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ABSTRACT. In this work, we study a higher order Klein-Gordon equation with
logarithmic nonlinearity. Firstly, we established the global existence of solution
by potential well method. In addition, we obtain exponential decay and global
nonexistence of solutions.
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1. INTRODUCTION

In this paper, we consider the following higher order Klein-Gordon equation with
logarithmic source term

utt + Pu+u+up = 2uln |uf reN, t>0,
Fuled) — 0, §=0,1,2,..m—1, z €09, (1)

u(z,0) =ug (x), ut (z,0) =u (z), =€

where P = (—A)™, m > 1 is positive integer, €2 is a bounded domain in R" with
smooth boundary 02, v denotes the unit outward normal vector on 02, and 68;-
denotes the i-th order normal derivation.

The model equation (1) arises in logarithmic quantum mechanics, nuclear physics,
optics, supersymmetry and geophysics [5, 6, 7, 21].

When m =1, (1) becomes

gy — Au+u 4wy = uln [ul® (2)

In 2020, Ye [36] proved the existence, exponential decay and blow up of solutions of
the equation (2). Hu et al. [33] studied the following equation

u — Au+u+up = uln |ulf. (3)
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They studied exponential growth and decay of solutions for the equation (3).
In [13], Gorka studied the following Klein-Gordon equation

Ugt — Uy + 1 = uln ul?.
Ye and Li [38] considered the following Klein-Gordon equation
uy — Au+u=uln|ul.

They obtained global existence and blow up of solutions. Hiramatsu et al. [16]
studied the following Klein-Gordon equation

Uy — Au+u+ up 4 [ul* v =ulnu. (4)

They proved the dynamics of Q-balls in theoretical physics. Later, Han [15] stud-
ied global existence of weak solutions (4). Pigkin and Caligir [29] investigated the
following Petrovsky equation

uy + A%+ A%y = uln ]u\Q )

They proved energy decay and blow up at infinite time of solutions. Recently,
some authors studied the hyperbolic or parabolic type equations with logarithmic
nonlinearity (see [3, 4, 8, 9, 10, 11, 17, 19, 20, 25, 30, 31, 26, 27, 28, 37, 39]).

The main purpose of this paper is to proved the global existence, the decay and
the global nonexistence of solution to the higher order Klein-Gordon equation with
logarithmic source term (1).

This paper is organized as follows: In Section 2, we present some notations and
lemmas. In Section 3, we prove the global existence and decay of solutions. In
Section 4, we prove the global nonexistence of solutions.

2. PRELIMINARIES

In this section, we denote
lull = Nlull 2@y, lull, = llullzs@) -

for 1 < p < co. Also, let LP (2) denote the Lebesgue spaces and VVén’2 (Q) =H"(Q)
the Sobolev spaces (see [1, 32], for details).
Next, we define the potential energy functional and Nehari functional of problem

(1)

J(u) = ;Hpéu)r—l—“u”?—;/Quzln|u2dx, (5)
I(u) = HpéuH2+HuHZ—/Quzln\ude, (6)
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and the total energy functional

1 1 2 1
E(t) = Slwl’+5 HP%UH + J|ul|* - / u? In u|?dz
2 2 2 Jo
1
= 5 el + 7w (7)
for u e H*(2),t >0 and
1 11 2 1
BO) = 5 laall* + 5 [PHuo] "+ uol = 5 [ winfuoPda ®)
2 2 2 Jo

is the initial total energy.
As in Payne and Sattinger [24], The mountain pass value of J(u) (also known as
potential well depth) is defined as

d = inf {iglgj()\u) Tu € H(T)”(Q)/{O}} . 9)
Now, we define the so called Nehari manifold (see [23, 24, 34, 35]) as follows
N = {u € HJ'(9)/{0} : K(u) = 0}

N separates the two unbounded sets

NT ={u e Hy"(2)/{0} : K(u) > 0} U {0}

N~ ={ue H'(Q)/{0}: K(u) < 0}.

Then, the stable set YW and the unstable set I/ as follows

W= {ue H"Q)/{0}: J(u) <d}NNT

U={ue HQ)/{0}: J(u) <d}NN".

It is readily seen that the potential well depht d defined in (9) may also be charac-
terized as
d = inf J(u). 10
nf J(u) (10)
Definition 1. The function u (x,t) is a weak solution of (1) on [0,T], if
ue C([0,T], H(R)), u € C([0,T7,L*(Q))

and u satisfies

/uttgodac—i-/Péupégoda:—k/utgodx—k/ucpdx:/uln]u\%dm
Q Q Q Q Q

for each test function ¢ € Hy*(Q) and for almost all t € [0,T].
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The proof of the following lemma can be done as in [17].

Lemma 1. Let u(x,t) be a solution of the problem (1). Then E(t) is a non-
increasing function fort >0 and

E(t) = — lud® < 0.

Lemma 2. [1, 32]. Let r be a number with

2<r<+oo, if n<2m,
2<r< if n>2m.

2n
n—2m’

Then there is constant C' depending on €2 and r such that

lull, < C Hpéu . Yu e HI'(Q).

Lemma 3. [12, 14]. If u € H}(Q), then for each a > 0, one has the inequality
2 2 a’ 2 N 2
/U In [uldz < [Jul|"In |lul| + o= [Vu]" = S (1 +Ina) [lu].
0 2T 2
Lemma 4. Ifu € HJ*(Q), then for each a > 0,

/u In uldz < [lul*n flu] + %2 HPUH ~ 200+ na) flul®.
Q
2
Proof. By using the embedding theorem (||Vu|? < Cp HP%UH ), we arrive at

/uhmwx<mumuwu— HPwH—§u+mmmw,
Q

where ¢, constant.

We conclude this section by stating a local existence result of the problem (1),
which can be established by similar way as done in combination of the arguments
in [2, 18, 22].

Theorem 5. (Local existence). Assume that ug € HY'(Q), uy € L*(Q). Then there
exists T > 0 such that the problem (1) has a unique local solution u(x,t) which
satisfies

we C([0,T); H§" (), u € C([0,T); L*(2)).

Moreover, at least one of the following statements holds true:

Ak +H7D2UH Fllulf? — 0o as t — T

. T = 4o00.
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3. GLOBAL EXISTENCE AND DECAY OF SOLUTIONS

In this section, we establish the global existence and decay of solutions of (1).

Lemma 6. Let u € H"(?) and ||u|| # 0. Then

d >0, 0< A<,
I(Au) = )\JJ(M) =0, A=\,
<0, M<A<+oo,

where )
HP%UH + Jlul?* - 2 [ u? Inudx

2
2 |Jull

A =exp

Proof. From (5) it implies
st | 2 2 2 2
J()\u):?HPwH FA2[Jul? = 22 [ w?In dudz.
Q

A direct computation on above equality, we have

2
%J(Au) — )\ (HquH Fllulf? = 2In A jul® — 2/ u? lnudm) . (11)
Q

Let %J(Au) = 0, then we have

2
HP%UH + Jlul? - 2 [qu? Inudx
2
2||ul

A =exp

It follows from (6) that
2
I0w) = A2 HP%uH + 22 [ul® - 2)\2/ Wlnude — 22\ |Jul?. (12)
Q

By (11) and (12), the conclusion in Lemma 6 is valid.

Lemma 7. Assume that u € HJ"(2). The depth of potential well d is defined as
1/m\2
==(=) e 1
! 2 (Cp) ‘ 13)
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Proof. By definition of I(u) and using Lemma 4, we get

I(u) = Hpéu‘r—l—HuHQ—/Quzln]u\de

v

™

CpOé2 12 2 2
1- [Pou + Il ) + (1 + ma) = 2 fu Tl (14)
for any o > 0. Taking o =, /%, we obtain from (14) that

I(u) > [n(1+1Ina) — 21n ||jul| ] ||uH2 (15)
We have from Lemma 6 that

1 1
supJ (M) = J(A*u) = =T(\*u) + = || \ul|?. (16)
A>0 2 2

We obtain from (15) and Lemma 6 that

0=1I(\u) > [n(1+Ina)—2In|Xul]] [Nul?,

then
INul? > e (17)
It follows from (16) and (17) that
1
supJ (Au) > —a"e" (18)
A>0 2

By (9) and (18), we get

Lemma 8. Let E(0) < d. If ug € N'* and u; € L?(), then u(t) € Nt for each
tel0,7).

Proof. From (7) ve Lemma 1, we obtain

B#) = 5wl + )

IN

1
5 lutl” + 7 uo)
= E0)<d
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for Vt € [0,T"), which implies that
J(u) < d. (19)

Assume that there exists a number ¢* € [0,T) such that u(t) € N on [0,t*) and
u(t*) ¢ NT. Then, in virtue of continuity of u(t),we see u(t*) € ONT. From the
definition of N and the continuity of I(u) with respect to ¢, we have

I(u(t*)) = 0. (20)
Suppose that (20) holds, then we get from (18) and (15) that

lu(t*))* = 2d. (21)
By (5), (6), (20) and (21), we have

T(t)) = 3 () + 5 1(u(t7)) > d

which is contradictive with (19). Hence, the case (20) is impossible. Consequently,
we conclude that u(t) € Nt on [0,T).

Theorem 9. (Global existence). Assume that ug € W, u1 € L*(Q) and E(0) < d.
Then the local solution furnished in Theorem 5 is a global solution and T may be
taken arbitrarily large.

Proof. 1t suffices to show that
2 12 2
el + [P+ Jul

is bounded independently of t. Under the hypotheses Theorem 9, we get from Lemma
8 that w € W on [0,T). So, the following formula holds on [0,T") by Lemma 4

1 2 1
J(u) = 5”73%74‘ +Hu||2—2/9u21n|u]2dx

1 2 2
> <1_ i ) H'PUH + (1=l + 50 +ma)) ul®.  (22)
T

By (5), (6) and u € W, we have

1 1 1
J(u) =5 ull® + gl(u) 25 lull (23)
which implies that
ul® < 2J(u) < 2d. (24)
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It follows from (22) and (24), we obtain

1 2 2 1

J(u) > > (1 _ @2 > HPIUH + <1 — In2d+ (1 + lna)) 2. (25)
2 ™ 2 2

By Lemma 7 and 0 < a < , /é, we have

2
_ Cpx

1
1 20,1—§ln2d+g(1+lna)>0.

™

Thus, we have from (25) that

2
sz & ([Pha+ 1l ) (26)
where )
. 1 cpQ 1 n
Cl—mm{2— o 1—2ln2d+2(1+lna)}.

We have from (26) that
1 2 1012 2 1 2
5 e 12 +C (||Poul + ul?) < 5 lall® + 7(w) = B@) < BO) <4, (27)

which implies that

2 d
el + P3|+ ulP < & < oo,

where Co = min {C1,1}. The above inequality and the continuation principle lead
to the global existence of solution u for the problem (1).

n

Theorem 10. (Decay). Suppose that E(0) < % (é) 2 e < d, where 8 is a positive

number which satisfies 0 < < 1. If ug € W, u1 € L*(Q), then there exist two
positive constants k and k independent of t such that the global solution has the
following exponential decay property

0 < E(t) < ke kvt > 0.

Proof. By Lemma 8, we see that u(t) € N'* for all ¢ > 0. Thus, we have 0 < E(t) < d
for all ¢ > 0. In order to prove the decay of solution. We define

F(t)=E(t)+ s/ﬂutudaz, (28)

where € > 0 will be determined later.
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It is easy to prove that there exist two positive constants £; and & depending
on € such that
GE(t) < F(t) < &E(1), (29)

for V¢ > 0. In fact, we get from (27) and (28) that
£ 2 2
< —
F) < B+ (el + Jull’)

< <1+e+ 2501> E(t)
= &LE(1). (30)

On the other hand, by (27) and (28), we obtain the following inequality

9 9
Ft) 2 B - =l - £ Jul?

1 2 g
> —(1-— — —E(1).
> S0=0) fulP +Iw) - 5=-F () (31)
By choosing & small enough such that 0 < ¢ < min {1, 2é?jr1} , it follows from (31)
that
F@) > (1 * ) E®)
e =
- 204
= GE(1). (32)

From (30) and (32), the inequality (29) is valid.
We now differentiate (28), by using the equation (1) and Lemma 1, to obtain

’

_ 2 11? 2 2 2
F (t) = (e = 1) Jue]|” —e||P2u|| —ellul|"—¢ [ wudr+¢e [ v*lnl|ul*dz. (33)
Q Q

For any ¢ > 0, we have from Young’s inequality that
1 2 2
< = ™+ ¢l (34)

ugudx
’/Q e RS

Therefore, inserting (34) into (33), we obtain

F@gG+Q—Qm#—ﬂﬁﬂ3m@4ww%f4ﬁme.m>
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By using (7) and (35), for any positive constant 7, we have

F'(t) < —neE(t)+ [5 (1 + g i 4177> _ 1] a2

te (T-1) [ Pral 4 etr ¢ - 1) ul?

_n 2 2
8(1 2)/Qu In |u|“dx. (36)

Now, choosing 0 < 7 < 1, and by Lemma 3 and (24), we get
Fl(t) < —neE@#)+ |e(1+21 4 L g2
- 2 4n
2 2
n _ @ 3
¢ (1 2) <1 ™ > HPQuH
tef{n+¢—14 (1= ) mEIW) —n( +ma)}ul®.  (37)

By0<n<1landJ(t) < E(0) <3 (%) 2 e"B < d, we select the constant « to meet
. /%ﬁ% <a<, /é, and take ¢ > 0 small sufficiently such that

¢ < 1—77+<f—1> ) —n(l+Ina)]

< 1-n+(1-1) [ ( ) )_n1+1na>]

Then, we obtain
! n 1 2
F(t) < —neB(t) + |e L+t g) 1 e || (38)
Now, choosing € so small enough that

1
<1+ + )—1<07
4n

then the inequality (38) implies that
F'(t) < —neE(t),Vt > 0. (39)
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We conclude from (29) and (39) that
F'(t) < —kF(t),Vt > 0, (40)

where k = ne/& > 0.
Integrating the differential inequality (40) from 0 to ¢ gives the following expo-
nential decay estimate for function F'(t)

F(t) < F(0)e ™, vt > 0. (41)
Consequently, we obtain from (29) once again that
E(t) < ke ¥ vt >0,

where k = F(0)/&;.This completes the proof of Theorem 10.

4. GLOBAL NONEXISTENCE OF SOLUTIONS
In this section, we establish the global nonexistence of solutions of (1).

Lemma 11. Let u(t) be a solution of (1) which is given by Theorem 5. If ug € U
and E(0) < d, then u(t) € U and E(t) < d, for all t > 0.

Proof. 1t follows from the conditions in Lemma 11 and Lemma 1 that
E(t) < E(0) <d,Vte[0,T).
Therefore, we have from (7) that
J(u) < E(t) <d,Vte€0,T). (42)

Next, let us assume by contradiction that there exists t* € [0,T") such that u(t*) ¢ U,
then by continuity, we have I(u(t*)) = 0. This implies that u(t*) € N. We get
from (10) that J(u(t*)) > d, which is contradiction with (42). Consequantly, the
conclusion in Lemma 11 holds.

Theorem 12. (Global nonexistence) Suppose that ug € U,u; € L*(Q) satisfies
Jo uo(x)ui(z)de # 0 and

%
0<Em)<mm{¢3<”> w}.
4 \ cp

Then the solution u(t) in Theorem 5 of the problem (1) blows up in finite Ty < 400,
this means that
lim [|u(t)]|* = 4o0.

t—T,
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Proof. By ug € U, E(0) < d and Lemma 11, we obtain u € U for all t € [0,T]. Thus,
we get

2
1(w) = |[Pra|” + ul® - / > Inuf*dz < 0, Vit € [0,T). (43)
Q
We have from (43) and Lemma 4 that
Cpa2 1 2 9 ) ,
<1 - ) HPiuH + |lu||” + [n(1 + Ina) — In||u|*] ||u||” < O. (44)

We conclude from a =, /= and (44) that

n(l+Ina)—Inul* <0,

which implies that
lu(®)||? > 2d,Vt € [0,T]. (45)

Assume by contradiction that the solution u(t) is global. Then for any 7" > 0, we
define G(t) : [0,7] — [0, +o0] by

G(t) = IIU(t)H2+/O lu(s)II* ds + (T = t) |Juo]* - (46)

Noting that G(t) > 0 for all ¢ € [0,T]. By the continuity of the function G(t), there
exists u > 0 (independent of the choice of T') such that

G(t) > > 0,vt € [0,T]. (47)

By differentiating on both sides of (46), we get

G = 2jé1ﬂﬁd$‘%nu(ﬂﬂz-—ﬂuoﬂ2

_ /Q wgda + 2 /0 t /Q w(s)uy(s)dds. (48)

Taking the derivative of the function G’ (¢) in (48), we obtain

1"

G (t) :2|]ut‘|2—|—2/uttudx+2/ upudz. (49)
Q Q

We get from (1) and (49) that

1

Gawﬂ@mmﬁ+4ﬁmwwmﬂvhmf—mwﬂ. (50)
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We have from (46), (48) and (50) that

GOE W) - SO = 260 [uutu)u% / uZInruPczx]
—2G (¢ [Hpu |+ )||]
(G () — (T — 1) [uo]?] x [Hw(t)IIZ - t ||ut<s>||2ds]
+6K (1) (51)
where

KO = [P+ | t||u(s>u2ds} <[+ [ t||ut<s>||2ds]
- [/Quutdx+/Ot/gzu(s)ut(s)dxdsr. (52)

By using Schwarz inequality, we have

(f uutd:c)z < ()| e (0)1 (53)

t 2 t t
</ /uutdxds) g/ ||u(s)H2ds/ |ue(s)]|? ds, (54)
Q 0 0
// s)u(s dmds/uutd$<||ut H / ||lu(s || ds + ||u(t || / || (s || ds.
Q

(55)
These inequalities (52)-(55) entail K(t) > 0 for all ¢ € [0,T]. Therefore, we reach
the following differential inequality from (51) that

GG (1) - %[G/(lt)]2 > G(t)x(t), vt € [0,T], (56)

where
0 = 2l + [ il - |Pha] - o))
6 [uutw +f t ||ut<s>u2ds] | (57)
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We have from (7) and Lemma 4 that

2
CpX

Xt > —8E(t)+2<1— >H7>éu<t)H2+6Hu(t)H2

™

+2 [n (1 +1na) = In Ju(®)?] u(t)]> — 6 /0 Juue(s) | ds.

By (13), (45) and a =, /%, we have from (58) that

t
X(8) = —8E(t) + 6 Ju(t)]* — 6 /0 Jue(s)]2 ds.
By Lemma 1, we get
t
X(8) > —8E(0) + 6 u(t)|2 + 2 / lue(s)]2 ds.

Hence, we conclude from (45) and E(0) < d that
x(t) > —8E(0)+12d
= 8[d— E(0)] +4d > 0.
Therefore, there exists v > 0 which is independent of 7" such that
x(t) >~ >0,Vt > 0.
It follows from (47), (56) and (62) that

GG () — g[G’(t)P >y > 0, € [0, 7.

By the differential inequality (63), we have

Hence, there exists T} such that

0< Ty <

Q

'(0)
and we have
lim G(t) = 4o0.

t—sT

From the definition (46) of G(t), (66) means that
lim |ju(t)]? = 4o0.
Mo

*

Thus we can not suppose that the solution of (1) is global.
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