞∑
k=1

c+ 1

c+ k
|bk|zk.

Since f(z) ∈ THP j(ϕ,Ψ;β) , we have

∞∑
k=j+1

λk
1− β

|ak|+
∞∑
k=1

µk
1− β

|bk| 6 1. (13)

Now
∞∑

k=j+1

λk
1− β

(
c+ 1

c+ k
|ak|
)

+
∞∑
k=1

µk
1− β

(
c+ 1

c+ k
|bk|
)

11
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6
∞∑

k=j+1

λk
1− β

|ak|+
∞∑
k=1

µk
1− β

|bk|

6 1.

Thus F (z) ∈ THP j(ϕ,Ψ;β).
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