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1. Introduction

The dynamics of Ishii’s equation using an Hamilton-Poisson formulation
was studied in [1]. The authors show that the system

ẋ1 = x2

ẋ2 = x3

ẋ3 = x1x2,
(1)

has the Hamilton-Poisson realization (R3, {·, ·}1, H1), where the Poisson struc-
ture {·, ·}1 is generated by the matrix

Π1(x1, x2, x3) =

 0 −1 0
1 0 x1

0 −x1 0

 , (2)

and the Hamiltonian H1 is given by

H1(x1, x2, x3) = x1x3 −
1

2
x2

2 −
1

3
x3

1. (3)

Also, the function H2 ∈ C∞(R3, R) given by

H2(x1, x2, x3) = x3 −
1

2
x2

1 (4)

is a Casimir of the configuration (R3, {·, ·}1).
Next, we find new Hamilton-Poisson formulations for the system (1),

write the system (1) as a multi-gradient system and construct geometric
integrators that preseve some ”qualitative” features (constants of motion,
Poisson structure) of the system (1).
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2.Multi-Hamiltonian realization of the system (1)

Let C∞(R3, R) be the space of smooth real valued functions defined on R3

and the bracket {·, ·}2 on C∞(R3, R) defined by

{f, g}2 = (∇f)tΠ2(∇g), (5)

where the matrix Π2 is given by

Π2(x1, x2, x3) =

 0 x1 x2

−x1 0 x3 − x2
1

−x2 x2
1 − x3 0

 . (6)

Proposition 1. The bracket (5) defines a Poisson structure on R3.
Proof. It is easy to see that the bracket (5) is bilinear, skew-symmetric and
satisfies Leibniz’ rule. The Jacobi identity reduces in the three dimensional
case to the following single relation

π12

(
∂π31

∂x1

− ∂π23

∂x2

)
+ π13

(
∂π12

∂x1

− ∂π23

∂x3

)
+ π23

(
∂π12

∂x2

− ∂π31

∂x3

)
= 0,

which is, also, easily verified.
Proposition 2. The Poisson structures {·, ·}1, {·, ·}2 are compatible.
Proof. It is well known that {·, ·}1, {·, ·}2 are compatible if and only if
[Π1, Π2]S = 0, where [·, ·]S is the Schouten bracket. Computing the compo-
nents in local coordinates of [Π1, Π2]S given by (see [2])

[Π1, Π2]
ijk
S = −

3∑
m=1

(
Πmk

2

∂Πij
1

∂xm

+ Πmk
1

∂Πij
2

∂xm

+ cycle(i, j, k)

)
we obtain the desired result.

Proposition 3. The system (1) is a bi-Hamiltonian system.
Proof. Indeed, the Poisson structures {·, ·}1, {·, ·}2 are not constant multiples
of each other, compatible and

ẋ = Π1(x) · ∇H1(x) = Π2(x) · ∇H2(x), x ∈ R3.

Remark 1. Let us observe that Π1 · ∇H2 = 0 and Π2 · ∇H1 = 0, so the
function H2 is a Casimir of the configuration (R3, {·, ·}1) and H1 is a Casimir
of the configuration (R3, {·, ·}2).
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The fact that the Poisson structures {·, ·}1, {·, ·}2 are compatible i.e.
a{·, ·}1 + b{·, ·}2 is a Poisson structure for all a, b ∈ R, helps us show that
the system (1) may be realized as a Hamilton-Poisson system in an infinite
number of different ways. More exactly, we can prove
Proposition 4. The system (1) has the following Hamilton-Poisson realiza-
tions :

(R3, Πab, Hcd),

where Πab = aΠ1 + bΠ2, Hcd = cH1 − dH2 and a, b, c, d ∈ R, ac− bd = 1.
Remark 2. The function Cab ∈ C∞(R3, R) given by

Cab(x1, x2, x3) = a(
1

2
x2

1 − x3) + b(x1x3 −
1

2
x2

2 −
1

3
x3

1)

is a Casimir of the configuration (R3, Πab).

3.The system (1) like a multi-gradient system

Let H1, H2 ∈ C∞(R3, R) be the first integrals of the system (1) given by
(3) and (4). Then we have
Proposition 5. The system (1) can be written as a multi-gradient system

ẋ = S(x) · ∇H1(x) · ∇H2(x), x = (x1, x2, x3) ∈ R3, (7)

where S is a completely skew symmetric 3−tensor.
Proof. If we take S = εijk (the Levi-Civita 3−tensor), then, a direct compu-
tation shows us that

ẋi =
3∑

j,k=1

Sijk
∂H1(x)

∂xj

∂H2(x)

∂xk

, i = 1, 2, 3,

as required.
Let us now consider the discretization of the system (7) given by (see [3],

[4]):

xn+1 − xn

h
= S̃(xn, xn+1, h) · ∇H1(x

n, xn+1) · ∇H2(x
n, xn+1), (8)

where the discrete gradients ∇H1, ∇H2 are any solution of{
H(xn+1)−H(xn) = (∇H) · (xn+1 − xn)
∇H(xn, xn+1) = ∇H(xn) +O(h)

155



I. Moş - Multiple Hamiltonian structures for the Ishii’s equation

and S̃ is a completely skew symmetric 3−tensor that verifies

S̃(xn, xn+1, h) = S(xn) +O(h).

Choosing discrete gradients ∇H1, ∇H2 as follows:

∇H1(x
n, xn+1) =

(
−1

3

[
(xn+1

1 )2 + xn+1
1 xn

1 + (xn
1 )2
]
+ xn

3 ,−
1

2

(
xn+1

2 + xn
2

)
, xn+1

1

)
,

∇H2(x
n, xn+1) =

(
−1

2

(
xn+1

1 + xn
1

)
, 0, 1

)
and S̃(xn, xn+1, h) = S(xn) we obtain, via (8), an explicit first order numer-
ical integrator for the system (1), given by

xn+1
1 − xn

1

h
=

1

2

(
xn+1

2 + xn
2

)
xn+1

2 − xn
2

h
=

1

6
(xn+1

1 )2 +
1

6
xn+1

1 xn
1 −

1

3
(xn

1 )2 + xn
3

xn+1
3 − xn

3

h
=

1

4

(
xn+1

1 + xn
1

) (
xn+1

2 + xn
2

) (9)

where h is the size step of the integrator.
Proposition 6. The integrator (9) preserves both the first integrals H1, H2

of the system (1).
Proof. Indeed, for i = 1, 2 we have:

Hi(x
n+1
1 , xn+1

2 , xn+1
3 )−Hi(x

n
1 , x

n
2 , x

n
3 ) =

= ∇Hi(x
n, xn+1)t · (xn+1 − xn)

= h∇Hi(x
n, xn+1)t · S̃(xn, xn+1, h) · ∇H1(x

n, xn+1) · ∇H2(x
n, xn+1)

= 0,

as required.

4.The system (1) and the midpoint rule

The midpoint integrator for the system (1) is given by

xn+1
1 − xn

1

h
=

1

2

(
xn+1

2 + xn
2

)
xn+1

2 − xn
2

h
=

1

2

(
xn+1

3 + xn
3

)
xn+1

3 − xn
3

h
=

1

4

(
xn+1

1 + xn
1

) (
xn+1

2 + xn
2

)
.

(10)
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Then, we can prove
Proposition 7. The midpoint integrator (10) preserves the first integral H2

given by (4).
Remark 3. Let us observe that if we modify the midpoint rule as follows:

xn+1
1 − xn

1

h
=

1

2

(
xn+1

2 + xn
2

)
xn+1

2 − xn
2

h
=

1

2

(
xn+1

3 + xn
3

)
+ ∆

xn+1
3 − xn

3

h
=

1

4

(
xn+1

1 + xn
1

) (
xn+1

2 + xn
2

)
,

where ∆ =
1

6
(xn+1

1 )2 +
1

6
xn+1

1 xn
1 −

1

3
(xn

1 )2 +
1

2
xn

3 −
1

2
xn+1

3 , we obtain the

integrator (9), that preserves both the first integrals H1, H2 of the system
(1). The midpoint integrator lies on H2 = const. and with ∆ we ”drag” it
on the phase curves of the system (1), the intersection of

x1x3 −
1

2
x2

2 −
1

3
x3

1 = const.

with

x3 −
1

2
x2

1 = const.

Remark 4. Unfortunately, none of these integrators preserves the Poisson
structures Π1, Π2 defined by (2), (6).
Next, using the midpoint rule, combined with splitting and composition
methods, we construct an Poisson integrator for the system (1). Let us
observe that the system (1) can be written as (see [5])

ẋ = (Π21(x) + Π22(x)) · ∇H2(x), x ∈ R3,

where

Π21 =

 0 x1 0
−x1 0 x3 − x2

1

0 x2
1 − x3 0

 , Π22 =

 0 0 x2

0 0 0
−x2 0 0

 .

If ϕ1, ϕ2 are the midpoint integrators of the systems

ẋ = Π2i(x) · ∇H2(x), i = 1, 2,
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then, the splitting midpoint integrator ϕ = ϕ1 ◦ ϕ2 is given by
xn+1

1 = xn
1 + hxn

2 + h2xn
3

xn+1
2 = xn

2 + hxn
2

xn+1
3 = xn

3 + hxn
1x

n
2 + h2xn

1x
n
3 + h3xn

2x
n
3 +

h2(xn
2 )2

2
+

h4(xn
3 )2

2
,

(11)

where h is the size step of the integrator. Now, we can prove
Proposition 9. The numerical integrator (11) has the following properties :
(i) It preserves the Poisson structure Π1 given by (2).
(ii) It preserves the Casimir H2 of the configuration (R3, Π1) given by (4).
Proof. (i) A direct computation gives us

Dϕ(x) · Π1(x) · [Dϕ(x)]t = Π1(ϕ(x)),

as required.
(ii) Indeed, via (11), we have H2(ϕ(xn

1 , x
n
2 , x

n
3 )) = H2(x

n
1 , x

n
2 , x

n
3 ).

Remark 5. In a similar manner we obtain a Poisson integrator for the
Poisson structure Π2, given by (6).
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