ACTA UNIVERSITATIS APULENSIS No 16/2008

A STUDY OF THE STATIONARY REACTIVE FLOW OF A
FLUID COFINED IN N-DIMENSIONAL DOMAINS WITH
HOLES USING FIXED POINT THEORY

CRISTINEL MORTICI
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unique solvability is proved, using fixed point arguments.
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1. INTRODUCTION

We study here the existence and the uniqueness of the solution of a trans-
mission problem in some chemical reactive flows through perforated domains.

Let 2 C R™ be an open bounded domain. Then a set of periodically holes
in Q with boundary S¢ are considered and denote

F=0-us |, IIF=0Q-0

The holes S are of size €, where ¢ > 0 is a small parameter. In practical
case, the holes are fulfilled with a granular material and the reactive fluid can
penetrate inside the grains, where chemical reactions take place. If denote
by u® the concentration of the reactive fluid cofined in €2°* and by v® the
concentration inside the grains, then the chemical reactions are governed by
the following relations:
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([ —D;AwE = f(u) , in QF
—D;Av® +ag(v®) =0 , in II®
ou’ ov®
D, - — =D . Se 1.1
o P ov o (1.1)
ut = v° , on S°¢
[ v =0 , on 0f)

where v is the exterior normal to €2, while a > 0 and Dy, D, are some
constant diffusion coefficients, characterizing the reactive fluid, respective the
granular material from inside the holes. As in models of Langmuir kinetics
3] or in Freundlich kinetics [2], where

g(v)

av

=1 3 (o, > 0) , respective g(v) =[]’ v (0<p<1),
v

the function g is in generally assumed to be continuous, monotone increasing,

while f is monotone increasing and continuously-differentiable.
€

In this model (1.1), the function ( :jg ) , defined on

u QP —-R , 2 IIF >R

converges weakly in the Sobolev space H} () to the solution of the following
elliptic problem:

n 82'& .
_Zaij . m +qg(u) = f(u) , in Q , (1.2)
u— , on Of)

where (a;;), <ij<n is the homogenized, positive defined matrix and ¢ > 0.

2. THE RESULT

In order to study the problem (1.2), we consider a > 0 such that

n

Zaij&fj > alél? ,  for every £ € R"

ij=1
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and we will define the following strongly elliptic problem

2

wzl% 885 +g(z,u) = f(x) in Q 2.1)

u:() on 0f)

which is more generally than the problem (1.2). Mention that by consider-
ing g(z,u) depending also on x, we solve other more complicated diffusion
problems arising in chemistry or physics. The main result of this work is the
following

Theorem 2.1. If f € L*(Q) and g(x,u) has partial derivative in u of
the first order with

mg%gM, in €, (2.2)

for some m, M > 0, then the problem (2.1) has an unique weak solution.

Let us define the operator A : D(A) C H — H by the formula
- 0*u
Au = ;
N wzla 7 w01, 0x;

where

H=1*Q) , D(A):=H*Q)NH;(Q)
and denote F'(u) := g(-,u) — f. The operator A is monotone:

ou 8u
(Au,u) Z/aw oz, 8% >

3,0=1

and [+ A is surjective ([1], p.177), thus the operator A is maximal monotone.
From the relation (2.2) it follows

< F(u) — F(),u—v>>m-|u—uv| (2.3)

and
|F(u) — F(v)| <M -|u—v|, (2.4)

using a Lagrange type theorem. Now the problem (2.1) can be written in
the following abstract form:

Au+ F(u) =0 , in L*(Q), with u € H*(Q)N H(Q) (2.5)
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Proof of the Theorem 2.1 Let us consider the problem (2.1) as a semilinear
equation of the form (2.5). We show first that there exists A > 0 such that

Sx:H — H |, given by Sy (u):=u— AF(u)
is a contraction. In this sense, using the relations (2.3)-(2.4), we deduce that

[Sx(w) = Sx(v)*
= |u—v]> =2\ < F(u) — F(v),u —v > +X|F(u) — F(v)|
< (1=2xm 4 X2M) |u —v|*,

thus
[Sx(u) = Sa(v)| < e |u—v],

with

ci=V1-2xm+ XM <1 , if Ae(0,2m/M).
Now the equation (2.5) can be written as
(I + XA)u = Sy(u), (2.6)

where A > 0 is so that Sy is a contraction. Using the fact that (I + AA)
is inversable and |(I + A A)~!| < 1 for each A > 0 (because A is maximal
monotone, e.g.[1], p.101) the equation (6) is equivalent with

u= (I +XA)"1Sy(u).
We have

(I + )\A)‘ISA( ) — (I +AA)"'S\(v)]
= [(I + AA) 7 (Sx(u) — Sr(v))]
| I+ )A)” { |Sa(u) — Sa(v)| < c-|u—1].

Therefore, u — (I + AA)~1Sy(u) is a contraction having an unique fixed
point, thus (2.5) and consequently (2.1) has an unique weak solution.
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