MULTIVALUED STARLIKE FUNCTIONS OF COMPLEX ORDER

M. Çağlar, Y. Polatoğlu, A. Şen, E. Yavuz and S. Owa

ABSTRACT. Let \mathcal{A}_{α} be the class of functions $f(z) = z^{\alpha}(z + a_2 z^2 + \cdots)$ which are analytic in the open unit disc \mathbb{U} . For $f(z) \in \mathcal{A}_{\alpha}$ using the fractional calculus, a subclass $\mathcal{S}_{\alpha}^*(1-b)$ which is the class of starlike functions of complex order (1-b) is introduced. The object of the present paper is to discuss some properties for f(z) belonging to the class $\mathcal{S}_{\alpha}^*(1-b)$.

2000 Mathematics Subject Classification: 30C45

Keywords and phrases: fractional calculus, analytic function, starlike of complex order, subordination.

1. Introduction

Let \mathcal{A}_{α} denote the class of functions f(z) of the form

$$f(z) = z^{\alpha} \left(z + \sum_{n=2}^{\infty} a_n z^n \right) \quad (0 < \alpha < 1)$$

which are analytic in the open unit disc $\mathbb{U}=\{z\in\mathbb{C}||z|<1\}$. Let Ω be the class of analytic functions w(z) in \mathbb{U} satisfying w(0)=0 and |w(z)|<1 for all $z\in\mathbb{U}$. Also, let \mathcal{P} denote the class of functions p(z) which are analytic in \mathbb{U} with p(0)=1 and $\mathrm{Re}(p(z))>0$ $(z\in\mathbb{U})$.

For analytic functions g(z) in \mathbb{U} , we introduce the definitions of fractional calculus (fractional integrals and fractional derivatives) given by Owa [4], [5], also by Srivastava and Owa [6].

Definition 1 The fractional integral of order λ for an analytic function g(z) in \mathbb{U} is defined by

$$D_z^{-\lambda}g(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{g(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta \quad (\lambda > 0),$$

where the multiplicity of $(z-\zeta)^{\lambda-1}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta)>0$.

Definition 2 The fractional derivative of order λ for an analytic function g(z) in \mathbb{U} is defined by

$$D_z^{\lambda}g(z) = \frac{d}{dz}(D_z^{\lambda - 1}g(z)) = \frac{1}{\Gamma(1 - \lambda)}\frac{d}{dz}\int_0^z \frac{g(\zeta)}{(z - \zeta)^{\lambda}}d\zeta \quad (0 \le \lambda < 1),$$

where the multiplicity of $(z-\zeta)^{-\lambda}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta)>0$.

Definition 3 Under the hypotheses of Definition 2, the fractional derivative of order $(n + \lambda)$ for an analytic function g(z) in \mathbb{U} is defined by

$$D_z^{\lambda+n}g(z) = \frac{d^n}{dz^n}(D_z^{\lambda}g(z)) \quad (0 \le \lambda < 1, n \in \mathbb{N}_0 = \{0, 1, 2, \dots\}).$$

Remark 4 From the definitions of the fractional calculus, we see that

$$D_{z}^{-\lambda} z^{k} = \frac{\Gamma(k+1)}{\Gamma(k+1+\lambda)} z^{k+\lambda} \quad (\lambda > 0, k > 0),$$

$$D_{z}^{\lambda} z^{k} = \frac{\Gamma(k+1)}{\Gamma(k+1-\lambda)} z^{k-\lambda} \quad (0 \le \lambda < 1, k > 0)$$

$$D_{z}^{n+\lambda} z^{k} = \frac{\Gamma(k+1)}{\Gamma(k+1-n-\lambda)} z^{k-n-\lambda} \quad (0 \le \lambda < 1, k > 0, n \in \mathbb{N}_{0},$$

$$k - n \ne -1, -2, -3, \cdots).$$

and

$$D_z^{\lambda}(D_z^n z^k) = \frac{\Gamma(k+1)}{\Gamma(k+1-n-\lambda)} z^{k-n-\lambda} \quad (0 \le \lambda < 1, k > 0, n \in \mathbb{N}_0, k-n \ne -1, -2, -3, \cdots).$$

Therefore, we say that, for any real λ ,

$$D_z^{\lambda} z^k = \frac{\Gamma(k+1)}{\Gamma(k+1-\lambda)} z^{k-\lambda} \quad (k > 0, k-\lambda \neq -1, -2, -3, \cdots).$$

Applying the fractional calculus, we introduce the subclass $\mathcal{S}^*_{\alpha}(1-b)$ of \mathcal{A}_{α} .

Definition 5 A function $f \in \mathcal{A}_{\alpha}$ is said to be starlike of complex order (1-b) $(b \in \mathbb{C} \text{ and } b \neq 0)$ if f(z) satisfies

$$1 + \frac{1}{b} \left(z \frac{\mathcal{D}_z^{\alpha+1} f(z)}{\mathcal{D}_z^{\alpha} f(z)} - 1 \right) = p(z) \quad (z \in \mathbb{U})$$

for some $p(z) \in \mathcal{P}$. The subclass of \mathcal{A}_{α} consisting of such functions is denoted by $\mathcal{S}_{\alpha}^*(1-b)$.

Let h(z) and s(z) be analytic in \mathbb{U} . Then h(z) is said to be subordinate to s(z), written by $h(z) \prec s(z)$, if there exists some function $w(z) \in \Omega$ such that h(z) = s(w(z)) in \mathbb{U} . In particular, if s(z) is univalent in \mathbb{U} , then the subordination $h(z) \prec s(z)$ is equivalent to h(0) = s(0) and $h(\mathbb{U}) \subset s(\mathbb{U})$ (see [1]).

2. Main Results

In order to consider some properties for the class $S_{\alpha}^{*}(1-b)$, we need the following lemma due to Jack [2], or due to Miller and Mocanu [3].

Lemma 6 Let w(z) be a non-constant and analytic function in \mathbb{U} with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point $z_1 \in \mathbb{U}$, then we have

$$z_1w'(z_1) = kw(z_1),$$

where k is real and $k \geq 1$.

Now, we derive the following.

Theorem 7 If $f(z) \in \mathcal{A}_{\alpha}$ and satisfies the condition

$$\left(z\frac{\mathcal{D}_z^{\alpha+1}f(z)}{\mathcal{D}_z^{\alpha}f(z)} - 1\right) \prec \frac{2bz}{1-z} = F(z), \tag{1}$$

then $f(z) \in S_{\alpha}^*(1-b)$. This result is sharp since the function f(z) satisfies the fractional differential equation $D_z^{\alpha} f(z) = \frac{\Gamma(\alpha+2)z}{(1-z)^{2b}}$.

Proof. For $f(z) \in \mathcal{A}_{\alpha}$, it is easy to see that

$$D_{z}^{\alpha}f(z) = D_{z}^{\alpha}(z^{\alpha+1} + a_{2}z^{\alpha+2} + a_{3}z^{\alpha+3} + \dots + a_{n}z^{\alpha+n} + \dots)$$

$$= \frac{\Gamma(\alpha+2)}{1!}z + a_{2}\frac{\Gamma(\alpha+3)}{2!}z^{2} + a_{3}\frac{\Gamma(\alpha+4)}{3!}z^{3} + \dots$$

$$+ a_{n}\frac{\Gamma(\alpha+n+1)}{n!}z^{n} + \dots$$

On the other hand, we define the function w(z) by

$$\frac{D_z^{\alpha} f(z)}{\Gamma(\alpha + 2)z} = (1 - w(z))^{-2b} \quad (w(z) \neq 1),$$

where the value of $(1 - w(z))^{-2b}$ is 1 at z = 0 (i.e, we consider the corresponding Riemann branch), then w(z) is analytic in \mathbb{U} , w(0) = 0, and

$$\left(z\frac{\mathcal{D}_z^{\alpha+1}f(z)}{\mathcal{D}_z^{\alpha}f(z)}-1\right) = \frac{2bzw'(z)}{1-w(z)}.$$

Now, it is easy to realize that the subordination (1) is equivalent to |w(z)| < 1 for all $z \in \mathbb{U}$. Indeed, assume the contrary: then, there exists a $z_1 \in \mathbb{U}$ such that $|w(z_1)| = 1$. Then, by Lemma 6, $z_1w'(z_1) = kw(z_1)$ for some real $k \geq 1$. For such z_1 we have

$$\left(z_1 \frac{D_z^{\alpha+1} f(z_1)}{D_z^{\alpha} f(z_1)} - 1\right) = \frac{2kbw(z_1)}{1 - w(z_1)} = F(w(z_1)) \notin F(\mathbb{D}),$$

because $|w(z_1)| = 1$ and $k \ge 1$. But this contradicts (1), so the assumption is wrong, i.e, |w(z)| < 1 for every $z \in \mathbb{U}$.

The sharpness of this result follows from the fact that

$$D_z^{\alpha} f(z) = \frac{\Gamma(\alpha + 2)z}{(1 - z)^{2b}} \Rightarrow \left(z \frac{D_z^{\alpha + 1} f(z)}{D_z^{\alpha} f(z)} - 1\right) = \frac{2bz}{1 - z}.$$

Theorem 8 If $f(z) \in \mathcal{S}_{\alpha}^*(1-b)$, then

$$\frac{\Gamma(\alpha+2)(1-r)^{|b|-\text{Re}b}}{(1+r)^{|b|+\text{Re}b}} \le |D_z^{\alpha}f(z)| \le \frac{\Gamma(\alpha+2)(1+r)^{|b|-\text{Re}b}}{(1-r)^{|b|+\text{Re}b}}.$$

This result is sharp since the function satisfies the fractional differential equation $D_z^{\alpha}f(z)=\frac{\Gamma(\alpha+2)z}{(1-z)^{2b}}$.

Proof. If $p(z) \in \mathcal{P}$, then we have

$$\left| p(z) - \frac{1+r^2}{1-r^2} \right| \le \frac{2r}{1-r^2}.$$

Using the definition of the class $S_{\alpha}^{*}(1-b)$, then we can write

$$\left| \left[1 + \frac{1}{b} \left(z \frac{\mathcal{D}_z^{\alpha+1} f(z)}{\mathcal{D}_z^{\alpha} f(z)} - 1 \right) \right] - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2}. \tag{2}$$

After the simple calculations from the (2) we get

$$\left| z \frac{\mathcal{D}_z^{\alpha+1} f(z)}{\mathcal{D}_z^{\alpha} f(z)} - \frac{1 - (1 - 2b)r^2}{1 - r^2} \right| \le \frac{2|b|r}{1 - r^2}.$$
 (3)

The inequality (3) can be written in the form

$$\frac{1 - 2|b|r - (1 - 2\operatorname{Re}b)r^2}{1 - r^2} \le \operatorname{Re}\left(z\frac{\operatorname{D}_z^{\alpha+1}f(z)}{\operatorname{D}_z^{\alpha}f(z)}\right) \le \frac{1 + 2|b|r - (1 - 2\operatorname{Re}b)r^2}{1 - r^2}.$$
(4)

On the other hand, since

$$\operatorname{Re}\left(z\frac{\operatorname{D}_{z}^{\alpha+1}f(z)}{\operatorname{D}_{z}^{\alpha}f(z)}\right) = r\frac{\partial}{\partial r}\log|\operatorname{D}_{z}^{\alpha}f(z)|,$$

then, the inequality (4) can be written in the form

$$\frac{1 - 2|b|r - (1 - 2\operatorname{Re}b)r^2}{r(1 - r)(1 + r)} \le \frac{\partial}{\partial r} \log|\mathcal{D}_z^{\alpha} f(z)| \le \frac{1 + 2|b|r - (1 - 2\operatorname{Re}b)r^2}{r(1 - r)(1 + r)}.$$
(5)

Integrating both sides of the inequality (5) from 0 to r, and using the normalization $\left(\frac{D_z^{\alpha}f(z)}{\Gamma(\alpha+2)}\right)$, we complete the proof of the theorem.

Theorem 9 If $f(z) \in \mathcal{S}^*_{\alpha}(1-b)$, then

$$|a_n| \le \frac{n\Gamma(\alpha+2)}{\Gamma(\alpha+n+1)} \prod_{k=0}^{n-2} (k+2|b|). \tag{6}$$

This inequality is sharp because the extremal function satisfies the fractional differential equation $D_z^{\alpha}f(z)=\frac{\Gamma(\alpha+2)z}{(1-z)^{2b}}$.

Proof. Using the definition of the class $S_{\alpha}^*(1-b)$, we can write

$$1 + \frac{1}{b} \left(z \frac{\mathcal{D}_{z}^{\alpha+1} f(z)}{\mathcal{D}_{z}^{\alpha} f(z)} - 1 \right) = p(z) \Leftrightarrow z \frac{\mathcal{D}_{z}^{\alpha+1} f(z)}{\mathcal{D}_{z}^{\alpha} f(z)} = b(p(z) - 1) + 1 \Leftrightarrow$$

$$\Gamma(\alpha + 2)z + \Gamma(\alpha + 3)a_{2}z^{2} + \frac{1}{2!}\Gamma(\alpha + 4)a_{3}z^{3} + \dots + \frac{1}{(n-1)!}\Gamma(\alpha + n + 1)a_{n}z^{n} + \dots$$

$$= \left(\Gamma(\alpha + 2)z + \frac{1}{2!}\Gamma(\alpha + 3)a_{2}z^{2} + \frac{1}{3!}\Gamma(\alpha + 4)a_{3}z^{3} + \dots + \frac{1}{n!}\Gamma(\alpha + n + 1)a_{n}z^{n} + \dots \right)$$

$$\cdot (1 + bp_{1}z + bp_{2}z^{2} + \dots + bp_{n}z^{n} + \dots)$$

$$(7)$$

Equaling the coefficient of z^n in both sides (7), we get $a_1 \equiv 1$ and

$$|a_n| \le \frac{n!2|b|}{(n-1)\Gamma(\alpha+n+1)} \sum_{k=1}^{n-1} \frac{1}{k!} \Gamma(\alpha+k+1)|a_k|, \ |a_1| = 1,$$
 (8)

and (6) is obtained by induction making use of (8) and fact that $|p_n| \leq 2$ for all $n \geq 2$ whenever $p(z) \in \mathcal{P}$.

Remark 10 Let us consider a function f(z) defined by

$$D_z^{\alpha} f(z) = \frac{\Gamma(\alpha + 2)z}{(1 - z)^{2b}}$$

which was given in the theorems. Note that

$$\frac{z}{(1-z)^{2b}} = z \left(\sum_{n=0}^{\infty} {\binom{-2b}{n}} (-z)^n \right)$$

$$= z + \sum_{n=1}^{\infty} {\binom{-2b}{n}} (-1)^n (z)^{n+1}$$

$$= z + \sum_{n=1}^{\infty} \frac{2b(2b+1)(2b+2)\cdots(2b+n-1)}{n!} z^{n+1}$$

$$= z + \sum_{n=2}^{\infty} \frac{2b(2b+1)(2b+2)\cdots(2b+n-2)}{(n-1)!} z^n$$

$$= z + \sum_{n=2}^{\infty} \frac{(2b)_{n-1}}{(1)_{n-1}} z^n,$$

where $(a)_n$ in the Pochhammer symbol defined by

$$(a)_n = \begin{cases} 1 & (n = 0, \ a \neq 0) \\ a(a+1)(a+2)\cdots(a+n-1) & (n = 1, 2, 3, \cdots). \end{cases}$$

Therefore, we obtain that

$$\begin{split} f(z) &= \mathcal{D}_{z}^{-\alpha} (\mathcal{D}_{z}^{\alpha} f(z)) \\ &= \mathcal{D}_{z}^{-\alpha} \left(\frac{\Gamma(\alpha + 2)z}{(1 - z)^{2b}} \right) \\ &= \Gamma(\alpha + 2) \mathcal{D}_{z}^{-\alpha} \left(z + \sum_{n=2}^{\infty} \frac{(2b)_{n-1}}{(1)_{n-1}} z^{n} \right) \\ &= z^{\alpha + 1} + \sum_{n=2}^{\infty} \frac{(2b)_{n-1} \Gamma(\alpha + 2) \Gamma(n+1)}{(1)_{n-1} \Gamma(n+1+\alpha)} z^{\alpha + n} \\ &= z^{\alpha} \left(z + \sum_{n=2}^{\infty} \frac{n(2b)_{n-1}}{(\alpha + 2)_{n-1}} z^{n} \right) \end{split}$$

because

$$\frac{\Gamma(n+1)}{(1)_{n-1}} = \frac{n!}{(n-1)!} = n$$

and

$$\frac{\Gamma(\alpha+2)}{\Gamma(n+1+\alpha)} = \frac{1}{(n+\alpha)(n+\alpha-1)(n+\alpha-2)\cdots(\alpha+2)}$$
$$= \frac{1}{(\alpha+2)_{n-1}}.$$

References

- [1] Goodman, A.W., *Univalent Functions, Vol. I and Vol. II*, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
- [2] Jack, I.S., Functions starlike and convex of order α , J. London Math. Soc., 3 (1971), 469-474.
- [3] Miller, S.S., Mocanu, P.T., Differential Subordinations, Theory and Applications, Pure and Applied Mathematics, Marcel Dekker Inc., New York, 2000.

- [4] Owa, S., Univalent and Geometric Function Theory Seminar Notes, TC İstanbul Kültür University Pub., İstanbul, 2006.
- [5] Owa, S., On the distortion theorems I., Kyungpook Math. J., 18 (1978), 53-59.
- [6] Srivastava, H.M. and Owa, S., *Univalent Functions, Fractional Calculus and Their Applications*, Jhon Wiley and Sons, New York, 1989.

Authors:

Mert Çağlar

Department of Mathematics and Computer Science, TC İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: m.caglar@iku.edu.tr

Yaşar Polatoğlu

Department of Mathematics and Computer Science, TC İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: y.polatoglu@iku.edu.tr

Arzu Şen

Department of Mathematics and Computer Science, TC İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: a.sen@iku.edu.tr

Emel Yavuz

Department of Mathematics and Computer Science, TC İstanbul Kültür University, 34156 İstanbul, Turkey e-mail: e.yavuz@iku.edu.tr

Shigeyoshi Owa Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan e-mail: owa@math.kindai.ac.jp