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THE ISHII’'S EQUATION
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ABSTRACT.The Ishii’s equation is considered and some aspects of its
Poisson geometry are pointed out.
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1. INTRODUCTION

The dynamics of Ishii’s equation using an Hamilton-Poisson formulation
was studied in [1]. The authors show that the system

.1;1 = T2
5152 = I3 (]_)
T3 = I1Ty,

has the Hamilton-Poisson realization (R*, {-, -}1, H;), where the Poisson struc-
ture {-,-}; is generated by the matrix

0 -1 0
H1<m1ax27$3) = 1 0 x1 ) (2)
0 —I1 0
and the Hamiltonian H; is given by
1 1
Hiy(x1, 29, 23) = 1203 — éxg - gxi’ (3)
Also, the function H, € C*°(R3, R) given by
1
Hy (w1, w9, 23) = 13 — 535% (4)

is a Casimir of the configuration (R3,{-,-},).

Next, we find new Hamilton-Poisson formulations for the system (1),
write the system (1) as a multi-gradient system and construct geometric
integrators that preseve some ”qualitative” features (constants of motion,
Poisson structure) of the system (1).
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2.MULTI-HAMILTONIAN REALIZATION OF THE SYSTEM (1)

Let C*°(R3, R) be the space of smooth real valued functions defined on R3
and the bracket {-, -}» on C*°(R? R) defined by

1f, 9} = (Vf)tHQ(VQ): (5)

where the matrix Il is given by

0 T i)
HQ(ZL‘l, X9, 173) = —T1 0 r3 — :c% . (6)
—1y X7 — 13 0

Proposition 1. The bracket (5) defines a Poisson structure on R3.

Proof. Tt is easy to see that the bracket (5) is bilinear, skew-symmetric and
satisfies Leibniz’ rule. The Jacobi identity reduces in the three dimensional
case to the following single relation

877'31 871'23 i 871'12 871'23 i 871'12 871'31 0
T — s - vis — =
12 (’3x1 3962 1 8:151 8{133 2 8.’13'2 8963 ’
which is, also, easily verified.
Proposition 2. The Poisson structures {-,-}1, {-,-}2 are compatible.
Proof. 1t is well known that {-,-};, {-,-}2 are compatible if and only if

111, II5]¢ = 0, where [-, -] is the Schouten bracket. Computing the compo-
nents in local coordinates of [II;, Il,] ¢ given by (see [2])

m=1

g BIIK BIIKd
[Ty, T) 7% = <HS”"“ L =2 + cycle(i, j, k))

0z, 0%,

we obtain the desired result.

Proposition 3. The system (1) is a bi-Hamiltonian system.
Proof. Indeed, the Poisson structures {-,-}1, {-, - }2 are not constant multiples
of each other, compatible and

i =1I(z) - VHi(z) = Hy(x) - VHy(x), 2z € R

Remark 1. Let us observe that II; - VHy = 0 and Il, - VH; = 0, so the
function Hy is a Casimir of the configuration (R*,{-,-},) and H; is a Casimir
of the configuration (R3,{-,-}5). m
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The fact that the Poisson structures {-,-};1, {-,-}2 are compatible i.e.
af{-,-}1 + b{-,-}2 is a Poisson structure for all a,b € R, helps us show that
the system (1) may be realized as a Hamilton-Poisson system in an infinite
number of different ways. More exactly, we can prove
Proposition 4. The system (1) has the following Hamilton-Poisson realiza-
tions:

(R37 Haba Hcd)y

where 1y, = ally + blly, H.y = cH; — dHy and a,b,c,d € R, ac — bd = 1.
Remark 2. The function C,, € C*(R?, R) given by

1 1 1
Cap(T1, T2, 3) = a(ﬁx% —x3) + b(x125 — Exg — gfﬁ)

is a Casimir of the configuration (R?, Tl,).
3.THE SYSTEM (1) LIKE A MULTI-GRADIENT SYSTEM

Let Hy, Hy € C*(R3, R) be the first integrals of the system (1) given by
(3) and (4). Then we have
Proposition 5. The system (1) can be written as a multi-gradient system

i = S(r) - VH(x) - VHy(x), x = (21,79,73) € R, (7)

where S is a completely skew symmetric 3—tensor.
Proof. If we take S = ¢ (the Levi-Civita 3—tensor), then, a direct compu-
tation shows us that

3
T; = Z Sij aHl(m) aHQ(x)a 1=1,2,3,

ik
o 0x; Oy,

J,k=1

as required. m
Let us now consider the discretization of the system (7) given by (see [3],

= g(xna xn+17 h) ’ v[—Il (xn’ anrl) ’ vH2<xn7 anrl)? (8)

where the discrete gradients VH,, VH, are any solution of

(- = G-
VH(z",z"") = VH(2")+ O(h)
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and S is a completely skew symmetric 3—tensor that verifies
S(x", 2" h) = S(z") + O(h).

Choosing discrete gradients VH;, VH, as follows:

1

le(In’In-‘rl) — (__

3 2

[( n+1) +xn+1 n+(x7lt>2] +I7§’_1( n+1+l’2) ljlz+1>,
vH2(xn’xn+1) _ (_; ( n+1 —|—$1) O, 1)

and S(z", z"" h) = S(z™) we obtain, via (8), an explicit first order numer-
ical integrator for the system (1), given by

( n+1 n 1
xl xl = 2 (xgb-i-l + 1’2)
Ll 1 1 1
22 = (@) 4 el — (a]) + 9)
n+1h xn ? 6 3
T B " n
\ : h s = 4( +1+x1)( H"‘xz)

where h is the size step of the integrator.

Proposition 6. The integrator (9) preserves both the first integrals Hy, Ho
of the system (1).

Proof. Indeed, for + = 1,2 we have:

H(l’?—ﬂ x721+1 xg-&—l)

Hl(xﬂlla xga .%’g) =

= VH;(z", 2"t - (2" — 2)

= hVH (2", 2"t S(z", 2" k) - VH, (2", 2™Y) - VHy (2, 2"
— 0,

as required.
4. THE SYSTEM (1) AND THE MIDPOINT RULE

The midpoint integrator for the system (1) is given by

( n+l _ .n 1
30112F i N 5( " +$2)
xy | —af 1 L (10)
o = @)
xg—H B aj? 1 n+1 n+1
\ A = 7 (@ ) (7 ).
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Then, we can prove
Proposition 7. The midpoint integrator (10) preserves the first integral Ho

given by (4).
Remark 3. Let us observe that if we modify the midpoint rule as follows:

( n+l . n
mlh I _ % (x721+1 i mg)
n+1 N
2 T % (23 + ) + A
n+l
BT Lt ) (et ),
. h 4

1 1 1 1 1
where A = é(x’fH)Q + —aptlal — g(:c?)Q + iaz’g — ixg‘“, we obtain the
integrator (9), that preserves both the first integrals Hy, Hy of the system
(1). The midpoint integrator lies on Hy = const. and with A we ”drag” it
on the phase curves of the system (1), the intersection of
Lo 134
T3 — 5.2:2 — §x1 = const.
with
L,
r3 — 53:1 = const.

Remark 4. Unfortunately, none of these integrators preserves the Poisson
structures Iy, II, defined by (2), (6).m

Next, using the midpoint rule, combined with splitting and composition
methods, we construct an Poisson integrator for the system (1). Let us
observe that the system (1) can be written as (see [5])

& = (g (z) + Myy(x)) - VHa(x), € R’

where
0 T 0 0 0 T
H21 = —T1 0 Trs — ZE% s ]._.[22 = 0 0 O
0 22—ux3 0 —x5 0 0

If ©1, w9 are the midpoint integrators of the systems

ZE':HQZ([L')VHQ(l'), = 1,2,
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then, the splitting midpoint integrator ¢ = @1 o ¢ is given by

gt =l + hal + h2axh
n+1 n n
xh = x5+ haj 11
n+1 n n,_.n 2,.n,.n 3,.,.n,.n h2($g)2 h4($g)2 ( )
Ty = x5 + haizy + h alzy + hPxyxy + 5 + 5

where h is the size step of the integrator. Now, we can prove

Proposition 9. The numerical integrator (11) has the following properties:
(1) It preserves the Poisson structure 1y given by (2).

(i1) It preserves the Casimir Hy of the configuration (R 11;) given by (4).
Proof. (i) A direct computation gives us

De(z) - Ti(z) - [Dy(z)] = i(p(2)),
as required.
(77) Indeed, via (11), we have Ho(p (27, 25, 2%)) = Ho(a}, 2, 2%).
Remark 5. In a similar manner we obtain a Poisson integrator for the
Poisson structure Ily, given by (6).
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