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THE METRIC REGULARITY OF POLYNOMIAL
FUNCTIONS IN ONE OR SEVERAL VARIABLES

Alexandru V. Blaga

Abstract. The metric regularity property at set-valued mappings or
single-valued functions has several applications in variational calculus. The
Fréchet differential at a point or the strict differential at a point assures
several features of this property. The condition which assure the metric reg-
ularity property are mentioned in [1], [2], [3] and [4]. This article contains
conditions from the metric regularity property at the graph points for poly-
nomial functions in one or several variable. The metric regularity at extremal
points for Fréchet differentiable functions can be found here.

2000 Mathematics Subject Classification: 49J52, 58C20; 47D15,49J50

Keywords and phrases:Banach spaces, Fréchet differential, metric regu-
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1. Preliminaries

The metric regularity property has many equivalent definitions which
will be remainded. The theory of metric regularity is an extension of two
classical Theorems. Developments in non-smooth analysis in the 1980s and
1990s paved the way for a number of far-reaching extension of these results.
The well-known Lyusternik-Graves Theorem assures the property of metric
regularity for differentiable functions at each point from the graph, proving
through the equality reg F (x̄|ȳ) = reg DF (x̄) exactly the modulus of metric
regularity [4]. Additionally, the Robinson-Ursescu Theorem [4] assures the
metric regularity at the graph points for the multifunctions which have a
closed and convex graph. This article shows the metric regularity at the
graph points for polynomial functions, while the metric regularity at extremal
or at critical points is not assured. In the case of global extreme points the
metric regularity property is not fulfilled and on the case of other ex! treme
points the same conclusion is reached.
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2. Backgroud in metric regularity

Unless otherwise stated, we always assume set-valued maps to be closed-
valued, that is, we assume that all sets F (x) are closed, where F : X → Y is
a set-valued function. The sets

dom F = {x|F (x) 6= Φ} and Im F = ∪{F (x) : x ∈ X} (1)

are respectively called the domain and the image of F . It will be presumed
that F is a self application, meaning that the domain of F is nonempty and
F (X) ⊂ Y with strict inclusion. A set-valued map is often identified by its
graph

Gr f = {(x, y) ∈ X × Y |y ∈ F (x)}. (2)

The inverse of F is defined by

F−1(y) = {x ∈ X|y ∈ F (x)}. (3)

From their definition, dom F−1 = Im f . Moreover, if f : X → R̄ and the
multifunction

x 7→ {α ∈ R|α ≥ f(x)} (4)

is defined, its graph is called epigraph of f and it is defined by

epi(f) = {(x, α) ∈ X × R|α ≥ f(x)}. (5)

The symbol d(·, ·) is used for distance. We will consider the norm
dα((x, y), (u, v)) = d(x, u)+αd(y, v), with α > 0, on the space product X×Y .
We have the closed ball of center x and radius r, defined by

B(x, r) = {y|d(x, y) ≤ r}. (6)

Definition 1 ([1]). Let V a subset of the set X × Y . We say that F is
metrically regular on V if then there exists K > 0 such that

(x, y) ∈ V ⇒ d(x, F−1(y)) ≤ Kd(y, f(x)). (7)

The smallest K for which (7) holds will be called the norm of metric regularity
on F and written Reg∨F .
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Definition 2 ([1]). F is metrically regular near (x̄, ȳ) ∈ Gr F if for some
ε > 0 it is metrically regular on the set V = B(x̄, ε) × B(ȳ, ε). The lower
bound of such K in this case will be called the norm of metric regularity of
F near (x̄, ȳ) and written Reg F (x̄, ȳ).

The following proposition assured the equivalence of Definition 1 and Defi-
nition 2.

Proposition 1 ([1]) A set-valued map is metrically regular near (x̄, ȳ) ∈
Gr F if and only if is metrically regular on the set

V = {(x, y) ∈ B(x̄, ε)×B(ȳ, ε) : d(y, F (x)) ≤ ε}

for some ε > 0.

Definition 3 ([1]). We say that F covers on V at a linear rate if there is a
K > 0 such that

(x, y) ∈ V, v ∈ F (x) and d(v, y) < ε ⇒ (∃)u : d(u, x) ≤ Kt (8)

and y ∈ F (u).

The lower bound of those K for which (8) holds will called the norm of
covering of F on V , and its inverse, the constant of covering, written Sur∨F .

Definition 4 ([1]). Let W ⊂ X × Y . We say that F is pseudo-Lipschitz on
W if there is a K > 0 such that

(x, y) ∈ W and y ∈ F (u) ⇒ d(y, F (x)) ≤ Kd(x, u). (9)

The smallest K for (9) holds is called the pseudo-Lipschitz norm of F on W .

The following proposition assured the equivalence of Definition 3 and Defi-
nition 4.

Proposition 2 ([1]) The following statements are equivalent:
(a). F is regular on V ;
(b). F covers on V at a linear rate;
(c). F−1 is pseudo-Lipschitz on W = {(x, y)|(x, y) ∈ V }.
Moreover, the norm of regularity and covering of F on V and the pseudo-
Lipschitz norm of F−1 on W are equal, and Reg∨ F · Sur∨ F = 1.
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The graph of a function allows a characterization of its metric regularity.
Only the definition will be mentioned here.

Definition 5 ([1]). We say that F is graph-regular on V with norm not
greather then K if

d(x, F−1(y)) ≤ dk((x, y), GrF ) (10)

for all (x, y) ∈ V .

Another characterization of the metric regularity can be made with the help
of the strict slope of a function at a point (Theorem 2 from [1] and Theorem
3 from [1], pag. 516 to be seen).

3. Main results

For single-valued mappings F that are nonlinear but differentiable, the
notion of metric regularity if not the term itself goes back to a basic theo-
rem in analysis, which is associated with the work of Lyusternik and graves
[5]. Here we denote by DF (x̄) the derivative mapping in L(X, Y ) that is
associated with F at x, where L(X, Y ) denote the space of continuous linear
mappings F : X → Y ; here, X and Y are Banach spaces.

Theorem 1 (Lyusternik-Graves, [4]). For any continuously Fréchet differ-
entiable mapping F : X → Y and any (x̄, ȳ) ∈ gph F one has

reg F (x̄|ȳ) = reg DF (x̄). (11)

Thus F is metrically regular at x̄ for ȳ = F (x̄) if and only if DF (x̄) is
surjective.

Proposition 3 Let F : R → R be a polynomial function in one variable;
then F has the metric regularity property only at the points (x̄, ȳ) ∈ gphF
where DF (x̄) is different from null mapping.

Proof. We have

lim
x→x̄

F (x)− F (x̄)− F ′(x̄)(x− x̄)

|x− x̄|
=

= lim
x→x̄

n∑
i=0

aix
i −

n∑
i=0

aix̄
i − F ′(x̄)(x− x̄)

|x− x̄|
=

= lim
x→x̄

(x− x̄[F ′(x)− F ′(x̄)])

|x− x̄|
= 0
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so DF (x̄)(t) = F ′(x̄)t ∈ L(R, R). The surjection of DF (x̄) requires to be
different from null mapping that is the points are not critical and even more
extremal.

Proposition 4 If F : R2 → R, F (x, y) = ax2 + by2 + cxy + dx+ ey + f then
F has the metric regularity property at the graph points (x̄, ȳ) ∈ gph F for
which DF (x̄, ȳ) is different from null mapping, where x̄ = (x0, y0) ∈ R × R
and the coefficients are real.

Proof. We have (x̄, ȳ) ∈ gphF , so F (x0, y0) = ȳ ∈ R. Consider DF (x)h =
∂f
∂x

(x0, y0)h1 + ∂f
∂y

(x0, y0)h2, h = (h1, h2) ∈ R × R. Consequently, DF (x̄)h =

(2ax0 + cy0 + d)h1 + (2by0 + cx0 + e)h2 and we have

lim
(x,y)→(x0,y0)

F (x, y)− F (x0, y0)−DF (x̄)(x− x0, y − y0)√
(x− x0)2 + (y − y0)2

=

= lim
(x,y)→(x0,y0)

a(x− x0)
2 + b(y − y0)

2 + c(x− x0)(y − y0)√
(x− x0)2 + (y − y0)2

=

= lim
(u,v)→(0,0)

au2 + bv2 + cuv√
u2 + v2

,

where u = x− x0, v = y − y0. From

|au2 + bv2 + cuv| ≤ max(|a|, |b|, |c|)(u2 + uv + v2)√
u2 + v2

≤

≤
max(|a|, |b|, |c|)3

2
(u2 + v2)

√
u2 + v2

= max(|a|, |b|, |c|)3
2

√
u2 + v2,

we have

lim
(x,y)→(x0,y0)

F (x, y)− F (x0, y0)−DF (x̄)(x− x0, y − y0)√
(x− x0)2 + (y − y0)2

= 0

and DF (x̄) : R2 → R ∈ L(R2, R). For x̄ ∈ R2 for which DF (x̄) is different
from null mapping, DF (x̄) is surjective, so due to Theorem 1 F has the
metric regularity property at these graph points.

Proposition 5 If F : R2 → R, F (x) =
∑

i+j≤n

aijx
iyj, then F has the metric

regularity property at the graph points (x̄, ȳ) ∈ gph F for which DF (x̄, ȳ) is
different from null mapping, where x̄ = (x0, y0) ∈ R× R and aij ∈ R.
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Proof. Let ȳ = F (x0, y0) ∈ R such that

DF (x̄)h =
∂f

∂x
(x0, y0)h1 +

∂f

∂y
(x0, y0)h2 = (12)

=
n−1∑
k=0

n−k−1∑
i=0

(n− k − i)an−k−i,ix
n−k−i−1
0 yi

0h1+

+
n−1∑
k=0

n−k−1∑
i=0

(n− k − i)ai,n−k−ix
i
0y

n−k−i−1
0 h2

and we have

lim
(x,y)→(x0,y0)

F (x, y)− F (x0, y0)−DF (x̄)(x− x0, y − y0)√
(x− x0)2 + (y − y0)2

= 0,

because the partial derivatives are continuous at (x0, y0) as polynomial func-
tions, the differential of F at point is the one given by (12).

Obviously, we do not have the metric regularity property at saddle points
because DF (x̄) is not surjective. In the case of several variables polynomial
functions, the differential at the point assures the metric regularity property
in the surjectivity case.

Remark 1 In the case of functions which are not polynomial, at extremal
points or at saddle points when the function is not differentiable, the metric
regularity property may or may not the place. Let for example the function

f : R2 → R, f(x, y) =

{ xy
x2+y2 , x2 + y2 > 0

0, x2 + y2 = 0
and x̄ = (1, 1) which is

maximum point, since f(x, t) ≤ f(1, 1). Because ∂f
∂x

(1, 1) = ∂f
∂y

(1, 1) = 0, we

have DF (1, 1)h = 0, for all h ∈ R2. This can be deduced also from

lim
(x,y)→(1,1)

f(x, y)− 1/2−DF (1, 1)(x− 1, y − 1)√
(x− 1)2 + (y − 1)2

= lim
(u,v)→(0,0)

(u− v)2

√
u2 + v2

,

where u = x − 1, v = y − 1. From |u2 + v2 − 2uv| ≤ 2(u2 + v2), the limit
above is 0. Since DF (1, 1) is not surjective, f has not the metric regularity
property at (1, 1).
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Remark 2 At extremal points where the functions not differentiable we can
have metric regularity property. For example, let the function

f : R2 → R, defined by f(x, y) =

{
1, x = (1, y) ∈ R2

0, otherwise
for which we have

d(x, f−1(y)) ≤ Kd(y, f(x)), for (x, y) ∈ V × W , V = [0, 2], W = [1, 3]
and from f(1, y) ≥ f(x, y) ∈ {0, 1} the points (1, y) are all the points of
maximum. At α = (1, 2), for which V × W is a neighborhood, we have
d(x, f−1(y)) = 0, because {(1, y)|y ∈ [1.3]} ⊂ [0, 2] × [1, 3] and we choose
K = 0,because f−1(y) = {(1, y)|y ∈ R} ∪ {(1 + ε, y)|ε, y ∈ R}, ε 6= 0. Due
the continuity, f is not differentiable at α and at the points (1, y), y ∈ R.

Proposition 6 For the function F : Rp → R defined by

F (x) =
∑

i1+i2+...+ip≤n

ai1i2...ipx
i1
1 xi2

2 . . . xip
p ,

where x = (x1, x2, . . . , xp) and x̄0 = {x1
0, x

2
0, . . . , x

p
0}, we note αi = ∂F

∂xi
(x̄0),

i ∈ {1, 2, . . . , p} and we suppose that
p∑

i=0

α2
i 6= 0. Then we have

reg F (x̄|ȳ) =
1√
p∑

i=1

α2
i

. (13)

Proof. Because
p∑

i=0

α2
i 6= 0, from Theorem 1.2 from [4], we have that

the application DF (x̄0) is a surjection for x̄0 ∈ Rp and that reg F (x̄|ȳ) =
reg DF (x̄0), where (x̄0, ȳ0) ∈ gph F . Due to Example 1.1 from [4] and
DF (x̄0) ∈ L(Rp, R), then the regularity modulus reg DF (x̄0)(x̄0|ȳ0) is the
same for all (x̄0, ȳ0) ∈ gphF and that common value, denoted by regDF (x̄0)
is given by

reg DF (x̄0) = inf{k ∈ (0,∞)|kDF (x̄0)(BX) ⊃ int BY } = (14)

= sup{d(0, DF−1(x̄0)(y))|y ∈ BY }.

Let x ∈ DF−1(x̄0)y, so that DF−1(x̄0)x = y,
p∑

i=1

∂F
∂xi

(x̄0)xi = y and more,

p∑
i=1

αixi = y. It results that

∣∣∣∣ p∑
i=1

αixi

∣∣∣∣ ≤ 1 and we will calculate min

√
p∑

i=1

x2
i
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because d(0, A) = min{‖x‖ : x ∈ A}, A = DF−1(x̄0)y. Consider

h(x, λ) =

p∑
i=1

x2
i − λ

(
p∑

i=1

αixi − s

)
, (15)

where s ∈ [0, 1]. From the Lagrange multipliers method, we have 2xi − λαi = 0, i ∈ {1, 2, . . . , p}
p∑

i=1

αixi = s
(16)

from where we obtain xi = λαi

2
and λ = 2s

p∑
i=1

α2
i

, so that xi = αis · 1
p∑

i=1
α2

i

,

p∑
i=1

x2
i = s2 · 1

p∑
i=1

α2
i

and ‖x‖ ≤ |s|√
p∑

i=1
α2

i

≤ 1√
p∑

i=1
α2

i

; the last inequality is in fact

(13), since the supremum is reached in the case of equality.
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