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ABSTRACT. In this work we obtain the conditions of univalence for the
analicity and univalence in the unit disc U = {z € C,|z| < 1} of certain
integral operators.
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1.INTRODUCTION

Let A be the class of the of the functions f which are analytic in the unit
disc U and f(0) = f’(0) — 1 = 0. We denote by S the class of the functions
f € A which are analytic in U.

Ozaki and Nunokawa [2] investigated the univalence of the functions f €

A.
Theorem A. Let f € A satisfy the condition:

w_l‘gl (1)

f*(2)

for all z € U, then, f is univalent in U.

2 .PRELIMINARY RESULTS

We need the following theorem and lemma for proving our main results.
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Theorem B.[3]Let a be a complex number, Reaw > 0 and f € A. If

2f" (2)
/' (z)

1 — |Z|2Rea
Rea
for all z € U, then the function

<1 (2)

Q=

s in the class S.

The Schwarz Lemma. [1]Let the analytic function f be reqular in the
unit disk and let f(0) = 0. If |f(2)] <1, then

£ (2)] < [z] (4)
for all z € U, where the equality can hold only if |f(2)| = Kz and K = 1.

3.MAIN RESULTS

Theorem 1.Let g € A verifies (1) and a + bi be a complex number, a,b
satisfies the conditions

ae (0,v3] (5)

a* +a*h* — 9 > 0. (6)
If

l9(2)] <1 (7)
for all z € U, then the function

(a+ bi) /0 yeticg (#) i du] (8)
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F(z) =

1s in the class S.
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Proof. Let us consider the function

o= [ ()

0
The function f is regular in U.

From (9) we have
fi(z) = (@ ) it

L (9(2)\77 " 29 (2) = 9(2)
1 - - I\ IS INTT
f(z)_a+bi(z> 22
and
L=z 2f"(2)] _1=]2[" 1 |zg(2) 1‘
a fy | e VaEre| gz)
for all z € U.
From (10) we obtain
LB LB (), )
a FE) T avar+ 02 \| 9(2)
for all z € U, and hence, we get
L[ | 2f"(2) | o 1= ( 29 |]9=)] 1)
a F'@) 17 ava?+02 \| ¢*(2) || =
for all z € U.
By the Schwarz-Lemma and using (12) we have
1|2 " _||2e 2 1
LB LB (200 ),
a F@) |7 ava?+ 02 \| ¢*(2)
for all z € U.

From (13) and because g verifies the condition (1) we obtain

L= o 2| 30— 3
a f'(z) ava?+b T ava®+b?
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for all z € U.
From (5) and (6) we have
3

— < 15

ava? +b* (15)
Using (15) and (14) we get

L— |2 | 2f"(2)
<1 1
« | 7@ S 1o

for all z € U. )
From (9) we obtain f'(z) = (g(z)) “ and by Theorem B it results that

z

the function F' is in the class S.

Theorem 2.Let g € A wverifies (1), a + bi be a complex number, a,b
satisfies the conditions

R R ar

and

8a* + 9b* — 18a + 9 < 0. (18)
If

l9(2)] <1 (19)
for all z € U, then the function

a-+bi

G(z) = ¢ (a+ bi) )] (20)

o\

1s in the class S.

Proof. From (20) we have

_1
V4 . a+bi

G(z) =< (a+ bi) / u et (#)MH du : (21)

0
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Let us consider the function

o= [ (22)"

0

The function p is regular in U.
a+bi—1
From (22) we get p/(z) = <M> , and

z

a+bi—-2
p'(z) = (a+bi—1) (9(2)) 22 9E) g

z

1— |Z|2a

a

zp”(z)
46
for all z € U, and hence, we obtain

L— 2™ | 20" (2) L — o

<y/(a—1)* 412

1_ |Z|2a ‘
< la + bi — 1]
a

9(2)

2%g'(2)

zg'(2)

l9(2)|

a a

P'(2)

(

9%(2)

By the Schwarz-Lemma and using (24) we have

L— |2 |20 () L— o

<y/(a—1)"+ 12

2%g'(2)

a P (2) a

(

9*(2)

2]

(22)

+ 1) (23)

+ 1) (24)

- 1‘ +2> (25)

From (25) and since g satisfies the condition (1) we get

1 [2]2 " 1 — || 3 a—12+b2
a P (2) a a

for all z € U.

From (17) and (18) we get

3v/(a— 1)+ b2
<1 (27)
a
and by (26) we have
. 2a 17
a P (z
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for all z € U. b
From (22) we have p/(z) = <g(z)> and by Theorem B it results that

z

the function G is in the class S.
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