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1. Introduction

Let H denote the family of continuous complex valued harmonic functions of the
form f = h+ g defined in the open unit disk U = {z : |z| < 1} , where

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n (1)

are analytic in U.
A necessary and sufficient condition for f to be locally univalent and sense-preserving
in U is that |h′(z)| > |g′(z)| in U (see [4]).
Denote by SH the subclass ofH consisting of functions f = h+g which are harmonic,
univalent and sense-preserving in U and normalized by f(0) = fz (0) − 1 = 0. One
can easily show that the sense-preserving property implies that |b1| < 1. The subclass
SH0 of SH consisting of all functions in SH which have the additional property b1 =
0. Note that SH reduces to the class S of normalized analytic univalent functions
in U, if the co-analytic part of f is identically zero.
A function f ∈ SH is said to be harmonic starlike of order α (0 ≤ α < 1) in U if and
only if

<
{
zfz (z)− z̄fz̄ (z)

f (z)

}
> α, (z ∈ U) (2)
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and is said to be harmonic convex of order α (0 ≤ α < 1) in U if and only if

<
{
z2fzz (z) + zfz (z) + z̄2fz̄z̄ (z) + z̄fz̄ (z)

zfz (z)− z̄fz̄ (z)

}
> α, (z ∈ U). (3)

These classes represented by SH∗ (α) and KH (α), respectively, were extensively
studied by Jahangiri [8]. Denote by SH∗ and KH the classes SH∗(0) and KH(0),
respectively. For definitions and properties of these classes, one may refer to [9, 10]
or [3].
The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the
Binomial have been partially studied in the Geometric Function Theory from a
theoretical point of view (see [1, 2, 5, 7]).
Let us consider a non-negative discrete random variable X with a Pascal probability
generating function

P (X = n) =

(
n+ r − 1

r − 1

)
pn (1− p)r , n ∈ {0, 1, 2, 3, ...}

where p, r are called the parameters.
Now we introduce a power series whose coefficients are probabilities of the Pascal
distribution, that is

P r
p (z) = z +

∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 (1− p)r zn. (r ≥ 1, 0 ≤ p ≤ 1, z ∈ U ) (4)

Note that, by using ratio test we conclude that the radius of convergence of the
above power series is 1/p. Now, for r, s ≥ 1 and 0 ≤ p, q ≤ 1, we introduce the
operator P r,s

p,q : H → H by

P r,s
p,q (f)(z) = P r

p (z) ∗ h (z) + P s
q (z) ∗ g (z) = H (z) +G (z)

where

H(z) = z +
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 (1− p)r anz

n (5)

G(z) = b1z +
∞∑
n=2

(
n+ s− 2

s− 1

)
qn−1 (1− q)s bnz

n

and ”∗” denotes the convolution (or Hadamard product) of power series.
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2. Preliminary Lemmas

To prove our theorems we will use the following lemmas.

Lemma 1. (See [6]) If f = h+g ∈ KH0 where h and g are given by (1) with b1 = 0,
then

|an| ≤
n+ 1

2
, |bn| ≤

n− 1

2
.

Lemma 2. (See [8]) Let f = h+ g be given by (1) . If for some α (0 ≤ α < 1) and
the inequality

∞∑
n=2

(n− α) |an|+
∞∑
n=1

(n+ α) |bn| ≤ 1− α (6)

is hold, then f is harmonic, sense-preserving, univalent in U and f ∈ SH∗ (α) .

Define T SH∗ (α) = SH∗ (α)∩T 2 and T KH (α) = KH (α)∩T 1 where T k, (k =
1, 2) consisting of the functions f = h + g in SH so that h (z) and g (z) are of the
form

h(z) = z −
∞∑
n=2

|an| zn, g(z) = (−1)k
∞∑
n=1

|bn| zn, |b1| < 1 (k = 1, 2). (7)

Remark 1. (See [8]) Let f = h + g be given by (7) . Then f ∈ T SH∗ (α) if and
only if the coefficient condition (6) is satisfied. Also, if f ∈ T SH∗ (α), then

|an| ≤
1− α
n− α

, n ≥ 2, |bn| ≤
1− α
n+ α

, n ≥ 1. (8)

Lemma 3. (See [8]) Let f = h+ g be given by (1) . If for some α (0 ≤ α < 1) and
the inequality

∞∑
n=2

n (n− α) |an|+
∞∑
n=1

n (n+ α) |bn| ≤ 1− α (9)

is hold, then f is harmonic, sense-preserving, univalent in U and f ∈ KH (α) .

Remark 2. (See [8]) Let f = h+ g be given by (7) . Then f ∈ T KH (α) if and only
if the coefficient condition (9) holds. Also, if f ∈ T KH (α), then

|an| ≤
1− α

n (n− α)
, n ≥ 2, |bn| ≤

1− α
n (n+ α)

, n ≥ 1. (10)

Lemma 4. (See [6]) If f = h + g ∈ SH∗,0 where h and g are given by (1) with
b1 = 0, then

|an| ≤
(2n+ 1) (n+ 1)

6
, |bn| ≤

(2n− 1) (n− 1)

6
, n ≥ 2.
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3. Main Results

Theorem 5. Let r, s ≥ 1 and 0 ≤ p, q < 1. Also, let f = h+ g ∈ H is given by (1) .
If the inequalities

∞∑
n=2

|an|+
∞∑
n=1

|bn| ≤ 1, (|b1| < 1) (11)

and
(1− p)r + (1− q)s ≥ 1 + |b1|+

rp

1− p
+

sq

1− q
(12)

are hold, then the operator P r,s
p,q is harmonic, sense-preserving, univalent and maps

H into SH∗.

Proof. Note that P r,s
p,q (f) = H (z) + G (z), where H (z) and G (z) are given by (5) .

To prove that P r,s
p,q (f) is locally univalent and sense-preserving it suffices to prove

that |H ′(z)| − |G′(z)| > 0 in U. Using (11), we compute

∣∣H ′(z)∣∣− ∣∣G′(z)∣∣ > 1−
∞∑
n=2

n

(
n+ r − 2

r − 1

)
pn−1 (1− p)r

− |b1| −
∞∑
n=2

n

(
n+ s− 2

s− 1

)
qn−1 (1− q)s

= 1− |b1| −
∞∑
n=2

(n− 1 + 1)

(
n+ r − 2

r − 1

)
pn−1 (1− p)r

−
∞∑
n=2

(n− 1 + 1)

(
n+ s− 2

s− 1

)
qn−1 (1− q)s

= 1− |b1| − rp (1− p)r
∞∑
n=2

(
n+ r − 2

r

)
pn−2

− (1− p)r
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 − sq (1− q)s

∞∑
n=2

(
n+ s− 2

s

)
qn−2

− (1− q)s
∞∑
n=2

(
n+ s− 2

s− 1

)
qn−1

= 1− |b1| − rp (1− p)r
∞∑
n=0

(
n+ r

r

)
pn

− (1− p)r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn + (1− p)r
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−sq (1− q)s
∞∑
n=0

(
n+ s

s

)
qn

− (1− q)s
∞∑
n=0

(
n+ s− 1

s− 1

)
qn + (1− q)s

= (1− p)r + (1− q)s − 1− |b1| −
rp

1− p
− sq

1− q
≥ 0.

To prove P r,s
p,q (f) is univalent in U, referring Theorem 1 in [8], for z1 6= z2 in U, we

need to show that

<P
r,s
p,q (f) (z2)− P r,s

p,q (f) (z1)

z2 − z1
>

∫ 1

0

(
<(H ′ (z (t)))−

∣∣G′ (z (t))
∣∣) dt. (13)

By (11), we have

<(H ′ (z (t)))−
∣∣G′ (z (t))

∣∣ > 1−
∞∑
n=2

n

(
n+ r − 2

r − 1

)
pn−1 (1− p)r

− |b1| −
∞∑
n=2

n

(
n+ s− 2

s− 1

)
qn−1 (1− q)s .

Using (12), we obtain that the inequality above is nonnegative. Therefore, from the
inequality (13) we have

<P
r,s
p,q (f) (z2)− P r,s

p,q (f) (z1)

z2 − z1
> 0.

Hence univalency of P r,s
p,q (f) is proved.

In order to show that P r,s
p,q (f) ∈ SH∗, we need to prove Φ1 ≤ 1, by Lemma 2, where

Φ1 =

∞∑
n=2

n

(
n+ r − 2

r − 1

)
pn−1 (1− p)r |an|+|b1|+

∞∑
n=2

n

(
n+ s− 2

s− 1

)
qn−1 (1− q)s |bn| .

Since |an| ≤ 1, |bn| ≤ 1, ∀n ≥ 2 because of (11), we have

Φ1 ≤ rp (1− p)r
∞∑
n=0

(
n+ r

r

)
pn + (1− p)r

∞∑
n=0

(
n+ r − 1

r − 1

)
pn

− (1− p)r + |b1|+ sq (1− q)s
∞∑
n=0

(
n+ s

s

)
qn
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+ (1− q)s
∞∑
n=0

(
n+ s− 1

s− 1

)
qn − (1− q)s

= |b1|+
rp

1− p
+ 1− (1− p)r +

sq

1− q
+ 1− (1− q)s

≤ 1

from (12). Thus proof of Theorem 5 is complete.

Theorem 6. Let 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

r (r + 1) p2

(1− p)2 +
(4− α) rp

1− p
+
s (s+ 1) q2

(1− q)2 +
(2 + α) sq

1− q

≤ 2 (1− α) (1− p)r

is hold, then P r,s
p,q

(
KH0

)
⊂ SH∗,0 (α).

Proof. Suppose that f = h+ g ∈ KH0 where h and g are given by (1) with b1 = 0.
It suffices to show that P r,s

p,q (f) = H +G ∈ SH∗,0 (α), where H and G are given by
(5) with b1 = 0 in U. Using Lemma 2, we need to prove that Φ2 ≤ 1− α, where

Φ2 =
∞∑
n=2

(n− α)

(
n+ r − 2

r − 1

)
(1− p)r pn−1 |an| (14)

+

∞∑
n=2

(n+ α)

(
n+ s− 2

s− 1

)
(1− q)s qn−1 |bn| . (15)

Using Lemma 1, we compute

Φ2 ≤ 1

2

{ ∞∑
n=2

(n− α) (n+ 1)

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+

∞∑
n=2

(n+ α) (n− 1)

(
n+ s− 2

s− 1

)
(1− q)s qn−1

}

=
1

2

{ ∞∑
n=2

[(n− 1) (n− 2) + (4− α) (n− 1) + 2 (1− α)]

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+

∞∑
n=2

[(n− 1) (n− 2) + (2 + α) (n− 1)]

(
n+ s− 2

s− 1

)
(1− q)s qn−1

}
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=
1

2

{
r (r + 1) p2 (1− p)r

∞∑
n=3

(
n+ r − 2

r + 1

)
pn−3

+ (4− α) rp (1− p)r
∞∑
n=2

(
n+ r − 2

r

)
pn−2

+2 (1− α) (1− p)r
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−2

+s (s+ 1) q2 (1− q)s
∞∑
n=3

(
n+ s− 2

s+ 1

)
qn−3

+ (2 + α) sq (1− q)s
∞∑
n=2

(
n+ s− 2

s

)
qn−2

}

=
1

2

{
r (r + 1) p2 (1− p)r

∞∑
n=0

(
n+ r + 1

r + 1

)
pn

+ (4− α) rp (1− p)r
∞∑
n=0

(
n+ r

r

)
pn

+2 (1− α) (1− p)r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn − 2 (1− α) (1− p)r

+s (s+ 1) q2 (1− q)s
∞∑
n=0

(
n+ s+ 1

s+ 1

)
qn

+ (2 + α) sq (1− q)s
∞∑
n=0

(
n+ s

s

)
qn

}

=
1

2

{
r (r + 1) p2

(1− p)2 +
(4− α) rp

1− p
+ 2 (1− α)

−2 (1− α) (1− p)r +
s (s+ 1) q2

(1− q)2 +
(2 + α) sq

1− q

}
.

The last expression is bounded above by (1− α) by the given condition.

Thus the proof of Theorem 6 is completed.
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Theorem 7. Suppose 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

2r (r + 1) (r + 2) p3

(1− p)3 +
(15− 2α) r (r + 1) p2

(1− p)2 +
(24− 9α) rp

1− p
(16)

+
2s (s+ 1) (s+ 2) q3

(1− q)3 +
(9 + 2α) s (s+ 1) q2

(1− q)2 +
(6 + 3α) sq

1− q

≤ 6 (1− α) (1− p)r

is hold then P r,s
p,q

(
SH∗,0 (α)

)
⊂ SH∗,0 (α) .

Proof. Suppose f = h+ g ∈ SH∗.0 (α) where h and g are given by (1) with b1 = 0.
It suffices to show that P r,s

p,q (f) = H + G ∈ SH∗,0 (α) where H and G are given by
(5) with b1 = 0. By Lemma 2, we need to prove that Φ2 ≤ 1− α, where

Φ2 =
∞∑
n=2

(n− α)

(
n+ r − 2

r − 1

)
(1− p)r pn−1 |an|

+
∞∑
n=2

(n+ α)

(
n+ s− 2

s− 1

)
(1− q)s qn−1 |bn| .

Using Lemma 4, we have

Φ2 ≤ 1

6

{ ∞∑
n=2

(n− α) (2n+ 1) (n+ 1)

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+

∞∑
n=2

(n+ α) (2n− 1) (n− 1)

(
n+ s− 2

s− 1

)
(1− q)s qn−1

}

=
1

6

{
2
∞∑
n=2

(
n+ r − 2

r − 1

)
(n− 1) (n− 2) (n− 3) (1− p)r pn−1

+ (15− 2α)

∞∑
n=2

(
n+ r − 2

r − 1

)
(n− 1) (n− 2) (1− p)r pn−1

+ (24− 9α)
∞∑
n=2

(
n+ r − 2

r − 1

)
(n− 1) (1− p)r pn−1

+6 (1− α)

∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+2

∞∑
n=2

(
n+ s− 2

s− 1

)
(n− 1) (n− 2) (n− 3) (1− q)s qn−1

140
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+ (9 + 2α)
∞∑
n=2

(
n+ s− 2

s− 1

)
(n− 1) (n− 2) (1− q)s qn−1

+ (6 + 3α)

∞∑
n=2

(
n+ s− 2

s− 1

)
(n− 1) (1− q)s qn−1

}

=
1

6

{
2r (r + 1) (r + 2) p3 (1− p)r

∞∑
n=4

(
n+ r − 2

r + 2

)
pn−4

+ (15− 2α) r (r + 1) p2 (1− p)r
∞∑
n=3

(
n+ r − 2

r + 1

)
pn−3

+ (24− 9α) rp (1− p)r
∞∑
n=2

(
n+ r − 2

r

)
pn−2

+6 (1− α)
∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+2s (s+ 1) (s+ 2) q3 (1− q)s
∞∑
n=4

(
n+ s− 2

s+ 2

)
qn−4

+ (9 + 2α) s (s+ 1) q2 (1− q)s
∞∑
n=3

(
n+ s− 2

s+ 1

)
qn−3

+ (6 + 3α) sq (1− q)s
∞∑
n=2

(
n+ s− 2

s

)
qn−2

}

=
1

6

{
2r (r + 1) (r + 2) p3 (1− p)r

∞∑
n=0

(
n+ r + 2

r + 2

)
pn

+ (15− 2α) r (r + 1) p2 (1− p)r
∞∑
n=0

(
n+ r + 1

r + 1

)
pn

+ (24− 9α) rp (1− p)r
∞∑
n=0

(
n+ r

r

)
pn

+6 (1− α) (1− p)r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn − 6 (1− α) (1− p)r

+2s (s+ 1) (s+ 2) q3 (1− q)s
∞∑
n=0

(
n+ s+ 2

s+ 2

)
qn

+ (9 + 2α) s (s+ 1) q2 (1− q)s
∞∑
n=0

(
n+ s+ 1

s+ 1

)
qn
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+ (6 + 3α) sq (1− q)s
∞∑
n=0

(
n+ s

s

)
qn

}

=
1

6

{
2r (r + 1) (r + 2) p3

(1− p)3 +
(15− 2α) r (r + 1) p2

(1− p)2

+
(24− 9α) rp

1− p
+ 6 (1− α)− 6 (1− α) (1− p)r

+
2s (s+ 1) (s+ 2) q3

(1− q)3 +
(9 + 2α) s (s+ 1) q2

(1− q)2 +
(6 + 3α) sq

1− q

}
≤ 1− α

by the given condition.

Theorem 8. If 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1 then P r,s
p,q (T SH∗ (α)) ⊂

T SH∗ (α) if and only if the inequality

(1− p)r + (1− q)s ≥ 1 +
(1 + α) |b1|

(1− α)

is hold.

Proof. Suppose f = h+ g ∈ TSH∗ (α) where h and g are given by (7). We need to
prove that the operator

P r,s
p,q (f) (z) = z −

∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)r pn−1 |an| zn

+ |b1| z +
∞∑
n=2

(
n+ s− 2

s− 1

)
(1− q)s qn−1 |bn| zn

is in TSH∗ (α) if and only if Φ3 ≤ 1− α, where

Φ3 =
∞∑
n=2

(n− α)

(
n+ r − 2

r − 1

)
(1− p)r pn−1 |an|

+ (1 + α) |b1|+
∞∑
n=2

(n+ α)

(
n+ s− 2

s− 1

)
(1− q)s qn−1 |bn| .

By Remark 1, we have

Φ3 ≤ (1− α)

{ ∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+
∞∑
n=2

(
n+ s− 2

s− 1

)
(1− q)s qn−1

}
+ (1 + α) |b1|
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= (1− α)

{
(1− p)r

∞∑
n=0

(
n+ r − 1

r − 1

)
pn − (1− p)r

+ (1− q)s
∞∑
n=0

(
n+ s− 1

s− 1

)
qn − (1− q)s

}
+ (1 + α) |b1|

= (1− α) {2− (1− p)r − (1− q)s}+ (1 + α) |b1|
≤ 1− α

by the given condition and thus the proof of the theorem is completed.

We next explore a sufficient condition which guarantees that P r,s
p,q maps KH0 into

KH0(α).

Theorem 9. Suppose 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

r (r + 1) (r + 2) p3

(1− p)3 +
(7− α) r (r + 1) p2

(1− p)2 +
(10− 4α) rp

1− p

+
s (s+ 1) (s+ 2) q3

(1− q)3 +
(5 + α) s (s+ 1) q2

(1− q)2 +
(4 + 2α) sq

1− q

≤ 2 (1− α) (1− p)r

is hold, then P r,s
p,q

(
KH0

)
⊂ KH0 (α) .

Proof. Let f = h+ g ∈ KH0 where h and g are given by (1) with b1 = 0. It suffices
to show that P r,s

p,q (f) = H + G ∈ KH0 (α) where H and G are given by (5) with
b1 = 0. Referring Lemma 1, we need to prove that Φ4 ≤ 1− α, where

Φ4 =
∞∑
n=2

n (n− α)

(
n+ r − 2

r − 1

)
(1− p)r pn−1 |an|

+

∞∑
n=2

n (n+ α)

(
n+ s− 2

s− 1

)
(1− q)s qn−1 |bn| .

Using Lemma 1, we have

Φ4 ≤ 1

2

{ ∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+

∞∑
n=2

(7− α) (n− 1) (n− 2)

(
n+ r − 2

r − 1

)
(1− p)r pn−1
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+
∞∑
n=2

(10− 4α) (n− 1)

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+
∞∑
n=2

2 (1− α)

(
n+ r − 2

r − 1

)
(1− p)r pn−1

+

∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ s− 2

s− 1

)
(1− q)s qn−1

+
∞∑
n=2

(5 + α) (n− 1) (n− 2)

(
n+ s− 2

s− 1

)
(1− q)s qn−1

+

∞∑
n=2

(4 + 2α) (n− 1)

(
n+ s− 2

s− 1

)
(1− q)s qn−1

}

=
1

2

{
r (r + 1) (r + 2) p3

(1− p)3 +
(7− α) r (r + 1) p2

(1− p)2 +
(10− 4α) rp

1− p

+2 (1− α)− 2 (1− α) (1− p)r

+
s (s+ 1) (s+ 2) q3

(1− q)3 +
(5 + α) s (s+ 1) q2

(1− q)2 +
(4 + 2α) sq

1− q

}
≤ 1− α

by the given condition.

The proofs of following theorems are similar to previous theorems so we omit
them.

Theorem 10. Let 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

(1− p)r + (1− q)s ≥ 1 +
rp

1− p
+

sq

1− q
+

(1 + α)

(1− α)
|b1| (17)

is hold, then P r,s
p,q (T SH∗ (α)) ⊂ KH (α) .

Theorem 11. If 0 ≤ α < 1, r, s ≥ 1 and 0 ≤ p, q < 1 then P r,s
p,q (T KH (α)) ⊂

T KH (α) if and only if the inequality

(1− p)r + (1− q)s ≥ 1 +
(1 + α) |b1|

(1− α)

is hold.

Example 1. Consider the harmonic polynomial f1(z) = z − 1
2z

2. If we take s = 10
and q = 0.1 then from (5), we have

P r,10
p,0.1(f1)(z) = z − 0.17z2.
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E. Yaşar, S. Çakmak, S. Yalçın and Ş. Altınkaya – Some connections between . . .

One can easily see that coefficients of f1(z) satisfy condition (11). Condition (12)
is also hold for s = 10, q = 0.1 and specific choices of r and p such as when r = 1 p
can be chosen from 0 to 0.49 and when r = 2 p can be chosen from 0 to 0.31. Then,
using Theorem 5, P r,10

p,0.1(f1) ∈ SH∗. Images of concentric circles inside U under the

functions f1 and P r,10
p,0.1(f1) are shown in Figures 1 and 2.

Figure 1: Image of f1 Figure 2: Image of P r,10
p,0.1(f1)

Example 2. Consider the harmonic right half plane mapping f0(z) =
z− 1

2
z2

(1−z)2
+

− 1
2
z2

(1−z)2
∈ KH0. If we take r = 2, s = 2, p = 0.01 and q = 0.01 then from (5), we have

P 2,2
0.01, 0.01(f0)(z) = z +

∞∑
n=2

n(n+ 1)

2
(0.01)n−1(0.99)2zn

+

∞∑
n=2

n(−n+ 1)

2
(0.01)n−1(0.99)2zn.

Then, according to the Theorem 9, P 2,2
0.01, 0.01(f0)(z) ∈ KH0(α) for 0 ≤ α < 1. Images

of concentric circles inside U under the functions f0 and P 2,2
0.01, 0.01(f0) are shown in

Figures 3 and 4.
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Figure 3: Image of f0 Figure 4: Image of P 2,2
0.01,0.01(f0)
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Şahsene Altınkaya
Department of Mathematics, Faculty of Arts and Sciences,
Beykent University,
34500, Istanbul, Turkey
email: sahsenealtinkaya@beykent.edu.tr

147


	Introduction
	Preliminary Lemmas
	Main Results

