A CLASS OF HOLOMORPHIC FUNCTIONS DEFINED BY INTEGRAL OPERATOR

CAMELIA MĂDĂLINA BĂLĂEŢI

ABSTRACT. By using the integral operator $I^m f(z)$, $z \in U$ (Definition 4), we introduce a class of holomorphic functions, denoted by $\mathcal{I}^m(\alpha)$, and we obtain inclusion relations related to this class and some differential subordinations.

Keywords: differential subordination, dominant, integral operator.

2000 Mathematics Subject Classification: 30C45.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane:

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Let $\mathcal{H}[U]$ be the space of holomorphic functions in U. We let:

$$A_n = \{ f \in \mathcal{H}[U], \ f(z) = z + a_{n+1}z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$.

We let $\mathcal{H}[a,n]$ denote the class of analytic functions in U of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \quad z \in U.$$

Let

$$K = \left\{ f \in A : \text{ Re } \frac{zf''(z)}{f'(z)} + 1 > 0, \ z \in U \right\}$$

denote the class of normalized convex functions in U.

If f and g are analytic functions in U, then we say that f is subordinate to g, written $f \prec g$, or $f(z) \prec g(z)$, if there is a function w analytic in U with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g[w(z)] for $z \in U$. If g is univalent, then $f \prec g$ if f(0) = g(0) and $f(U) \subset g(U)$.

Definition 1 [1] Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordinations

$$\psi\left(p\left(z\right),zp'\left(z\right),z^{2}p''\left(z\right);z\right)\prec h\left(z\right),\tag{1}$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, if $p \prec q$ for all p satisfying (1). A dominant q that satisfies $q \prec q$ for all dominants q of (1) is said to be the best dominant of (1).

Note that the best dominant is unique up to a rotation of U. We use the following subordination results:

Lemma 2 (Hallenbeck and Ruscheweyh [1]) Let h be a convex function with $h(0) \equiv a$ and let $\gamma \in \mathbb{C}^*$ be a complex number with Re $\gamma \geq 0$. If $p \in \mathcal{H}[U]$ with p(0) = a and

$$p(z) + \frac{1}{\gamma} z p'(z) \prec h(z)$$

then

$$p(z) \prec g(z) \prec h(z)$$

where

$$g(z) = \frac{\gamma}{nz^{\frac{\gamma}{n}-1}} \int_0^z h(t)t^{\frac{\gamma}{n}-1}dt.$$

The function g is convex and is the best dominant.

Lemma 3 (Miller and Mocanu [2]) Let q be a convex function in U and let

$$h(z) = g(z) + n\alpha z g'(z)$$

where $\alpha > 0$ and n is a positive integer.

If $p(z) = g(0) + p_n z^n + \dots$ is holomorphic in U and

$$p(z) + \alpha z p'(z) \prec h(z),$$

then

$$p(z) \prec q(z)$$

and this result is sharp.

Definition 4 [5] For $f \in A$ and $m \in \mathbb{N}$ we define the operator $I^m f$ by

$$I^{0}f(z) = f(z)$$

$$I^{1}f(z) = If(z) = \int_{0}^{z} f(t) t^{-1} dt$$

$$I^{m}f(z) = I\left(I^{m-1}f(z)\right), \ z \in U.$$

Remark 5 If $f \in \mathcal{H}(U)$ then $I^m f(z) = \sum_{j=1}^{\infty} j^{-m} a_j z^j$.

Remark 6 For m = 1, $I^m f$ is the Alexander operator.

2. Main results

Definition 7 If $0 \le \alpha < 1$ and $m \in \mathbb{N}$, let $\mathcal{I}^m(\alpha)$ denote the class of functions $f \in A$ which satisfy the inequality:

Re
$$[I^m f(z)]' > \alpha$$
.

Remark 8 For m = 0, we obtain

$$Ref'(z) > \alpha, \quad z \in U.$$

Theorem 9 If $0 \le \alpha < 1$ and $m \in \mathbb{N}$, then we have

$$\mathcal{I}^m(\alpha) \subset \mathcal{I}^{m+1}(\delta), \tag{2}$$

where

$$\delta = \delta(\alpha) = 2\alpha - 1 + 2(1 - \alpha)\ln 2. \tag{3}$$

The result is sharp.

Proof. Assume that $f \in \mathcal{I}^m(\alpha)$. Then we have

$$I^{m}f(z) = z[I^{m+1}f(z)]', \quad z \in U.$$
 (4)

and differentiating this equality we obtain

$$[I^m f(z)]' = [I^{m+1} f(z)]' + z [I^{m+1} f(z)]'', z \in U.$$
 (5)

If $p(z) = [I^{m+1}f(z)]'$, then (5) becomes

$$[I^m f(z)]' = p(z) + zp'(z), \quad z \in U.$$

Since $f \in \mathcal{I}^m(\alpha)$, from definition 7 we have

Re
$$[p(z) + zp'(z)] > \alpha$$
,

which is equivalent to

$$p(z) + zp'(z) \prec \frac{1 + (2\alpha - 1)z}{1 + z} \equiv h(z).$$

Therefore, from lemma 2 results that

$$p(z) \prec g(z) \prec h(z), \quad z \in U$$

where

$$g(z) = \frac{1}{z} \int_0^z \frac{1 + (2\alpha - 1)t}{1 + t} dt$$
$$= 2\alpha - 1 + 2(1 - \alpha) \frac{\ln(1 + z)}{z}, \quad z \in U.$$

Moreover, the function g is convex and is the best dominant.

From $p(z) \prec q(z), z \in U$, results that

Re
$$p(z) > \text{Re } g(1) = \delta(\alpha) = 2\alpha - 1 + 2(1 - \alpha) \ln 2$$
,

hence we can prove that $\mathcal{I}^m(\alpha) \subset \mathcal{I}^{m+1}(\delta)$.

Theorem 10 Let g be a convex function, g(0) = 1 and let h be a function such that

$$h(z) = g(z) + zg'(z), \quad z \in U.$$

If $f \in A$ verifies the differential subordination

$$[I^m f(z)]' \prec h(z), \quad z \in U \tag{6}$$

then

$$[I^{m+1}f(z)]' \prec g(z), \quad z \in U$$

and this result is sharp.

Proof. By using the properties of the operator $I^m f$ and differentiating we obtain

$$[I^m f(z)]' = [I^{m+1} f(z)]' + z [I^{m+1} f(z)]'', z \in U.$$

If we let

$$p(z) = [I^{m+1}f(z)]',$$

then we obtain

$$[I^m f(z)]' = p(z) + zp'(z)$$

and (6) becomes

$$p(z) + zp'(z) \prec g(z) + zg'(z) \equiv h(z).$$

By using lemma 3, we have

$$p(z) \prec g(z)$$
,

i.e.

$$\left[I^{m+1}f\left(z\right)\right]' \prec g\left(z\right), \quad z \in U$$

and this result is sharp.

Theorem 11 Let g be a convex function, g(0) = 1, and

$$h(z) = g(z) + zg'(z), \quad z \in U.$$

If $f \in A$ and verifies the differential subordination

$$[I^m f(z)]' \prec h(z), \quad z \in U, \tag{7}$$

then

$$\frac{I^{m}f\left(z\right)}{z} \prec g\left(z\right), \quad z \in U$$

where

$$g(z) = \frac{1}{z} \int_0^z h(t) dt, \quad z \in U$$

and this result is sharp.

Proof. If

$$p(z) = \frac{I^m f(z)}{z}, \ z \in U$$
 (8)

then results that

$$I^m f(z) = zp(z). (9)$$

Differentiating (9), we obtain

$$[I^m f(z)]' = p(z) + zp'(z), \quad z \in U,$$

hence (7) becomes

$$p(z) + zp'(z) \prec h(z) \equiv g(z) + zg'(z).$$

Therefore, from lemma 2 results that

$$p(z) \prec g(z), z \in U$$

i.e.

$$\frac{I^m f(z)}{z} \prec g(z), \quad z \in U.$$

Theorem 12 Let $h \in \mathcal{H}[U]$, with h(0) = 1, $h'(0) \neq 0$, which verifies the inequality

Re
$$\left[1 + \frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2}, \quad z \in U.$$

If $f \in A$ and verifies the differential subordination

$$[I^m f(z)]' \prec h(z), \quad z \in U, \tag{10}$$

then

$$[I^{m+1}f(z)]' \prec g(z)$$

where

$$g(z) = \frac{1}{z} \int_0^z h(t)dt, \ z \in U.$$

The function g is convex and is the best dominant.

Proof. A simple application of the differential subordinations technique [1, Corollary 2.6g.2, p. 66] shows that the function g is convex. From

$$I^m f(z) = z[I^{m+1} f(z)]', \ z \in U$$

we obtain

$$\left[I^{m}f(z)\right]' = \left[I^{m+1}f\left(z\right)\right]' + z\left[I^{m+1}f\left(z\right)\right]''.$$

If we assume

$$p(z) = [I^{m+1}f(z)]'$$

then

$$[I^m f(z)]' = p(z) + zp'(z), \ z \in U,$$

hence (10) becomes

$$p(z) + zp'(z) \prec h(z)$$
.

Moreover, from lemma 2 results that

$$p(z) \prec g(z) = \frac{1}{z} \int_0^z h(t)dt.$$

Theorem 13 Let $h \in \mathcal{H}(U)$, h(0) = 1, $h'(0) \neq 0$, which satisfy the inequality

Re
$$\left[1 + \frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2}, \quad z \in U.$$

If $f \in A$ and verifies the differential subordination

$$[I^m f(z)]' \prec h(z), \quad z \in U, \tag{11}$$

then

$$\frac{I^m f(z)}{z} \prec g(z), \quad z \in U, \ z \neq 0,$$

where

$$g(z) = \frac{1}{z} \int_0^z h(t)tdt, \ z \in U.$$

The function g is convex and is the best dominant.

Proof. A simple application of the differential subordinations technique [1, Corollary 2.6g.2, p. 66] shows that the function g is convex.

If

$$p(z) = \frac{I^m f(z)}{z}, \quad z \in U, \ z \neq 0.$$
(12)

then differentiating relation (12) we obtain

$$[I^m f(z)]' = p(z) + zp'(z),$$

so (11) becomes

$$p(z) + zp'(z) \prec h(z), \quad z \in U.$$

Therefore, from lemma 2 results that $p(z) \prec g(z)$ where

$$g(z) = \frac{1}{z} \int_0^z h(t)dt, \ z \in U,$$

and g is convex and is the best dominant.

Similar results for differential operator were obtained by G. I. Oros in [4].

REFERENCES

- [1] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
- [2] S. S. Miller, P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32(1985), 185-195.
- [3] P. T. Mocanu, T. B. Bulboacă, G. Şt. Sălăgean, Teoria geometrică a funcțiilor univalente, Casa Cărții de Știință, Cluj, 1999.
- [4] G. I. Oros, A class of holomorphic functions defined using a differential operator, General Mathematics, 13, 4(2005), 13-18.
- [5] G. Şt. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag) 1013(1983), 362-372.

Author:

Camelia Mădălina Bălăeți
Department of Mathematics and Computer Science
University of Petroșani
Str. Universității, No. 20
332006 Petroșani, Romania
email: balaetim@yahoo.com