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ONE KANTOROVICH-TYPE OPERATOR
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Abstract. The aim of this paper is to construct a sequence linear
positive operators of Kantorovich-type. We demonstrate some convergence
and approximation properties of these operators.
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1. Introduction

In this section we recall some notions and results which we will use in
this paper.

Let N be the set of positive integer and N0 = N∪{0}. For m ∈ N, let the
operator Km : L1([0, 1]) → C([0, 1]) defined for any function f ∈ L1([0, 1])
by

(Kmf)(x) = (m+ 1)
m∑

k=0

pm,k(x)

k+1
m+1∫
k

m+1

f(x)dt, (1)

where pm,k(x) are the fundamental polynomials of Bernstein, defined as fol-
lows

pm,k(x) =

(
m

k

)
xk(1− x)m−k (2)

for any x ∈ [0, 1] and any k ∈ {0, 1, . . . ,m}.
The operators Km, m ∈ N are named Kantorovich operators, introduced

and studied in 1930 by L. V. Kantorovich (see [1] or [6]).
In [4] and [5] we give approximation theorems and Voronovskaja-type

theorem for these operators.
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For i ∈ N0, we note

(Tm,iBm)(x) = mi
(
Bmψ

i
x

)
(x) = mi

m∑
k=0

pm,k(x)

(
k

m
− x

)i

where x ∈ [0, 1], m ∈ N, ψx : [0, 1] → R, ψx(t) = t− x, for any t ∈ [0, 1] and
Bm, m ∈ N are the Bernstein operators.

It is known (see [2]) that

(Tm,0Bm)(x) = 1, (3)

(Tm,1Bm)(x) = 0, (4)

(Tm,2Bm)(x) = mx(1− x), (5)

(Tm,3Bm)(x) = mx(1− x)(1− 2x) (6)

and
(Tm,4Bm)(x) = 3m2x2(1− x)2 +m[x(1− x)− 6x2(1− x)2] (7)

where x ∈ [0, 1], m ∈ N.
The following construction and results are given in [4].
We consider I ⊂ R, I an interval and we shall use the function sets E(I),

F (I) which are subsets of the set of real functions defined on I, B(I) =
{f |f : I → R, f bounded on I}, C(I) = {f |f : I → R, f continuous on I}
and CB(I) = B(I) ∩ C(I). Let a, b, a′, b′ be real numbers, a < b, a′ < b′,
[a, b] ⊂ I, [a′, b′] ⊂ I and [a, b] ∩ [a′, b′] 6= ∅.

For m ∈ N, consider the functions ϕm,k : I → R with the property that
ϕm,k(x) ≥ 0, for any x ∈ [a′, b′], any k ∈ {0, 1, . . . ,m] and the linear positive
functionals Am,k : E([a, b]) → R, k ∈ {0, 1, . . . ,m}.

For m ∈ N, define the operator Lm : E([a, b]) → F (I) by

(Lmf)(x) =
m∑

k=0

ϕm,k(x)Am,k(f), (8)

for any f ∈ E([a, b]), any x ∈ I and for i ∈ N0, define Tm,iLm by

(Tm,iLm)(x) = mi
(
Lmψ

i
x

)
(x) = mi

m∑
k=0

ϕm,k(x)Am,k

(
ψi

x

)
, (9)

for any x ∈ [a, b] ∩ [a′, b′].

118



O.T. Pop - One Kantorovich-type operator

In the following, let s be a fixed natural number, s even and we suppose
that the operators (Lm)m≥1 verify the conditions: there exist the smallest
αs, αs+2 ∈ [0,∞) so that

lim
m→∞

(Tm,jLm)(x)

mαj
= Bj(x) ∈ R (10)

for any x ∈ [a, b] ∩ [a′, b′], j ∈ {s, s+ 2} and

αs+2 < αs + 2. (11)

Theorem 1 Let f : [a, b] → R be a function. If x ∈ [a, b] ∩ [a′, b′] and f is
a s times differentiable function in x, the function f (s) is continuous in x,
then

lim
m→∞

ms−αs

[
(Lmf)(x)−

s∑
i=0

f (i)(x)

mii!
(Tm,iLm)(x)

]
= 0. (12)

If f is a s times differentiable function on [a, b], the function f (s) is contin-
uous on [a, b] and there exist m(s) ∈ N and kj ∈ R so that for any m ∈ N,
m ≥ m(s) and for any x ∈ [a, b] ∩ [a′, b′] we have

(Tm,jLm)(x)

mαj
≤ kj, (13)

where j ∈ {s, s+2}, then the convergence given in (12) is uniform on [a, b]∩
[a′, b′] and

ms−αs

∣∣∣∣∣(Lmf)(x)−
s∑

i=0

f (i)(x)

mii!
(Tm,iLm)(x)

∣∣∣∣∣ ≤ (14)

≤ 1

s!
(ks + ks+2)ω

(
f (s);

1√
m2+αs−αs+2

)
,

for any x ∈ [a, b] ∩ [a′, b′], for any m ∈ N, m ≥ m(s).
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2. Preliminaries

Definition 1 For m ∈ N, define the operator Km : L1([0, 1]) → C([0, 1]) by

(Kmf)(x) = m
m−1∑
k=0

pm,k(x)

k+1
m∫

k
m

f(t)dt+ xmf(1) (15)

for any f ∈ L1([0, 1]) and any x ∈ [0, 1].
These operators are Kantorovich-type operators.

Proposition 1 The operators Km, m ∈ N are linear and positive on L1([0, 1]).

Proof. The proof follows immediately.

Proposition 2 For any m ∈ N and x ∈ [0, 1], we have

(Kme0)(x) = 1, (16)

(Kme1)(x) = x+
1

2m
(1− xm), (17)

(Kme2)(x) = x2 +
x(2− x)

m
+

1

3m2
− 3m+ 1

3m2
xm (18)

and (
Kmψ

2
x

)
(x) =

x(1− x)

m
+

1

3m2
− 3m+ 1

3m2
xm +

1

m
xm+1 . (19)

Proof. We have

(Kme0)(x) = m
m−1∑
k=0

pm,k(x)t
∣∣∣ k+1

m

k
m

+ xm =
m−1∑
k=0

pm,k(x) + xm =

=
m∑

k=0

pm,k(x) = (Bme0)(x) = 1,
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(Kme1)(x) = m
m−1∑
k=0

pm,k(x)
t2

2

∣∣∣ k+1
m

k
m

+ xm = m
m−1∑
k=0

pm,k(x)
2k + 1

2m2
+ xm =

=
m−1∑
k=0

pm,k(x)
k

m
+

1

2m

m−1∑
k=0

pm,k(x) + xm =

= ((Bme1)(x)− pm,m(x)) +
1

2m
((Bme0)(x)− pm,m(x)) + xm,

(Kme2)(x) = m
m−1∑
k=0

pm,k(x)
t3

3

∣∣∣ k+1
m

k
m

+ xm =

= m

m−1∑
k=0

pm,k(x)
3k2 + 3k + 1

3m3
+ xm =

= ((Bme2)(x)− pm,m(x)) +
1

m
((Bme1)(x)− pm,m(x)) +

+
1

3m2
((Bme0)(x)− pm,m(x)) + xm,

from where the relations (16) - (18) result. From (16) - (18), we obtain the
relation (19).

Remark 1 Taking Proposition 2 into account, from the Theorem Bohman-
Korovkin, it results that for any f ∈ C([0, 1]) we have lim

m→∞
Kmf = f uniform

on [0, 1].

Remark 2 From the Theorem Shisha-Mond, approximation theorems for
the (Km)m∈N operators result.

3. Main result

In the following, we study the Km, m ∈ N operators with the aid of the
Theorem 1. For these operators, we have

Am,k(f) =


m

k+1
m∫

k
m

f(t)dt, 0 ≤ k ≤ m− 1

f(1), k = m

(20)

where m ∈ N and f ∈ L1([0, 1]).
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Theorem 2 For m, i ∈ N0, m 6= 0 and x ∈ [0, 1] we have

(Tm,iKm)(x) =
1

i+ 1

i∑
j=0

(
i+ 1

j

)
(Tm,jBm)(x)− (21)

− xm

i+ 1

[
(1 +m(1− x))i+1 − (m(1− x))i+1

]
+ xm(m(1− x))i.

Proof. Taking (9) and (20) into account, we have

(Tm,iKm)(x) = mi
(
Kmψ

i
x

)
(x) =

= mi

mm−1∑
k=0

pm,k(x)

k+1
m∫

k
m

(t− x)idt+ xm(1− x)i

 =

= mi

[
m

m−1∑
k=0

pm,k(x)
(t− x)i+1

i+ 1

∣∣∣ k+1
m

k
m

+ xm(1− x)i

]
=

= mi

[
m

i+ 1

m−1∑
k=0

pm,k(x)

((
k

m
− x+

1

m

)i+1

−
(
k

m
− x

)i+1
)

+xm(1−x)i

]
=

= mi

[
m

i+1

m−1∑
k=0

pm,k(x)
i∑

j=0

(
i+1

j

)(
k

m
− x

)j (
1

m

)i+1−j

+ xm(1−x)i

]
=

= mi

{
m

i+1

i∑
j=0

(
i+1

j

)
1

mi+1−j

[
m∑

k=0

pm,k(x)

(
k

m
− x

)j

−pm,m(x)(1−x)j

]
+

+ xm(1− x)i

}
=

1

i+ 1

i∑
j=0

(
i+ 1

j

)[
(Tm,jBm)(x)− xm(m(1− x))j

]
+

+ xm(m(1− x))i =
1

i+ 1

i∑
j=0

(
i+ 1

j

)
(Tm,jBm)(x)−

− xm

i+ 1

i∑
j=0

(
i+ 1

j

)
(m(1− x))j + xm(m(1− x))i,

from where we obtain relation (21).
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Remark 3 If m, i ∈ N and x ∈ [0, 1], from (21) it results that

(Tm,iKm)(x) = (22)

=
1

i+ 1

i∑
j=0

(
i+ 1

j

)
(Tm,jBm)(x)− xm

i+ 1

i−1∑
j=0

(
i+ 1

j

)
(m(1− x))j.

Lemma 1 For any m ∈ N and x ∈ [0, 1], we have

(Tm,0Km)(x) = 1, (23)

(Tm,1Km)(x) =
1

2
(1− xm), (24)

(Tm,2Km)(x) =
1

3
(1− xm) +mx(1− x)(1− xm−1) (25)

and

(Tm,4Km)(x) =
1

5
(1− xm) +mx(1− x)(6x2 + 2x+ 5− xm−1)+ (26)

+m2x2(1− x)2(3− 2xm−2)− 2m3xm(1− x)3.

Proof. It results from the Theorem 2 and relations (3) - (7).

Lemma 2 We have
lim

m→∞
(Tm,0Km)(x) = 1, (27)

lim
m→∞

(Tm,2Km)(x)

m
= x(1− x), (28)

lim
m→∞

(Tm,4Km)(x)

m2
= 3x2(1− x)2 (29)

for any x ∈ [0, 1] and
(Tm,0Km)(x) = 1 = k0, (30)

(Tm,2Km)(x)

m
≤ 7

12
= k2 (31)

and
(Tm,4Km)(x)

m2
≤ 291

80
= k4 (32)

for any x ∈ [0, 1], any m ∈ N.

123



O.T. Pop - One Kantorovich-type operator

Proof. For x = 1, the relations (28) and (29) hold. For x ∈ [0, 1) we take
lim

m→∞
xm = 0, lim

m→∞
mxm = 0 into account, so (28) and (29) hold.

We have

(Tm,2Km)(x)

m
=

1

3m
(1− xm) + x(1− x)(1− xm−1) ≤

≤ 1

3m
+ x(1− x) ≤ 1

3
+

1

4
=

7

12
,

because x(1 − x) ≤
1

4
, for any x ∈ [0, 1] and with similar calculation we

obtain the inequality (32).

Theorem 3 Let f : [0, 1] → R be a function. If f is a continuous function
in x ∈ [0, 1], then

lim
m→∞

(Kmf)(x) = f(x). (33)

If f is continuous on [0, 1], then the convergence given in (33) is uniform on
[0, 1] and

|(Kmf)(x)− f(x)| ≤ 19

12
ω

(
f ;

1√
m

)
(34)

for any x ∈ [0, 1], any m ∈ N.

Proof. It results from Theorem 1 for s = 0, Lemma 1 and Lemma 2.

Theorem 4 Let f : [0, 1] → R be a function. If x ∈ [0, 1] and f is two times
differentiable function in x, the function f (2) is continuous in x, then

lim
m→∞

m [(Kmf)(x)− f(x)] =
1

2
f (1)(x) +

1

2
x(1− x)f (2)(x). (35)

If f is a two times differentiable function on [0, 1], the function f (2) is con-
tinuous on [0, 1], then the convergence given in (35) is uniform on [0, 1] and

m
∣∣(Kmf)(x)− f(x)− 1

2m
(1− xm)f (1)(x)− (36)

− 1

2m2

[
1

3
(1− xm) +mx(1− x)(1− xm−1)

]
f (2)(x)

∣∣ ≤
≤ 1013

480
ω

(
f (2);

1√
m

)
for any x ∈ [0, 1], any m ∈ N.
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Proof. It results from Theorem 1 for s = 2, Lemma 1 and Lemma 2.

Remark 4 The relation (35) is a Voronovskaja-type relation for the (Km)m≥1

operators.
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