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1. Introduction

The terminology used in this paper is that of EGA ([11]).

In [5] we dealt with some universally topological conditions of finite gen-
eration of Noetherian subalgebras of algebras of finite type over a field.

Recall the following

Definition ([2].II, §1, Def.; [5], §3, Def.) - A ring A is called universally
1-equicodimensional if it is Noetherian and if every integral A-algebra of finite
type, having an 1-height maximal ideal, is of dimension 1.

A scheme X is called universally 1-equicodimensional if there exists a
finite open affine covering (Ui)i=1,...,n such that the ring of sections Γ(Ui,OX)
is universally 1-equicodimensional for each i = 1, ..., n.
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A. Constantinescu - Schemes dominated by algebraic varieties and some...

If k is a field, every k-algebra of finite type, respectively every k-scheme
of finite type, is universally 1-equicodimensional.

We had the following

Theorem A ([5], §3, Th.3, Cor. 7, Comment) - Let A be a subalgebra of
an algebra of finite type over a field. Then A is finitely generated over k if
(and only if) A is universally 1-equicodimensional.

In particular a k-scheme X dominated by a scheme of finite type over k
is of finite type over k if (and only if) X is universally 1-equicodimensional.

The condition of finite generation in Theorem A above does not involve
the base field k.

If A is a subalgebra of an algebra A′ of finite type over k, the inclusion
of k-algebras A ⊆ A′ induces a canonical dominant morphism of k-schemes

f : X = SpecA′ −→ Y = SpecA,

X being a k-scheme of finite type. To find favorable cases when A is finitely
generated over k it is usefully to find suitable conditions on f under which
the property of universally 1-equicodimensionality goes down by f .

So in [2].II, §1, Th.1, has been introduced a class of morphisms (of finite
type) of schemes f : X −→ Y having the following (universally) topological
property :

(P ) For every integral Y -scheme Y ′, the canonical morphism f(Y ′) : X×Y

Y ′ −→ Y ′ has the property that its restriction to the union of all irreducible
components of X ×Y Y

′ dominating Y ′ is surjective,

or equivalently

For every irreducible (respectively irreducible affine) Y -scheme Y ′ and
each point y ∈ Y ′ there exists an irreducible component Z of X ×Y Y

′ domi-
nating Y ′ such that y ∈ f(Y ′)(Z).

According to [2].II, Remark 1, let us consider a weaker form (P ′) of the
property (P ) above, as follows :

(P ′) For every integral Y -scheme Y ′ of finite type, the canonical morphism
f(Y ′) : X ×Y Y ′ −→ Y ′ has the property that its restriction to the union of
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all irreducible components of X ×Y Y
′ dominating Y ′ is surjective,

or equivalently

For every irreducible (respectively irreducible affine) Y -scheme Y ′ of fi-
nite type and each point y ∈ Y ′ there exists an irreducible component Z of
X ×Y Y

′ dominating Y ′ such that y ∈ f(Y ′)(Z).

In [2].II has been proven the following

Theorem B ([2].II, §1, Theorem 1, Remark 1) - Let f : X −→ Y be
a morphism of finite type of Noetherian schemes having the property (P ′)
above. If X is universally 1-equicodimensional then Y is also universally
1-equicodimensional.

Therefore in conjunction with Theorem A it follows

Corollary C - Let k be a field. If f : X −→ Y is a morphism of
k-schemes having the property (P ′), X is of finite type over k and Y is
Noetherian then Y is also of finite type over k.

The goal of this lecture is to show that the Noetherianity condition about
Y in the last Corollary C can be removed if f is assumed to have the stronger
property (P ) and Y is a reduced scheme (see §3, Theorem, bellow).

2. Some examples and properties

The following types of scheme morphisms (not all of finite type) have the
property (P ) :

1) the proper surjective morphisms

2) the integral surjective morphisms

In fact in both cases if f : X −→ Y is such a morphism, for every irre-
ducible base change Y ′ −→ Y there exists at least an irreducible component
Z of X ×Y Y ′ dominating Y ′. Since in both cases the canonical morphism
f(Y ′) : X ×Y Y

′ −→ Y ′ is closed, the restriction f(Y ′)|Z is surjective.

3) the faithfully flat morphisms

In this case for every irreducible base change Y ′ −→ Y the canonical
morphism f(Y ′) is still faithfully flat and it is well known that all irreducible
components of X ×Y Y

′ dominate Y ′ ([9], §1, Lema 1.17; §3, Lema 3.16).
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4) the canonical morphisms of affine schemes f : X = SpecA′ −→ Y =
SpecA induced by a strongly submersive morphism of rings A −→ A′

Cf. [2].II, proof of Cor. 6 .

For Example 4 let us recall the following

Definition (Nagata-Mumford, [14]) - Let φ : A −→ A′ be a ring mor-
phism. φ is called strongly submersive if for every minimal prime ideal p ⊂ A
and for every valuation subring V,A/p ⊆ V ⊆ Q(A/p), there exists a valu-
ation ring W dominating V and a ring morphism ψ′ : A′ −→ W such that
ψ′φ = iψ where ψ : A −→ V is the canonical morphism and i : V ↪→ W the
ring inclusion.

5) the canonical morphisms of finite type X = SpecA −→ X/G =
SpecAG, where A is an algebra over an algebraically closed field k, G is a
linearly reductive algebraic group over k acting rationally on A and AG ⊆ A
is the subalgebra of invariants.

Cf. [2].II, proofs of Cor. 4 and Cor. 5 ( In the proof of [2].II, Cor. 4 above
one shows the property (P ) for X = SpecA −→ X/G = SpecAG based on
some elements of the first part of the proof of D. Mumford for the famous
Theorem of finite generation of the subalgebra of invariants ([12], Ch. 1,
§2, Th. 1.1); we could say that the property (P ) in Example 5 above is an
interpretation of the first part of the proof of [12], Th. 1.1).

The following type of scheme morphism (not necessarily of finite type)
has the property (P ′) :

6) the universally open (see [11], EGA IV, 2.4.2, for definition) surjective
morphisms f : X −→ Y with X a Noetherian scheme

Indeed, if Y ′ is an irreducible Y -scheme of finite type, then X ′ = X ×Y

Y ′ is of finite type over X and so it is Noetherian and has finitely many
irreducible components. Since the canonical morphism f(Y ′) : X ′ = X ×Y

Y ′ −→ Y ′ is open, it is easy to see that all irreducible components of X ′

dominate Y ′. f(Y ′) is also surjective and so the property (P ′) is fulfilled.

Let us remark that in Example 6 if f is a universally open surjective
morphism of finite type of schemes then for each irreducible Noetherian Y -
scheme Y ′ all (finitely many) irreducible components of X ×Y Y ′ dominate
Y ′ too and f(Y ′) is surjective.
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We intend to continue the discussion on a particular case of universally
open surjective morphisms of schemes in the second part of the lecture.

In the following statement one presents some properties of the morphisms
(not necessarily of finite type) of arbitrary schemes, having the property (P ):

Proposition - i) The scheme morphism f : X −→ Y has the property (P )
iff the associated canonical morphism fred : Xred −→ Yred has the property
(P ).

ii) Let f : X −→ Y, g : Y −→ Z be some morphism of schemes.
If f and g have the property (P ), then their composition gf has this

property too.
If gf has the property (P ), then g has also this property.

iii) If f : X −→ Y is a scheme morphism with the property (P ) then for
every Y -scheme Y ′ the canonical morphism f(Y ′) : X ×Y Y

′ −→ Y ′ has still
the property (P ).

In particular for every reduced (locally closed) subscheme Y ′ ⊆ Y , the
canonical morphism f−1(Y ′)red −→ Y ′ has the property (P ).

iv) A scheme morphism f : X −→ Y has the property (P ) iff there
exists an open affine covering (Ui)i∈I of Y such that the canonical morphism
f |f−1(Ui) : f−1(Ui) −→ Ui has the property (P ) for each i ∈ I.

v) Every scheme morphism with the property (P ) is surjective.

Proof - i) In fact, for each scheme morphism φ : Y ′ −→ Y with Y ′ an
integral scheme, φ factorizes by the canonical morphism Y ′ −→ Yred and
Hom(Y ′, Y ) = Hom(Y ′, Yred). By the general properties of tensor product
of rings and schemes we have (X ×Y Y ′)red = (Xred ×Y Y ′)red and so the
underlying topological spaces of the schemes X×Y Y

′ and Xred×Y Y
′ coincide

as well as the continuous maps f(Y ′) and (fred)(Y ′) .

ii) Let Z ′ −→ Z be a scheme morphism with Z ′ an integral scheme and
z ∈ Z ′. Since g has the property (P ), there exists an irreducible component
Y ′ of Y ×Z Z

′ dominating Z ′ such that z ∈ g(Z′)(Y
′). Suppose z = g(Z′)(y).

Since f has the property (P ) there exists an irreducible component X ′ of
(f(Y×ZZ′))

−1(Y ′) ⊆ X ×Y (Y ×Z Z
′) = X ×Y Z

′ such that y ∈ f(Y×ZZ′)(X
′).

Then X ′ dominates Z ′ and z ∈ (gf)(Z′)(X
′). If we include the irreducible

subset X ′ in an irreducible component X ′′ of X×Y Y
′ then X ′′ also dominates

Z ′ and z ∈ (gf)(Z′)(X
′′).
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Now suppose gf having the property (P ) and let Z ′ −→ Z be a scheme
morphism with Z ′ an integral scheme and let z ∈ Z ′. By the property (P )
there exists an irreducible component X ′ of X×Y Z

′ dominating Z ′ such that
z ∈ (gf)(Z′)(X

′). Then the topological closure Y ′ = f(Y×ZZ′)(X ′) ⊆ Y ×Z Z
′

is a closed irreducible subset dominating Z ′ such that z ∈ g(Z)(Y
′). If we

include Y ′ in an irreducible component Y ′′ of Y ×Z Z
′, then Y ′′ dominates

Z ′ and z ∈ g(Z)(Y
′′).

iii) The first part of iii) is obvious by the definition of the property (P ).
For the second part one uses the fact that fred has the property (P ) ( via i)
) and f−1(Y ′)red = (Xred ×Y Y

′)red.

iv) It is obvious.

v) By the definition of the property (P ), the assertion v) is clear if Y is
irreducible. If Y is arbitrary, for each reduced irreducible component Y ′ of
Y the canonical morphism f−1(Y ′)red −→ Y ′ has still the property (P ) ( via
iii) ) and then it is surjective because Y ′ is irreducible. It follows that f is
surjective. Q.E.D.

3. The main result

We will present the main result of this lecture:

Theorem - Let f : X −→ Y be a morphism of schemes over a field k
such that X is of finite type over k and f has the property (P ). Then Yred is
of finite type over k.

For the proof of this Theorem we need some preparatory facts.

Lemma 1 - Let f : X −→ Y be a morphism of schemes with the property
(P ) such that X has a finite number of irreducible components and Y is affine
and integral. If Xd is the union of all irreducible components of X dominating
Y endowed with the reduced subscheme structure, then Γ(Xd,OXd

) ∩ K(Y )
is an integral extension of the ring Γ(Y,OY ).

Proof - Let O ⊂ K(Y ) be a valuation subring containing the subring
Γ(Y,OY ). Let X ′ = X×Y SpecO and X” the disjoint union of all (finitely
many) irreducible components of X ′ dominating SpecO endowed with the
reduced subscheme structures and A = Γ(X ′′,OX′′) ∩ K(Y ). Then we have
the natural scheme morphisms f ′ : X ′ −→ SpecO, φ : X ′ −→ X, i : X ′′ −→
X ′, f ′′ : X ′′ −→ SpecA and π : SpecA −→ SpecO. Since f has the
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property (P ), then f ′i is surjective; from the equality f ′i = πf ′′ it follows
π surjective. Let p ⊂ A be a prime ideal lying over the maximal ideal of
O. It is clear that we have a dominating inclusion O ⊆ Ap (⊂ K(Y )); it
follows that O = Ap because O is a valuation ring and next that A ⊆ O.
From the fact that each irreducible component of X ′ dominates Y it follows
φi(X ′′) ⊆ Xd and then Γ(Xd,OXd

)∩K(Y ) ⊆ Γ(X ′′,OX′′)∩K(Y ) = A ⊆ O.
Therefore Γ(Xd,OXd

) ∩ K(Y ) and Γ(Y,OY ) have the same integral closure
in K(Y ) ([19], Cap. II, §1, Teorema 1.13). Q.E.D.

Lemma 2 - Let f : X −→ Y be a scheme morphism of finite type such
that X is Noetherian, Y is integral and f has the property (P ). If Xd is the
union of all irreducible components of X dominating Y , endowed with the
reduced subscheme structure, then the canonical morphism fN : XN

d −→ Y N

between the normalizations of Xd and Y is surjective and Y N is a Krull
scheme.

In Lemma 2 and in the proof bellow, by the normalization ZN of a re-
duced (reducible) scheme Z we will understand the disjoint union of the
normalizations of all irreducible components of the scheme Z (endowed with
the reduced closed subscheme structures).

Recall that a scheme Z is called Krull if there exists an open covering
(Ui)i∈I of Z such that all rings Γ(Ui,OZ) are Krull.

Proof - Let us consider the canonical morphisms p : Y N −→ Y,
q : X ×Y Y

N −→ X, f ′ : X ×Y Y
N −→ Y N , fN : XN

d −→ Y N , u : XN
d −→ X

and v : XN
d −→ X ×Y Y N . We have fq = pf ′, u = qv and fN = f ′v.

It is obvious that the morphisms q, u and v are integral ( not necessarily
surjective ). By the properties of the fiber product of schemes it follows
that there exists via q an one-to-one correspondence between the irreducible
components of X×Y Y

N dominating Y N and those of X dominating Y . Then
the irreducible components of XN

d are in one-to -one correspondence via v
with those of X ×Y Y

N dominating Y N . Since v is closed, it is a surjection
onto the union of all irreducible components of X ×Y Y N dominating Y N .
By the property (P ) of the morphism f it results that fN = f ′v is surjective.

Let (X ×Y Y N)N be the disjoint union of the normalizations of all ir-
reducible components of X ×Y Y N (endowed with the reduced closed sub-
scheme structures). It is clear that XN

d is the reduced closed subscheme of

(X ×Y Y
N)

N
equal with the union of all irreducible components of (X ×Y Y

N)
N
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dominating Y N . Since the normalization morphism (X ×Y Y
N)

N −→ X ×Y

Y N is integral and surjective it has the property (P ) (cf. §2, Ex.2 ). So

the canonical morphism (X ×Y Y
N)

N −→ Y N has still the property (P )
as composition of two morphisms with such a property (cf. §2, Prop.,
ii) ). In virtue of Lemma 1 it follows that for each open affine subset
U ⊆ Y N ,Γ(U,OY N ) = Γ((fN)−1(U),OXN

d
) ∩ K(Y N) , because the scheme

Y N is normal. Since the scheme X is Noetherian, it follows that XN
d is a

Krull scheme by Mori-Nagata Theorem ([13], Th. 33.10). Let V ⊆ Y be
an open affine subset and V N = p−1(V ). Then V N is an open affine subset
of Y N and (fN)−1(V N) = u−1(f−1(V )) is quasi-compact because f−1(V ) is
quasi-compact and u is an affine morphism. Hence there exists a finite cov-
ering (Wi)1≤i≤n with open affine irreducible subsets of (fN)−1(V N). Then

Γ(V N ,OY N ) = (
i=n⋂
i=1

Γ(Wi,OXN
d

)) ∩ K(Y N) and Γ(Wi,OXN
d

) is a Krull ring

for each i, 1 ≤ i ≤ n. It follows that Γ(V N ,OY N ) is a Krull ring. Since V
has been arbitrary chosen as open affine subset of Y , by definition it results
that Y N is a Krull scheme. Q.E.D.

Lemma 3 - Let Z be a reduced scheme over a Noetherian ring k, having
finitely many irreducible components Z1, ..., Zn. Then Z is of finite type over
k iff for each i, 1 ≤ i ≤ n, the reduced irreducible component Zi is of finite
type over k.

Proof - We can reduce the situation to the affine case when X = SpecA,
with A a reduced k-algebra. Let p1, ..., pn ⊂ A be the the minimal prime
ideals of A. Then Zi = SpecA/pi for each i, 1 ≤ i ≤ n and p1 ∩ ... ∩ pn = 0.

We have to prove that A is finitely generated over k iff A/pi does, for all
i, 1 ≤ i ≤ n. This fact follows from the following more general property :

Lemma 3′ - Let A be an algebra over a Noetherian ring k, a1, ..., an ⊂ A
some ideals and a = a1 ∩ ... ∩ an. Then A/a is finitely generated over k iff
for each i, 1 ≤ i ≤ n , A/ai is finitely generated over k.

Proof - There exists a canonical morphism of k-algebras

φ : A/a −→ A′ = A/a1 × ...× A/an

defined by φ(â) = (â, ..., â) for each a ∈ A ( By â we denoted the class of
a ∈ A in A/a or A/ai. The ring A′ above is the ring product )
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φ is injective and so A/a can be view as a subalgebra of A′.
The ring extension A/a ⊆ A′ is integral. In fact for each x = (â1, ..., ân) ∈

A′, x satisfies the integral equation in A′

(x− (â1, ..., â1))...(x− (ân, ..., ân)) = 0

(i.e. the equation (x− φ(â1))...(x− φ(ân)) = 0 ).
If A/a is of finite type over k, then its quotient algebras A/a1, ..., A/an

are also of finite type over k.
Conversely, if A/a1, ..., A/an are finitely generated over k then A′ is also

of finite type over k and A/a ⊆ A′ is a finite extension. Then it follows by
a well known reasoning ( using the Noetherianity of the finitely generated
k-algebras ) that the subalgebra A/a is also of finite type over k. Let us recall
this argument: the ring A′ is finite over a finitely generated k-subalgebra A′′

of A/a, generated by the coefficients of the integral equations of the elements
of a finite set of generators of A′ over A/a; since k is Noetherian then A′′

is also Noetherian and A′ is an A′′-module of finite type; it follows that the
submodule A/a of A′ is also an A′′-module of finite type; so A/a becomes a
k-algebra of finite type. Q.E.D.

Now we can present

Proof of Theorem - Since f has the property (P ), it is surjective and from
the Noetherianity of X it follows that Y has finitely many irreducible com-
ponents Y1, ..., Yn (More general, every k-scheme dominated by a k-scheme of
finite type has finitely many irreducible components ([3], Prop. 2 and Prop.
1). By Lemma 3, Yred is of finite type over k if each reduced irreducible
component Yi is of finite type over k. By replacing Y with Yi and f by
f(Yi) : X ×Y Yi −→ Yi, we can reduce the proof to the particular case when
Y is an integral scheme. On other hand, via §2, Prop., i), we may assume
that X is a reduced scheme by replacing f with fred.

If p : Y N −→ Y is the normalization morphism, then for each y ∈ Y N ,
the residue field extension k(p(y)) ↪→ k(y), induced by the morphism p, is
finite. Indeed, by Lemma 2 and with the notations of that Lemma, it follows
that there exists x ∈ XN

d such that y = fN(x). XN
d is a scheme of finite type

over k and if u : XN
d −→ X is the canonical morphism then fu = pfN (see

the proof of Lemma 2) is a morphism of finite type. Hence the composition
of the extensions k(p(y)) ↪→ k(y) ↪→ k(x), induced by the morphisms p and
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fN , is a field extension of finite type. By [8], Th.5.56 (or [17], Ch. 3, 2,
(IV)), it follows that k(p(y)) ↪→ k(y) is an extension of finite type. Since p
is an integral morphism, it results that this last field extension is algebraic
and so it is finite.

By [3], Prop. 2, we have dimY ≤ dimX. To prove the Theorem we will
proceed by induction on dimY (Y being an integral scheme).

If dimY = 0 then Y is of finite type over k in an obvious way.
Let us suppose that dimY > 0 and that the Theorem is true for mor-

phisms with the property (P ) of the form f : X ′ −→ Y ′, where X ′ is of
finite type over k and Y ′ is integral of dimension < dimY . Since for each
closed irreducible subscheme Y ′ ⊂ Y , endowed with the reduced subscheme
structure, f(Y ′) : X ×Y Y ′ −→ Y ′ has the property (P ) (cf. §2, Prop., iii)
) and X ×Y Y ′ is a closed subscheme of X, it follows that X ×Y Y ′ is of
finite type over k and by the inductive hypothesis Y ′ is of finite type over
k. Therefore each closed irreducible subscheme Y ′ ⊂ Y , endowed with the
reduced subscheme structure, is of finite type over k.

Now we will show that the normalization scheme Y N has the same prop-
erty: each closed irreducible subscheme Z ⊂ Y N , endowed with the reduced
subscheme structure, is of finite type over k. Indeed, p(Z) ⊂ Y and so p(Z)
is of finite type over k; the rational field extension K(p(Z)) ⊆ K(Z) is finite,
according to the previous remark on the residue field extensions induced by
p; if Z is the integral closure of p(Z) in K(Z), then Z is a scheme of finite
type over k and there exists a surjective integral morphism Z −→ Z of k-
schemes. Then by a well known fact it follows that Z itself is a scheme of
finite type over k.

By Lemma 2, Y N is a Krull scheme. Then by Mori-Nishimura Theorem
([18], Theorem ), it follows that Y N is a Noetherian scheme.

The canonical morphism f ′ = f(Y N ) : X ×Y Y
N −→ Y N has the property

(P ) (cf. §2, Prop., iii) ) If we prove that (X×Y Y
N)red is of finite type over k,

then by the going-down of the property of universally 1-equicodimensionality
by the morphisms with the property (P ),(cf. §1, Theorem B ), it follows
firstly that Y N is a universally 1-equicodimensional scheme and next that
Y N is of finite type over k, by §1, Theorem A . Since the canonical morphism
p : Y N −→ Y is integral, it follows that Y is of finite type over k too.

We could give now a second argument for the fact that Y N is of finite
type over k : if we prove that (X ×Y Y

N)red is of finite type over k, from the
property (P ) of f ′ each point y ∈ Y N is in the image by f ′ of an irreducible
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component of (X ×Y Y
N)red. Then by a Theorem of Nagata −Otsuka ([16],

Th. 3 ), we have the equality dimOY N ,y + tr.deg.k k(y) = dimY N . Since
OY N ,y is Noetherian it follows that y has an open neighborhood Uy ⊆ Y N of
finite type over k by a local algebraization result ([3], §2, Th. and §1, Prop.
1 ). From the surjectivity of f ′, it follows the quasi-compacity of Y N and so
the fact that Y N is of finite type over k. As above, using the fact that the
normalization morphism is integral, it results that Y is of finite type over k.

Therefore it remains to show that (X ×Y Y
N)red is of finite type over k.

In fact, the canonical morphism q : X ×Y Y N −→ X is integral and
fq = pf ′ (see the proof of Lemma 2). Then for each x ∈ X ×Y Y

N we have
q∗f ∗ = f ′∗p∗, where f ∗ : k(f(q(x))) ↪→ k(q(x)), q∗ : k(q(x)) ↪→ k(x), p∗ :
k(p(f ′(x))) ↪→ k(f ′(x)) and f ′∗ : k(f ′(x)) ↪→ k(x) are the residue field exten-
sions induced by the morphisms f, q, p, respectively f ′. Since f ′ is a morphism
of finite type, f ′∗ is a field extension of finite type. As it was shown above,
p∗ is a finite field extension and so f ′∗p∗ is a finite type extension. From the
equality q∗f ∗ = f ′∗p∗ it follows that q∗ is also a finite type field extension.

Let X ′′ ⊆ X ×Y Y N an irreducible component and X ′ = q(X ′′), both
endowed with the reduced subscheme structure. As we showed above the
rational field extension K(X ′) ⊆ K(X ′′) is finite. If we denote by X ′ the
integral closure of X ′ in K(X ′′), then X ′ is a k-scheme of finite type and
there exists a surjective integral morphism X ′ −→ X ′′. So X ′′ is a k-scheme
of finite type. Therefore all irreducible components of X ×Y Y N , with re-
duced subscheme structures, are of finite type over k; then it follows that the
reduced scheme (X ×Y Y N)red is also a k-scheme of finite type, by Lemma
3. Q.E.D.

4. Some particular cases

Now we can present some particular cases and consequences of the pre-
vious Theorem.

A first consequence is a particular case, when the base ring k is a field,
of a strong result of M. Nagata ([14], Main Theorem, p. 193).

Corollary 1 - Let A′ be an algebra of finite type over a field k and A a
strongly submersive subalgebra of A′. Then Ared is finitely generated over k.
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Proof - The associated morphism of affine schemes SpecA′ −→ SpecA
has the property (P ) (see §2, Ex.4). By the previous Theorem it follows that
the k-scheme (SpecA)red = Spec (Ared) is of finite type over k. So Ared is
finitely generated over k. Q.E.D.

Now for giving some more general forms for other consequences we need
the following simple

Lemma 4 - Let A be an algebra over a ring k, such that the associated
reduced k-algebra Ared is finitely generated and the nilradical ideal a ⊂ A is
of finite type. Then A is finitely generated over k.

In particular a Noetherian algebra A over a ring k is finitely generated iff
Ared is finitely generated.

Proof - We have Ared = A/a and there exists p ∈ N such that ap = 0
Let x̂1, ..., x̂m ∈ A/a be a finite system of generators of k-algebra and

a1, ..., an ∈ a a finite system of generators of the ideal a.
Then x1, ..., xm, a1, ..., an is a system of generators for the k-algebra A.
In fact, let x ∈ A. Then we have x = P (x1, ..., xm)+f1a1 + ...+fnan with

P a polynomial over k and fi ∈ A. In the same way fi = Pi(x1, ..., xm) +
fi1a1 + ... + finan with Pi a polynomial over k and fij ∈ A and then x =

P (x1, ..., xm) +
n∑

i=1

aiPi(x1, ..., xm) +
n∑

i,j=1

fijaiaj. Representing in the same

way fij and next continuing in the same manner, after p steps (because
ap = 0) we will obtain x as a k-polynomial expression in x1, ..., xm, a1, ..., an.
Q.E.D.

Remark 1 - The conditions of finite generation required in the first part
of Lemma 4 are also necessary.

There exist some examples of subalgebras of algebras of finite type over
a field k which are not finitely generated but the associated reduced algebras
( which are still subalgebras of algebras of finite type over k) are finitely
generated (see [1]); via Lemma 4, their nilradical ideals are not ideals of
finite type.

Now we will return to the consequences.

The following fact has been established by J.E. Goodman and A. Land-
man ([10], Cor. 3.9, p. 279) for (irreducible) algebraic varieties and integral
schemes over an algebraically closed field.
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Corollary 2 - Let f : X −→ Y be a proper surjective morphism of
schemes over a field k, with X of finite type over k and such that the canonical
morphism OY −→ f∗OX is injective. Then Y is of finite type over k.

Proof - Since the scheme morphism f : X −→ Y is proper and surjective
then it has the property (P ) (see §2, Ex.1). Via the previous Theorem it
follows that Yred is of finite type over k.

For each open affine subset V ⊆ Y , by [], §2, Lemma 4, p. 1010 applied to
the scheme morphism f |f−1(V ) : f−1(V ) −→ V , it follows that Γ(V, f∗OX) is
a Noetherian ring which is finite over the subring Γ(V,OY ). So Γ(V,OY ) is a
Noetherian ring by a Theorem of Eakin-Nagata ([15], Theorem; [7], Theorem
2).

So Y is a Noetherian scheme such that Yred is of finite type over k. Then
Y is of finite type over k by Lemma 4. Q.E.D.

Corollary 3 - Let f : X −→ Y be a faithfully flat morphism of schemes
over a field k, with X of finite type over k. Then Y is of finite type over k.

Proof - Since the morphism f : X −→ Y is faithfully flat, then it has the
property (P ) (see §2, Ex. 3). Via the previous Theorem it follows that Yred

is of finite type over k.
From the faithfully flatness of f and the Noetherianity of X it results the

Noetherianity of Y . So Y is a Noetherian scheme such that Yred is of finite
type over k. By Lemma 4 it follows that Y is of finite type over k. Q.E.D.

Remark 2 - Let us recall ([5], §3, Prop. 1) a second and more direct
argument to prove Corollary 3 : f is a morphism of finite type of Noetherian
schemes with the property (P ) and X is universally 1-equicodimensional as
a scheme of finite type over a field ; then by §1, Theorem B it follows that
Y is universally 1-equicodimensional and next a scheme of finite type over k
via §1, Theorem A.
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