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ABSTRACT. In this paper, we give smoe characterizations of relatively normal-
slant helices and isophotic curves on a smooth surface immersed in Euclidean 3-space
with respect to their position vevtor. We also introduce the methods for generating
an isophotic curve on a given surface by its parametric or implicit equation.
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1. INTRODUCTION

In [2], B. Y. Chen, introduced the notion of rectifying curve as a space curve whose
position vector always lies in its rectifying plane. He also studied several characteri-
zations of rectifying curves, which enable us to interpret rectifying curves kinemati-
cally, as those curves whose position vector field determines the axis of instantaneous
rotation at each point of the curve. In 2004, Izumiya and Takeuchi defined a slant
helix in E3 by the property that the principal normal vector makes a constant angle
with a fixed direction and obtained a necessary and sufficient condition for a curve
v with £(s) > 0 to be a slant helix [6]. In [1], Altunkaya and Kula studied rectifying
slant helices and found the position vector of these curves.

On the other hand, when we study space curve on a smooth surface immersed
in Euclidean 3-space at every point of the curve a moving orthonormal frame called
Darboux frame {7,V,U} comes naturally. In [3], authors gave some characteri-
zations of position vector of a unit speed curve in a regular surface immersed in
Euclidean 3-space which always lies in the planes spanned by {T,U}, {T,V} and
{V,U}, respectively by using the Darboux frame. In [8], N. Macit and M. Duldul,
introduced the notion of relatively normal-slant helix as a curve whose vector field
V makes a constant angle with a fixed direction and gave some characterizations for
such curves. In [5], F. Dogan and Y. Yayli studied isophotic curves on a surface in
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Euclidean 3-space and found the axis of an isophotic curve via its Darboux frame
and also gave some characterizations about the isophotic curve and its axis.

In [7], authors studied special vector fields along a curve associated to the Dar-
boux frame and investigate their singularities as an application of the theory of
spherical dualities. Moreover, they gave characterizations of isophotic curves on a
surface by using one of the special vector fields. In this paper, we study relatively
normal-slant helices and isophotic curves on a smooth surface immersed in Fuclidean
3-space. The paper is arrange as follws: In section 2, we discuss some basic theory
of unit speed parametrized curve on a smooth surface. In section 3, we study rel-
atively normal-slant helices on a smooth surface with position vectors lying in the
plane spanned by {7, U}. Section 4 is devoted to the study of isophotic curves on a
smooth surface with position vectors lying in the plane spanned by {7, V}. In sub-
section 4.1 and 4.2, we introduce some methods for generating the isophotic curve
with the chosen direction and constant angle on a given surface by its parametric
and implicit equation, respectively.

2. PRELIMINARIES

Let v : I — E3, where I = (a, 3) C R, be the unit speed parametrized curve that
has at least four continuous derivatives. Then the tangent vector of the curve v be
denoted by T and given by T'(s) = 7 (s), Vs € I, where o denote the derivative of
~ with respect to the arc length parameter s. The binormal vector B is defined by
B =T x N, where N is the principal normal vector to the curve . The Frenet-Serret
equations are given by

T'(s) = k()N (s), (1)
N'(s) = =r(s)T(s) + 7(s) B(s), (2)
B'(s) = —7(s)N(s), (3)

where £(s) and 7(s) are smooth functions of s, called curvature and torsion of the
curve 7. Let o : S C R?> — M be the coordinate chart for a smooth surface M
immersed in Euclidean space E? and the unit speed parametrized curve v : I —
M C E3, where I = (o, 8) C R, contained in the image of a surface patch o in the
atlas of M. Then v(s) is given by

v(s) = o(u(s),v(s)), Vsel. (4)
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Now, the curve v(s) lies on the surface M then the Darboux frame {T',V,U} at each
point of the curve 7(s) is given as follows:

T 0 kg kn T
Vil=| -k 0 1, V|, (5)
U ~kn, -7 O U

where xy4, K, and 7, are the geodesic curvature, normal curvature and geodesic
torsion, respectively. Again, since y(s) is unit-speed curve lies on surface M, A s
perpendicular to fy/(: T), and hence is a linear combination of U and V(=U x T)).
Thus

7' (5) = kn()U () + kg (s)V (5), (6)
As U and V are perpendicular unit vectors therefore from (2.6), we get
kn(s) =~ (s).U(s) and  ky(s) =7 (s).V(s). (7)

Also from (2.1) and (2.7), we obtain
kn(s) = k(s)N(s).U(s) and ky(s) =k(s)N(s).V(s), (8)
which implies
kn(s) = k(s)sind  and  ky(s) = k(s)cosb, 9)

where 6 is the angle between vectors N and V. Thus the curve « is a geodesic curve
if and only if k; = 0 and the curve v is an asymptotic line if and only if k,, = 0. Also
geodesic torsion 7, is given by 7, = 7 — 6'. Now, Differentiating (2.4) with respect
to s, we get

T(s) =7 (s) =t oy + v 0y (10)

As the curve ~ is unit speed curve on M. Thus
12 o 12
FEu +2Fuv +Gv =1 (11)

The unit normal U to the surface M is given by

Ou X Oy Ou X Oy
U(s) = = . 12
)= flow ol = VEG - F? (12

Also, since V' =U x T by using (2.10) and (2.11), we obtain
1
VEG — F?

where F = oy.04, F = 0y4.0, and G = o,.0, are coefficients of first fundamental
form.

V(s) = (Bu'oy + F(v'o, —'0y) = Gu'oy), (13)
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3. RELATIVELY NORMAL-SLANT HELICES ON A SMOOTH SURFACE

Let v be a unit speed curve on an oriented surface M and (7', V,U) be the Darboux
frame along y(s). The curve ~ is called a relatively normal-slant helix if the vector
field V' of v makes a constant angle with a fixed direction [§8] , i.e. there exists a fixed
unit vector d and a constant angle ¢ such that < V,d >= cos¢. The unit vector
d is called the axis of the relatively normal-slant helix. In this section, we study
relatively normal-slant helices on a smooth surface immersed in Euclidean 3-space,
whose position vector lies in the plane spanned by {7,U}. If position vector of
the curve y always lies in the plane sp{T,U} then the position vector of the curve
satisfies the equation

A(s) = M ()T(s) + Ae()U (s), (14)

for some differentiable functions A;(s) and A2(s). Then from [3], we have

Ai(s) = Ty ignds, (15)
kg
Aa(s) = ce I R " (16)

where ¢ € Rg. Also from [3], the curvature functions ,(s), k4(s) and 74(s) satisfy

the equation
Y () 1) k) () = LS (17)
kg kg " c ’

Theorem 1. [8] A unit speed curve v on a surface M with (74(s), kq(s)) # (0,0) is
a relatively normal-slant helix if and only if

po(5) = (——— (g7 — Tk, — (k2 + 72)))(5) (18)

o[

is a constant function.

Theorem 2. Let v be a unit speed curve on a smooth surface M with position vector
lies in the plane sp{T,U}. Then the curve 7y is a relatively normal-slant heliz if and

. kg [ gs .
only if ———=———e¢e” %9 s a constant function.
(k2 4712)

N

Proof. First assume that curve v is a relatively normal-slant helix then

(]H’f) ((U ; ((k) . 1> k> ) (19
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2 Tgkn
is a constant function. Then from (3.4) and (3.6), we get #ef T s g
(k2 +12)2
constant function.
ky  premegs

Conversely, suppose that e’ *g is a constant function. Then by

(k2 +72)3
using this in (3.4), we get the required result.

Corollary 3. Let v be a unit speed asymptotic curve on a smooth surface M with
position vector lies in the plane sp{T,U}. Then the curve 7 is a relatively normal-

k2

slant helix if and only if | ————
(K24 72)2

(s) is a constant function.

Corollary 4. Let v be a unit speed line of curvature on a smooth surface M with
position vector lies in the plane sp{T,U}. Then the curve 7 is a relatively normal-
slant helix if and only if ky(s) is a constant function.

Theorem 5. Let v be a relatively normal-slant helixz on a smooth surface M with
position vector lies in the plane sp{T,U}. Then the position vector of the curve -y
satisfies the equation

()= LT Ky (20)
T wet  merE

Proof. Since position vector of v lies in the plane sp{T,U} therefore from (3.1),
(3.2) and (3.3), we have

c [ Tgkn [ Tgkn
(s)= T T BT () fee T
Kg

Ul(s). (21)
Also, 7 is relatively normal-slant helix with position vector in the plane sp {T,U}.
Then, we have
k2 Tgrn
7‘(];6] . c(const.). (22)
(k2 472)2
Thus from (3.8) and (3.9), we obtain the required result.

Corollary 6. Let v be a relatively normal-slant heliz on a smooth surface M with

position vector lies in the plane sp{T,U}. If v is asymptotic curve on M then
kT k2
— and < v, U >= -
2

<~T>= 3 _
(k%2 4+ 72)2 (k%2 +72)
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Corollary 7. Let v be a relatively normal-slant heliz on a smooth surface M with
position vector lies in the plane sp{T,U}. If v is line of curvature on M then
<vT>=0and <v,U >= é

Theorem 8. Let v be a relatively normal-slant helix with k, = 0 and position vector
of v lies in the plane sp{T,U}. Then v is slant helix if and only if v is rectifying
curve.

Proof. Let v be a relatively normal-slant helix with &, = 0 and position vector of
lies in the plane sp {T,U}. Suppose 7 is slant helix then from [6], we have

/{2 T/

IM(S) = m(;) (S) = constant. (23)
Now, from corollary 3.1 and equation (3.10), we get (%)/(s) = constant, which
implies (7)(s) = c15 + c2, where c1,c2 € Rg. Thus v is a rectifying curve.
Conversely, suppose that v is a rectifying curve. Then (%)l(s) = constant. Also
since 7 is relatively normal-slant helix with k, = 0 and position vector of ~ lies

k2
in the plane sp{T,U} therefore | ———— | (s) is a constant function. Thus
(k2 4+ 712)2
k‘2

——— | (¥)'(s) is a constant function. Hence ~ is slant helix.
(k2+72)2 ) "

4. ISOPHOTIC CURVES ON A SMOOTH SURFACE

Let v be a unit speed curve on an oriented surface M. The curve v is called an
isophotic curve if the unit normal vector field U of M along v makes a constant
angle with a fixed direction [5], i.e. there exists a fixed unit vector d and a constant
angle ¢ such that < U,d >= cos¢. The unit vector d is called the axis of the
isophotic curve. In this section, we study isophotic curves on a smooth surface
immersed in Euclidean 3-space, whose position vector lies in the plane spanned by
{T,V}.

If position vector of the curve v always lies in the plane sp{T,V} then the
position vector of the curve satisfies the equation

V(s) = 1 (s)T(s) + pa(s)V (s), (24)

for some differentiable functions pi(s) and pa(s). Then from [3], we have

p(s) = — 8l Tt (25)

Kn
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[ T2k gg

pa(s) = ce! (26)

where ¢ € Rg. Also from [3], the curvature functions k,(s), k4(s) and 74(s) satisfy

the equation
T , .\ 2 1 [Teteg
9 _ 29 _ - [Tids
<<kn> <<kn> + 1) k:g) (s) pe . (27)

Theorem 9. [5] A unit speed curve v on a surface M with (14(s), kn(s)) # (0,0) is
an isophotic curve if and only if

1 / /
pu(s) = (m(kﬂg — Tokn — kg(ki +72)))(5) (28)
n T 'g
is a constant function.

Theorem 10. Let v be a unit speed curve on a smooth surface M with position
vector lies in the plane sp{T,V'}. Then the curve ~y is an isophotic curve if and only

) k2 [ Tgkg . .
if ——e J 75 s 4 constant function.
(k2 +712)2

Proof. First assume that curve ~ is an isophotic curve, then

(kgi;)% ((Z) _ ((Zf + 1) kg> (s) (29)

2 Tgk
ko - Teds

is a constant function. Then from (4.4) and (4.6), we get 5 is a
(k7 +75)2
constant function. )
Conversely, suppose that k7”3eff " % is a constant function. Then by
(k7 +75)2

using this in (4.4), we obtain (4.6). Hence v is an isophotic curve.

Corollary 11. Let v be a unit speed geodesic curve on a smooth surface M with
position vector lies in the plane sp{T,V'}. Then the curve -y is an isophotic curve

k2
if and only if | ————= | (s) is a constant function.
(k2 +712)2

Corollary 12. Let v be a unit speed line of curvature on a smooth surface M with
position vector lies in the plane sp{T,V'}. Then the curve vy is an isophotic curve
if and only if ky,(s) is a constant function.

75



A. Yadav, B. Pal — On Relatively Normal-Slant Helices and Isophotic Curves

Theorem 13. Let v be an isophotic curve on a smooth surface M with position
vector lies in the plane sp{T,V'}. Then the position vector of the curve 7y satisfies
the equation
k2 kT,
v(s) = #V(S) - %T(S)- (30)
(ki +73)2 (ki +73)2

Proof. Since position vector of 7 lies in the plane {7, V'} therefore from (4.1), (4.2)
and (4.3), we have
kg

(s) = —‘;Eef () 4 ced TPV (s), (31)

Also, v is an isophotic curve with position vector in the plane sp {T,V}. Then, we

have 9
Mef s = c(const.). (32)
n T Tg

Thus from (4.8) and (4.9), we obtain the required result.

Corollary 14. Let v be an isophotic curve on a smooth surface M with position

vector lies in the plane sp{T,V'}. If v is geodesic curve on M then < ~v,T >=
2

k k
—773 and < v,V >= ——.
(k2 +712)2 (k2 4 712)2
Corollary 15. Let v be an isophotic curve on a smooth surface M with position
vector lies in the plane sp{T,V'}. If v is line of curvature on M then < v, T >=0
1

and < v,V >= T

Theorem 16. Let v be an isophotic curve with kg = 0 and position vector of v lies
in the plane sp{T,V'}. Then ~ is slant heliz if and only if v is rectifying curve.

Proof. Let v be an isophotic curve with k; = 0 and position vector of v lies in
the plane sp{T,V}. Suppose 7 is slant helix then from [6], we have u(s) =

#(z
(r2472)3/2 \&
get (%)/(s) = constant, which implies (%)(s) = c15 + c2, where c1,co € Rg. Hence,
v is a rectifying curve.

Conversely, suppose that v is a rectifying curve. Then (%)/(s) = constant. Also

since + is an isophotic curve with k4 = 0 and position vector of v lies in the plane

k? k2 /
——— | (s) is a constant function. Thus [ —————5 | (¥) (s)
(k2 +72)2 (K2 +72)2

is a constant function. Hence + is slant helix.

)/(s) = constant. Thus, by using corollary 4.1 in above equation, we

sp{T, V'} therefore (
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4.1. Isophotic curves on a parametric surface

Let M be a regular oriented surface in E® with the parametrization o = o(u,v).
Now our goal is to give the method which enables us to find the isophotic curve
~v(s) = o(u(s),v(s)) (if exists) lying on M, when axis d of the isophotic curve and
the constant angle ¢ are given.

Then we have < U,d >= cos¢, which implies < U',d >= 0. By using (2.5) in
the above equation, we get

< kT + 14V, d >=0. (33)

Then by using (2.10) and (2.13) in (4.10), we obtain

d
(\/EG — F?ky, < 0y, d > 4+ET) < 0y,d > —F7y < 0y, d >) d%:
(34)
d
+ (VEG = Fk, < 0,,d > +F7, < 00,d > =Gy < 00,d >) 2 = 0.
Now, from (2.11) and (4.11), we get
du A*?
s (A*E + —2N*AF + A°G)?
and )
dv A
df == 2 2 1 (36)
s (A¥E + —2A*AF + A°G)?
where

AN =+VEG— F%k, <oy,d>+E1y < 0y,d > —F1y < 0y, d >,
N =V EG — F?ky, < 0y,d > +F15 < 0y,d > —G1y < 0y, d > .

If we solve the system of ODE (4.12) and (4.13) together with the initial point
u(0) = up, v(0) = vy, we obtain the desired isophotic curves on M by substituting

u(s), v(s) into y(s) = o(u(s),v(s)).

Remark: (i) If (A*?E + —2A*AF + A2G) < 0, then there does not exist a
isophotic curve on M with the given axis and angle. (ii) If (A*2E 4+ —2A*AF +
A%G) > 0, then we have two isophotic curve on the surface M.

4.2. Isophotic curves lying on an implicit surface

Let M be a surface given in implicit form by f(x,y, z) = 0. Let v(s) = (z(s), y(s), 2(s))
be an isophotic curve on M, which makes the given constant angle ¢ with the given

77



A. Yadav, B. Pal — On Relatively Normal-Slant Helices and Isophotic Curves

axis d = (dy,da,ds) and (T, V,U) be its Darboux frame field. We need to find z(s),

y(s), z(s) to obtain 7(s).
Now, v(s) is the unit speed isophotic curve on M. Thus

fx +fyd +fz = (37)
and
de?  dy? dz?
i +£ I = 1, (38)
where f¢ = Z{g
vf

Also, the unit normal vector field of the surface is U = Thus

Iavailn

LY gl L (i de dy  de
‘vaHXT‘van(fyds Fantig g fyds)'

Now by putting the value of 7" and V' in (4.10), we get

(At (do s = dsfy)) S+ (A + (A~ f)7y) 2
i (39)
+ (dskn + (dify — d2fa)Tg) = = 0.

From (4.14) and (4.16), we obtain

o f Q3 sz2 dz
B <f392 - fy91> ds (40)
and 1.0 1.0
FAYaN xR t3
<fx92 - fym) ds (4D

where Ql = d1kn + (dgfz - dgfy)Tg, QQ = dgkn + (dgfx - dle)Tg and Qg = d3]€n +
(dify — daofz)1y. Also from (4.15), (4.17) and (4.18), we get
dz fzSdo — fygl

-4 . 42
ds ((fo2 - fygl)z + (ny?) - sz2)2 + (fzgl - fo3)2) % ( )

If we substitute (4.19) into (4.17) and (4.18), we obtain an explicit 15 order ordinary
differential equation system. Thus, together with the initial point (0) = ¢, y(0) =

Yo, 2(0) = 29, we have an initial value problem. The solution of this problem gives
isophotic curve on M.
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Remark: (1) If (szQ—nyl)2+(fy93 —fZQQ)2+(fZ(21 _me3)2 = 0 at the point
(0, Yo, 20), then there does not exist any isophotic curve with the given direction d
and angle ¢.

(i) If (f2Q2— f, 1)+ (fy Q23— f222)?+ (201 — f2€23)? # 0 at the point (0, yo, 20),
then we have two isophotic curves passing through the initial point.
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